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Abstract 

Autodock and its various variants are widely utilized docking approaches which adopt 

optimization methods as search algorithms for flexible ligand docking and virtual 

screening. However, many of them have their limitations, such as poor accuracy for 

dockings with highly flexible ligands, and low docking efficiency. In this paper, a multi-

swarm optimization algorithm integrated with Autodock environment is proposed to 

design a high-performance and high-efficiency docking program, namely MSLDOCK. 

The search algorithm is a combination of the random drift particle swarm optimization 

with a novel multi-swarm strategy and the Solis and Wets local search method with a 

modified implementation. Due to the algorithm’s structure, MSLDOCK also has a 

multithread mode. The experimental results reveal that MSLDOCK outperforms other 

two Autodock-based approaches in many aspects, such as self-docking, cross-docking 

and virtual screening accuracies as well as docking efficiency. Moreover, compared with 

three non-Autodock-based docking programs, MSLDOCK can be a reliable choice for 
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self-docking and virtual screening, especially for dealing with highly flexible ligand 

docking problems. The source code of MSLDOCK can be downloaded for free from 

https://github.com/lcmeteor/MSLDOCK. 

 

1. Introduction 

Automated protein-ligand docking methods are effective tools in drug design1, 

aiming to predict the experimental binding modes and affinities of small molecules 

within the binding site of particular receptor targets2. Among them, one of the most 

conventionally adopted ways in protein-ligand docking is flexible ligand docking, in 

which ligands are treated as articulated objects while proteins are rigid. A flexible ligand 

docking problem can be solved by identifying the translation, orientation and 

conformation of the ligand relative to the active site of the protein. Its implementation is 

based on two components: the optimization search algorithm and the scoring function3. 

The optimization search algorithm is a tool to find suitable docked poses of the ligand 

within a certain area around the binding site, and the scoring function is used to 

approximately evaluate the binding energy of docking conformations found by the 

algorithm. 

During the past few decades, several software packages, such as Autodock4, 

Autodock Vina5 (referred to as Vina), DOCK6, LeDock7, GOLD8, Glide9, Surflex-Dock10, 

etc., were developed to solve the flexible ligand docking problems. Among them, 

Autodock is a widely used one, since it is an open source software and can be easily 

implemented. It adopts a Lamarckian genetic algorithm (LGA), i.e., a hybrid of the 

https://github.com/lcmeteor/MSLDOCK
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genetic algorithm (GA) and the Solis and Wets local search (SWLS) method11, as its 

default search algorithm, and a semi-empirical energy function as its scoring function4. 

In this paper, we mainly focus on design of a new search algorithm for Autodock, since 

an effective search algorithm can generally provide the docking software a high 

probability of accurately estimating the ligand-binding affinity or finding a conformation 

close to the co-crystalized ligand pose with less computational time, which can in turn 

enhance both the accuracy and efficiency for ligand pose prediction and virtual screening. 

Since the release of Autodock, various search algorithms have been proposed for 

flexible ligand docking. Namasivayam and Günther12 utilized two variants of particle 

swarm optimization (PSO), namely varCPSO and varCPSO-Ls, in Autodock for rapid 

docking with highly flexible ligands. SODOCK13 adopts a hybrid search algorithm, 

which combines the PSO algorithm using the neighboorhood topology with the SWLS 

method, to solve highly flexible ligand docking problems. This hybrid search algorithm, 

named as Lamarckian PSO (LPSO), has already been integrated into the latest version 

(4.2.6) of Autodock. FIPSDock14 implements a variant of the fully informed particle 

swarm (FIPS) optimization method in Autodock. The experimental results in ref 14 

revealed that FIPSDock might be more suitable for highly flexible ligand docking than 

conventional genetic algorithm-based algorithms. The CEPGA15, the GA with crossover 

elitist preservation, was integrated with Autodock 4.2.6 for protein-ligand docking. This 

variant of GA could keep the elite individuals of the last generation and make the 

crossover more efficient and robust. In ref 16, a novel optimization algorithm called 

fitness learning-based artificial bee colony with proximity stimuli (FlABCps) was 
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implemented in the Autodock environment, showing its superior docking performance 

when compared with other four search algorithms. In AutoDockFR17, Ravindranath et al. 

introduced a new GA and a customized scoring function, to make this variant of 

Autodock to be more suitable for modeling with receptor flexibility than Autodock4 and 

Vina. The integration of Autodock with jMetalCpp was made in ref 18, which provides 

both single- and multi-objective algorithms to solve docking problems. A more recent 

version of Autodock, known as FWADOCK19, utilizes an improved fireworks 

optimization method as its search algorithm, in which the diversity is maintained 

effectively to avoid premature convergence, and thus yields improve the docking 

performance. In addition, some nature-inspired docking methods not based on the 

Autodock program were also proposed in recent years. For example, PLANTS20 is a 

protein-ligand docking system based on the ant colony optimization and two empirical 

scoring functions, namely PLANTSCHEMPLP  and PLANTSPLP . PSOVina21 and 

GWOVina22 are two variants of Vina program that utilize chaos-embedded particle 

swarm optimization and grey wolf optimization as their search algorithms, respectively. 

