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Abstract
Graph neural networks are able to solve certain
drug discovery tasks such as molecular prop-
erty prediction and de novo molecule gener-
ation. However, these models are considered
‘black-box’ and ‘hard-to-debug’. This study
aimed to improve modeling transparency for
rational molecular design by applying the in-
tegrated gradients explainable artificial intel-
ligence (XAI) approach for graph neural net-
work models. Models were trained for pre-
dicting plasma protein binding, cardiac potas-
sium channel inhibition, passive permeability,
and cytochrome P450 inhibition. The pro-
posed methodology highlighted molecular fea-
tures and structural elements that are in agree-
ment with known pharmacophore motifs, cor-
rectly identified property cliffs, and provided
insights into unspecific ligand-target interac-
tions. The developed XAI approach is fully
open-sourced and can be used by practitioners
to train new models on other clinically-relevant
endpoints.

Introduction
Medicinal chemists have to solve multidimen-
sional optimization problems, that is, the si-
multaneous optimization of several different

compound parameters.1 Successful drug candi-
dates should not only possess sufficient activity
towards a certain target protein or pathway
but also suitable overall absorption, distri-
bution, metabolism, and excretion (ADME)
properties while holding an acceptable safety
profile. Quantitative structure-property rela-
tionship (QSPR) approaches2 have been ex-
tensively used to close the gap between in
silico experiments and more cost- and time-
intensive in vitro data.3,4 Currently, deep-
learning approaches are among the most popu-
lar machine-learning QSPR methodologies, as
these have proven useful for improved ligand-
5,6 and structure-based property prediction,7
target identification,8,9 de novo molecule gen-
eration,10,11 and chemical synthesis planning,12
to name some of its most prominent applica-
tions.

Among these learning algorithms, message-
passing neural networks, commonly referred to
as graph neural networks,13 have shown good
capabilities in ligand-based molecular property
prediction.14 Since one of the advantages of
deep-learning approaches against more clas-
sical machine-learning methods, is their abil-
ity to approximate highly non-linear functions
from representations that are closer to the data
source, graph neural networks have the po-
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tential of replacing decades-old hand-crafted
molecular fingerprint representations.15 De-
spite their promise, the practical utility and
acceptance of graph neural network models in
drug discovery is limited owing to their lack of
interpretability regarding the established chem-
ical language.16 This is further exacerbated by
the fact that deep neural networks are no-
torious for producing correct answers for the
wrong reasons (i.e., the Clever Hans effect),17
and for making overly confident erroneous pre-
dictions.18 ‘Explainable’ artificial intelligence
(XAI) aims to overcome some of these limita-
tions by rendering the decision-making process
of machine learning methods more transparent
for the human mind.19,20

In the context of drug discovery-related ap-
plications, in particular for property prediction
tasks, XAI methods can potentially help ra-
tionalize deep learning models by highlighting
molecular substructures that are critical for a
given prediction.21–23 Analysis of the physico-
chemical properties of compounds can provide
an alternative perspective. Several studies have
examined the influence of such ‘global’ prop-
erties on drug-likeness estimations and other
aspects of chemical compounds.24–26 Herein,
an established structure- and property-based
XAI approach, the integrated gradients fea-
ture attribution technique,27 was used and ex-
tended to examine its practical utility for a
number of ADME and safety-related endpoints.
Additionally, to the best of our knowledge,
we provide the first open-source implementa-
tion of this XAI approach in combination with
message-passing neural networks in the con-
text of chemical property prediction. We fur-
thermore make available all trained models and
evaluation code, so that other researchers repro-
duce the results shown, test on novel examples,
and adapt the proposed XAI approach to their
own message-passing models.

Data sets
Four pharmacologically relevant parameters
– plasma protein binding (PPB),28 human

Table 1: Data sets used for each pharmacolog-
ical endpoint considered.