Both PSOVina and GWOVina can obtain superior performance in terms of docking 

efficiency. 

Most of the improved search algorithms coupled with Autodock software and other 

docking programs still have their limitations, such as poor accuracy for highly flexible 

ligand docking and relatively low docking efficiency23,24, although in some cases the 

docking accuracy of the conformations found by these programs are better than those 

found by Autodock-default (referred to as Autodock-d), in which LGA used as the search 
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algorithm. Therefore, in order to design a search algorithm with high performance and 

high efficiency for flexible ligand docking based on the Autodock docking environment, 

a novel hybrid search algorithm is proposed in this paper. This algorithm is a combination 

of the random drift particle swarm optimization (RDPSO) with a novel proposed multi-

swarm strategy and the SWLS method with a modified implementation. Unlike most of 

the multi-swarm strategy, for examples, widely used dynamic structure25-27 and master-

slaver model28-31, the novel multi-swarm strategy is more suitable for dealing with 

docking problems. It divides the whole swarm of the RDPSO into several equal-sized 

sub-swarms, with a feature exchange method designed to ensure enough information 

exchange between sub-swarms. The hybrid algorithm is named as the multi-swarm 

Lamarckian RDPSO (MSLRDPSO) and is employed in the latest version of Autodock 

(version 4.2.6), with the corresponding improved docking software called MSLDOCK. 

Compared with the previously proposed algorithms, the advantage of MSLRDPSO is 

illustrated below: 

 The RDPSO algorithm generally has a better search performance than many 

optimization algorithms32; 

 The multi-swarm strategy, especially when the feature exchange method is used, 

can help maintain the diversity of the entire swarm, thereby enhancing the 

robustness of the algorithm; 

 Compared with some docking search algorithms including LGA and LPSO, 

MSLRDPSO is much more efficient because of the multi-swarm structure; 

 The implementation of the SWLS method has been modified in MSLRDPSO, 
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to adapt to the multi-swarm structure, further improving the diversity of each 

sub-swarm; 

 Due to the multi-swarm structure, it is easy for the search process of 

MSLRDPSO to be parallelized in terms of sub-swarm numbers, and thus a 

multithread mode of MSLDOCK, i.e., MSLDOCK-M, is proposed for the 

purpose of parallelizing single docking tasks. 

2. Methods 

2.1 Random drift particle swarm optimization 

Random Drift Particle Swarm Optimization (RDPSO)32 is a heuristic algorithm, 

which is usually used to solve non-continuous, complex and global optimization 

problems. In this work, RDPSO is used as the main body of the proposed hybrid 

algorithm to solve docking problems. This algorithm is motivated by the trajectory 

analysis of the canonical PSO in ref 33 and the free electron model in metal conductors 

placed in an external electric field34. In a RDPSO with 𝑀 individuals, each individual 

has 𝑁 dimensions, with the current position vector and the velocity vector of particle 𝑖 

at the 𝑛𝑡ℎ  iteration represented as 𝑋𝑖,𝑛 = (𝑋𝑖,𝑛
1 , 𝑋𝑖,𝑛

2 , ⋯ , 𝑋𝑖,𝑛
𝑁 )  and 𝑉𝑖,𝑛 =

(𝑉𝑖,𝑛
1 , 𝑉𝑖,𝑛

2 , ⋯ , 𝑉𝑖,𝑛
𝑁 ), respectively. The previous best position of particle 𝑖 according to the 

fitness value is expressed as 𝑃𝑖,𝑛 = (𝑃𝑖,𝑛
1 , 𝑃𝑖,𝑛

2 , ⋯ , 𝑃𝑖,𝑛
𝑁 ), called the personal best (pbest) 

position, and the best one of the pbest positions of all the particles according to the fitness 

values is 𝐺𝑛 = (𝐺𝑛
1, 𝐺𝑛

2, ⋯ , 𝐺𝑛
𝑁), called the global best (gbest) position. Each particle in 

RDPSO moves according to the following equations 
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𝑉𝑖,𝑛+1
𝑗

= 𝛼|𝐶𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

|𝜑𝑖,𝑛+1
𝑗

+ 𝛽(𝑝𝑖,𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

) (1) 