Endpoint No. compounds Task References

Plasma protein
binding

4,634 Regression 32–37

Caco-2 passive
permeability

276 Regression 38

hERG inhibition 6,993 Regression 39,40
P450 inhibition 9,120 Binary classification 41,42

ether-a-go-go-related gene (hERG) potassium
channel inhibition,29 passive drug permeability
(Caco-2 assay),30 and cytochrome P450 inhi-
bition (CYP3A4 isoform) – were evaluated.31
To ensure that prospective users could explore
the applicability of the proposed XAI approach
and make use of the trained models, a liter-
ature survey was conducted to collect publicly
available data on these four endpoints (Table 1,
Figure 1).

Plasma protein binding

The capacity of a compound to bind to serum
proteins, such as albumin and alpha-1-acid gly-
coprotein, critically affects its pharmacokinetic
and pharmacodynamic profile and the disposi-
tion of the drug (e.g., bioavailability, distribu-
tion, and clearance).43 High-affinity compounds
for these targets may, in practice, require higher
dosing to achieve effective concentrations in pa-
tients.44 In the present study, data from six
different studies,32–37 comprising 4,634 drugs,
were combined in order to construct a train-
ing set for predicting the fraction bound (fb) in
plasma.

Caco-2 cell passive permeability

Drugs administered orally must cross cell mem-
branes to perform their function.45 Such per-
formance can be determined in vivo with radio-
labeled compounds,46 whereas the Caco-2 cell
line is considered the in vitro gold standard
proxy for studying pharmaceutical drug trans-
port across cellular barriers.47 For this end-
point, passive permeability data from 276 com-
pounds was collected from two independent
studies.39,40 Passive permeability values (Papp)
were collected (in cm s−1) and converted to the
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Figure 1: Box-whiskers plots of the distributions of molecular weight, calculated logP (aLogP) val-
ues, and the number of hydrogen donors. Caco-2, passive permeability; CYP3A4, cytochrome P450
3A4 inhibition hERG, human either-a-go-go cardiac potassium channel inhibition; PPB, plasma
protein binding.

log10 scale for numerical stability during the
model training. If several measurements were
available for the same compound, we consid-
ered their arithmetic average as the Papp target
value.

hERG potassium channel inhibi-
tion

hERG inhibition is associated with the pro-
longation of the cardiac QT interval, which
may lead to cardiac conditions such as arrhyth-
mia.48,49 For this endpoint, data compiled by
Sato et al. was used,38 among which 6,993 com-
pounds with reported activity (IC50 values) in
the nanomolar range were selected. IC50 val-
ues were transformed into the pIC50 scale for
numerical stability during the model training.

Cytochrome P450 inhibition

The family of metabolic cytochrome P450 en-
zymes are relevant for drug clearance and the
oxidation of xenobiotics, steroids, fatty acids, as
well as for hormone synthesis.50 For this end-
point, data compiled by Nembri et al. was
used,41 encompassing 9,120 CYP3A4 inhibitors
and substrates with binary activity informa-
tion (active/inactive), as determined by Veith
et al.42

Methods

Message-passing neural networks

Message-passing neural networks (MPNNs) be-
long to the family of graph convolutional neural
networks (GCNs). In this context, a molecule is
considered a graph G with a set of vertices and
edges G = (V,E), representing the atoms (V )
and bonds (E) of a two-dimensional molecular
graph. The general MPNN framework assumes
that both the vertices and edges are character-
ized by feature vectors xv ∈ Rd1 and we ∈ Rd2 ,
respectively. Message passing is performed iter-
atively across each pair of edges u, v according
to the following equations:

m(t+1)
e = φ

(
x(t)
v , x

(t)
u , w

(t)
e

)
, (1)

x(t+1)
v = ψ

(
x(t)
v , ρ

)
, (2)

for (u, v, e) ∈ G. Here, ψ is a message func-
tion that is defined on each edge and com-
bines its features with those of its neighbor-
ing nodes. φ is an update function, which up-
dates the node features by aggregating the in-
formation of the neighboring messages me us-
ing a reduction function ρ. The different com-
binations of message, update, and reduction
functions result in different MPNN architec-
tures. The message and update functions con-
tain weights that are learnable by backpropaga-
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Table 2: Vertex, bond, and ‘global’ molecular
graph features computed with RDkit52

Description level Features

Atom atom type, chirality, valence, formal
charge, hybridization, bond degree,
presence in ring, aromaticity, number
of hydrogens, number of radical elec-
trons, atomic mass, van der Waals ra-
dius

Bond bond type, bond stereo, conjugation,
presence in ring

Global molecular weight, calculated octanol-
water partition coefficient (aLogP),
topological polar surface area (TPSA),
number of hydrogen-bond donors

tion. In the present study, the MPNN architec-
ture proposed by Gilmer et al..13 was applied,
which combines a graph convolutional network
and a Set2Set submodel51 to embed molecules
and compute a prediction. This model and
other MPNN variations were shown to perform
well on several ligand-based tasks.14 Further-
more, to account for unspecific molecular inter-
actions, a fully connected neural network sub-
architecture was also included for consideration
of computed physicochemical features x ∈ Rd3 .
Selected vertex, bond, and global features were
computed with the RDkit software (Table 2).52
Full details on the network architecture and hy-
perparameter selection are included in the as-
sociated code repository.

Model training

A k = 10 cross-validation scheme was used
to estimate the model performance. The com-
pounds were randomly shuffled and each model
was trained on k − 1 non-overlapping subsets,
and evaluated on the remaining one, for a to-
tal of k repetitions. We trained models on each
data split for 250 epochs, with a batch size of 32
samples, and employed the Adam stochastic op-
timizer53 with default momentum parameters
(β1 = 0.9, β2 = 0.999) and a starting learning
rate of 10−4.

Feature attribution

The MPNN model can be denoted as a function
that maps tuples of graphs and global features
to arbitrary target values f : (G,X ) → Y .
Given this notation, a feature attribution ap-
proach for graphs can be defined as a function
that, using a trained MPNN model, takes a
graph with featured vertices and edges, as well
as a set of global features, and produces an
importance score E : (G,X ) → cv, bu,v, z, for
each u, v ∈ G, and z ∈ X . This process can be
performed by gradient backpropagation to the
input features of the nodes, edges, and global

features:54,55
(
i.e.

∂f

∂xv
,
∂f

∂we

,
∂f

∂x

)
.

In practice, however, this approach has sev-
eral limitations, such as gradient saturation.56
It also ignores two desirable aspects, namely
model sensitivity and implementation invari-
ance. Sensitivity refers to the fact that if two
models had different predictions but differed on
a single feature, then this feature should be as-
signed a non-zero attribution, while invariance
ensures that two functionally identical models
produce the same attributions. As previously
suggested by McCloskey et al.,57 the integrated
gradients method27 was herein employed to ad-
dress these issues. This approach aggregates
the gradient of the output with respect to the
node features that fall on the straight line be-
tween user-defined baselines x′v and the input
xv as follows:

IG(xv) = (xv − x′v)
∫

Ω

∂f (x′v + α (xv − x′v))
∂xv

dα.

(3)
Because the integral in Equation 3 is non-

tractable; it was computed with a Riemann ap-
proximation in accordance with:

IG(xv) ≈
(xv − x′v)

m

m∑
r=1

∂f
(
x′v +

r
m
(xv − x′v)

)
∂xv

.

(4)
Equations 3 and 4 can be subsequently ap-

plied in the same manner to edge features we,
and global input features x. Equation 4 was
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Figure 2: Schematic of the XAI methodology and neural network architecture. A message-
passing graph neural network (GNN) and a forward fully-connected neural network (FNN) were
combined to process an input presented as a molecular graph with atom, bond, and computed
global properties (e.g., octanol-water partition coefficient and topological polar surface area). The
integrated gradients method27 was then applied to compute atom, bond, and global importance
scores.

iterated over m = 50 steps, and utilized base-
lines corresponding to zeroed-out vertex, edge,
and global feature tensors. For visualization,
computed edge importance values were evenly
distributed among their connecting vertices:

c′v = cv +
∑

i∈N (v)

bi,v/2, (5)

where N (v) is the set of neighboring vertices at
one bond distance from vertex v. As depicted
in Figure 2, each atom position (vertex) was
represented with its assigned color depending
on the sign of the respective importance value
(green and red colors indicate a positive and
negative contribution, respectively), and with
a radius proportional to the magnitude of the
importance value. Bonds (edges) were colored
according to whether the color of their connect-
ing nodes matched.

Table 3: Predictive performance of the k = 10
cross-validation scheme for the endpoints con-
sidered. Pearson’s correlation coefficient R and
RMSE ±1 standard deviation) between exper-
imental and predicted values are reported for
the regression models; AUC (±1 standard de-
viation) for the classifier model.

Endpoint Pearson’s R RMSE AUC

Plasma protein
binding

0.77± 0.03 19.85± 0.9 -

Passive perme-
ability

0.71± 0.09 0.68± 0.09 -

hERG inhibition 0.63± 0.03 0.76± 0.03
P450 inhibition - - 0.85± 0.01

RMSE, root mean square error; AUC, area under receiver-operator
characteristic curve.

Model validation

To enable preliminary model benchmarking,
25 molecular series were extracted and com-
piled from available literature (provided in Sup-
porting Data). These series represent back-
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Figure 3: Model performance. A k = 10 cross-validation scheme was used. From left to right,
two-dimensional density plots portraying experimental vs predicted values for the plasma protein
binding, passive permeability, and hERG inhibition data sets, and the CYP P450 3A4 inhibition
data. For the CYP data set, a receiver operating characteristic (ROC) curve is reported given its
binary activity label (active/inactive).

ground knowledge and contain examples that
are known to be relevant for the pharmacolog-
ical endpoints considered in this study. Fur-
thermore, a range of different approaches were
considered in order to check if the models (i)
were able to highlight relevant pharmacophore
motifs, (ii) successfully detected property cliffs
in the considered data sets (i.e., small struc-
tural changes that result in a marked prop-
erty or activity change), and (iii) were able to
identify ‘unspecific’ ligand-protein interactions
mediated by molecular properties (e.g., logP,
TPSA).

Results and discussion

Model performance

To assess whether the proposed feature attri-
bution approach was able to extract mean-
ingful relationships between structural motifs
and the respective pharmacological endpoints,
a rigorous performance evaluation was manda-
tory since explanations provided using a model
with limited predictive capability should not be
trusted. Results of a quantitative benchmark
are presented in Figure 3 and Table 3, where
the root mean squared error (RMSE), Pearson’s
correlation coefficient R between experimental
and predicted values, and the receiver-operator

characteristic area under the curve (AUC) are
reported.
All trained models showed predictive capabil-

ities, with R values ranging between 0.63 and
0.77 for the three regression models, and AUC
= 0.85 for the binary classifier. These values
suggest that the training tasks varied in diffi-
culty. Although none of the models exhibited
perfect predictive capabilities, the results ob-
tained were markedly better than random pre-
dictions, suggesting that meaningful molecular
graph features were identified in the learning
process.

Pharmacophore motif recognition

Two relevant features were analyzed to assess
plasma protein binding potential, namely fatty
acid character59 and a pharmacophore motif35
consisting of two acidic groups separated by a
hydrophobic part of five bond units (Figure 4).
For the hERG endpoint, two cases are shown

in which the XAI was able to reproduce activ-
ity changes that were previously reported in the
literature. Figure 5a highlights the effect of a
negatively ionizable substructure, such as a car-
boxylate group, which abolished the activity of
the compound.60 This effect could be explained
by the fact that the ligand-accommodating cav-
ity of the hERG potassium channel stabilizes
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Figure 4: Recognized motifs from the plasma
protein binding data set. (a) Fatty acids; (b) Io-
phexonate and 3-carboxy-4-methyl-5-propyl2-
furanpropionicacid (CMPF). These compounds
feature two acidic groups separated by a hy-
drophobic part of five bond units. Green and
red areas represent structural positive and neg-
ative contributions, respectively, w.r.t the lig-
and fraction bound fb

positive charges. The second example illus-
trates the introduction of an activity cliff by
bioisosteric replacement61 (Figure 5b). Fur-
ther examples of hERG, such as the effect of
bioisosteric replacements, changes in amine-
nitrogen environments, and topological polar
surface area differences are available in the ac-
companying code repository.
For the CYP3A4 endpoint, the respective

model clearly identified motifs of a previously
reported specific pharmacophore,58 highlight-
ing the importance of a flexible backbone,
hydrogen-bond donor/acceptor moieties, and
hydrophobic interactions (Figure 6a). Low-
ering the global molecular weight and crowd-
ing a basic amine was previously reported as
a strategy for mitigating the CYP3A4 activ-
ity of morpholine-based N-arylsulfonamide γ-
secretase inhibitors.62 Of note, the relative im-
portance of the corresponding structural fea-
tures was correctly recognized (Figure 6b). Ad-
ditional examples63–65 are provided in the Sup-
porting Data and the accompanying code repos-

Exp. pIC50=6.097

Exp. pIC50=4.197

O

O O

N N N
N

NH
S

O

O

O

N N N
N

Figure 5: Examples of motifs indicating
hERG inhibition. (a) Addition of a negative
charge and (b) bioisosteric replacements caus-
ing activity cliffs. Green and red colors repre-
sent structural positive and negative contribu-
tions towards hERG inhibition, respectively

itory of this work.

Property cliff identification

To further evaluate the capabilities of the mod-
els to recognize property cliffs beyond the se-
lected literature examples, it was evaluated
whether activity cliffs exist in the training sets
via a matched molecular pairs analysis.66 The
cliffs were ranked according to the structure
activity landscape index (SALI).67 This func-
tional balances the structural similarity of a
pair of compounds with their predicted prop-
erty difference:
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Figure 6: Cytochrome (CYP) inhibition mo-
tif replication examples. (a) Structure-based
pharmacophore developed by Kaur et al.58
(b) Activity cliffs caused by crowding a ba-
sic amine and lowering the overall molecular
weight. Green and red areas represent struc-
tural positive and negative contributions, re-
spectively, towards CYP3A4 inhibition.

SALI (moli,molj) =
|pi − pj|

sim (moli,molj)
, (6)

where pi, pj are the properties of interest of
molecules moli and molj, respectively, and sim
is a molecular similarity function. Examples of
SALI ranking for the endpoints considered in
this study are presented in Figure 7 and in the
accompanying code repository. It is noteworthy
that the proposed approach correctly identified
several structural elements that are responsi-
ble for these striking property differences, either

by highlighting a ‘positive’ contribution when a
certain structural feature is present, or a ‘neg-
ative’ contribution in its absence.

Global importance analysis

Many ADME and relevant toxicological end-
points, such as passive permeability or plasma
protein binding parameters, are not solely char-
acterized by specific structural motifs. In these
cases, medicinal chemists are focused on in-
vestigating the influence of ‘global’ molecular
properties (e.g. logP, TPSA) on the end-
point of interest to achieve optimal compounds.
Plasma protein binding correlates positively
with lipophilicity,68 increasing circulation half-
life, and reducing glomerular filtration. Our
collected data set revealed a moderate posi-
tive correlation between aLogP and the fraction
bound (R = 0.5, p < 0.01, one-tailed Pearson’s
correlation test), which was confirmed by the
importance assigned to aLogP (R = 0.55, p <
0.01) by the XAI model.
Papp, as measured by the Caco-2 assay, is

also known to correlate with global molecu-
lar properties, such as TPSA69 (meaning that
compounds with a large polar surface area
are unlikely to permeate cell membranes) and
lipophilicity70 (compounds with a greater logP
permeate more easily). For the respective train-
ing data, we observed a moderate negative cor-
relation between the computed TPSA and pas-
sive permeability (R = −0.61, p < 0.01), and
a weak positive correlation with aLogP (R =
0.31, p < 0.01). The first relationship was again
correctly captured by the XAI approach, indi-
cating a moderate negative correlation between
the importance assigned to TPSA and the Papp

endpoint (R = −0.59, p < 0.01).

Comparison to other coloring ap-
proaches

Lastly, the XAI approach herein proposed was
compared to the molecular coloring method
published by Sheridan et al.,22 which is model-
agnostic and can be used for either regression
or classification tasks. In order to highlight
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Figure 7: Some examples of the property cliffs identified by the proposed approach, selected via
the SALI index for all the endpoints and data sets considered in this study. Green and red values
represent positive and negative contributions, respectively, w.r.t. the considered endpoint.

the importance of a particular atom, this ap-
proach iteratively ‘masks’ individual atoms and
computes a molecular fingerprint. These fin-
gerprints are then combined with a machine-
learning model, and the difference between the
model prediction with and without masked
atoms serves as a proxy for atom impor-
tance. Figure 8 shows molecules for which
the fingerprint-based model identified motifs
corresponding to known pharmacophores of
the hERG and CYP3A4 endpoints. The ap-
proach proposed here failed for these examples,
whereas the fingerprint-based approach was un-
able to reproduce any of the other coloring ex-

amples presented in this study (Figures 4-7).
Further comparative examples are provided in
the supporting code accompanying this article.
Given the lack of an established quantita-

tive benchmark for atom coloring approaches
in chemoinformatics, the superiority of either
method remains to be determined. Further-
more, we have observed limited agreement be-
tween the substructures highlighted by the two
different methods, advocating the use of multi-
ple models in parallel. With the aim of facili-
tating further evaluation, an implementation of
the approach proposed by Sheridan et al., using
a random forest model featured with ECFP4
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Figure 8: Examples using the approach of
Sheridan et al.22 for the (a) hERG endpoint, in-
volving a bioisosteric ring transformation, and
for the (b) CYP3A4 endpoint, involving a
heme-binding group substitution. Green and
red colors represent positive and negative con-
tributions, respectively, w.r.t. the considered
endpoint.

fingerprints is provided as supporting code, to-
gether with trained models for all of the end-
points considered here.

Conclusion
Herein, we described the extension of a pop-
ular XAI framework, the integrated gradients
feature attribution technique, and its applica-
tion to four pharmacologically relevant ADME
endpoints. The results show that the pro-
posed approach correctly replicated motifs cor-
responding to known pharmacophore patterns,

identified property cliffs, and detected non-
specific ligand-receptor interactions mediated
by global molecular properties. However, there
are certain limitations to its applicability. First,
the proposed methodology suffers from multi-
collinearity, meaning that it is unable to cor-
rectly assign importance values to a pair of
strongly correlated molecular features. This is-
sue is not exclusive to this particular methodol-
ogy but is a limitation of many machine learn-
ing approaches.71 Second, this study would
have benefited from a suitable XAI bench-
mark. Although several chemical series were
provided to qualitatively evaluate the devel-
oped approach, the lack of suitable quantitative
evaluation sets for XAI in chemistry and chem-
informatics renders the evaluation of newly de-
veloped approaches arduous. The first steps
have been made in this direction in other re-
search fields.72,73 Nonetheless, further develop-
ment of XAI applications in chemistry would
greatly benefit from meaningful benchmarking,
which will require close collaboration between
medicinal chemists and computer scientists.

Implementation and code availabil-
ity

The graph neural-network models were trained
with the Deep Graph Library Python (DGL)
package (version 0.4.3)74 and the dgllife ex-
tension (github.com/awslabs/dgl-lifesci) that
run on top of the PyTorch tensor manipula-
tion library (version 1.4.0).75 Molecular struc-
tures were handled using RDkit.52 Users can
retrieve the complete program code for replica-
tion of the experiments, training of new mod-
els, and molecular importance map generation
from an AGPL-3 licensed repository on GitHub
(github.com/josejimenezluna/molgrad). All
models trained with publicly available data
are also available.

All models reported in this work were trained
using the Leonhard computer cluster at ETH
Zurich, Switzerland.
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