𝑋𝑖,𝑛+1
𝑗

= 𝑋𝑖,𝑛
𝑗

+ 𝑉𝑖,𝑛+1
𝑗

 (2) 

In equation (1), the first term is the random velocity simulating the thermal motion of an 

electron, where 𝛼 > 0  is a parameter called the thermal coefficient, 𝐶𝑛  is the mean 

best (mbest) position defined by the mean of the pbest positions of all the particles, and 

𝜑𝑖,𝑛+1
𝑗

  is the sequence of random number subject to standard normal distribution. The 

second term is the drift velocity denoting the drift motion, where 𝛽 > 0  is another 

parameter named the drift coefficient, and 𝑝𝑖,𝑛 = (𝑝𝑖,𝑛
1 , 𝑝𝑖,𝑛

2 , ⋯ , 𝑝𝑖,𝑛
𝑁 ) is the local focus 

of particle 𝑖 in canonical PSO, which can be expressed as33: 

𝑝𝑖,𝑛
𝑗

=  𝛾𝑖,𝑛
𝑗

𝑃𝑖,𝑛
𝑗

+ (1 − 𝛾𝑖,𝑛
𝑗

)𝐺𝑛
𝑗
, 𝛾𝑖,𝑛

𝑗
~𝑈(0,1) (3) 

With respect to the setting of two algorithmic parameters in RDPSO, 𝛼 and 𝛽 are 

set to decrease linearly from 0.9 to 0 and 1.45 to 1, respectively. Unlike the parameter 

setting recommended in ref 32, this parameter setting can make the algorithm search in 

a small range, enhancing the exploitation ability of particles, which meets the 

requirements for high precision of the results in docking problems. 

2.2 Multi-swarm strategy and the feature exchange method 

MSLRDPSO utilizes a novel multi-swarm strategy, in which the whole swarm is 

divided into several equal-sized sub-swarms. Obviously, the number of particles in each 

sub-swarm is much smaller than that of the entire swarm. Thus, in order to ensure that 

each sub-swarm does not easily prematurely converge, a feature exchange method is used 

every certain number of energy function evaluations to ensure the information exchanged 
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effectively and efficiently between different sub-swarms for the purpose of maintaining 

their diversities. Between two feature exchange operations, all particles in each sub-

swarm implement their own RDPSO search process following equations (1) and (2). 

Before describing the feature exchange method, the definition of feature dimension is 

described in detail below. 

For a problem with an 𝑁-dimensional search space, the entire swarm is divided into 

several sub-swarms represented as 𝑆1 to 𝑆𝑇, with the corresponding pbest populations，

each of which is the set of pbest positions of all the particles in each sub-swarm, 

expressed as 𝐵1 to 𝐵𝑇, respectively, where 𝑇 is the number of sub-swarms. In each 

sub-swarm’s pbest population, several specific dimensions are marked as features. A 

feature marking the 𝑗𝑡ℎ (1 ≤ 𝑗 ≤ 𝑁) dimension is represented as 𝐹𝑗, and if the marked 

dimension belongs to 𝐵𝑖 (1 ≤ 𝑖 ≤ 𝑇), such a feature can be further represented as 𝐹𝑗
𝑖. 

Note that each 𝐹𝑗
𝑖 contains the 𝑗𝑡ℎ components of all pbest positions in 𝐵𝑖, so 𝐹𝑗

𝑖 is 

actually the 𝑗𝑡ℎ column vector in 𝐵𝑖. The features in all sub-swarms should meet the 

following conditions: 

 The number of features in each sub-swarm should be 𝑁/𝑇 (suppose 𝑁  is 

divisible by 𝑇, if not, the first sub-swarm will share equally the remaining 

features). Hence, the entire swarm will have 𝑁 dimensions being marked as 

features; 

 For any two features in two different sub-swarms, i.e., 𝐹𝑗1
𝑖1  and 𝐹𝑗2

𝑖2  (𝑖1 ≠

𝑖2, 1 ≤ 𝑗1, 𝑗2 ≤ 𝑁 ), it means 𝑗1 ≠ 𝑗2 . Hence, two different sub-swarms 

cannot mark the same dimension as features. 
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According to the above conditions, it can be concluded that for the entire swarm, if 

the sequence numbers of all the dimensions marked as features are put together, a 

sequence of integers 1 to 𝑁 can be obtained. Furthermore, condition 1 guarantees that 

the number of dimensions marked as features in each sub-swarm is almost the same, 

which implies that the features are distributed as equal as possible in all sub-swarms. 

 

Figure 1. Example of one feature exchange operation. 

Based on this definition, the feature exchange method is used to exchange feature 

dimensions between different sub-swarms to guarantee enough information exchange. In 

Figure 1, there are 3 pbest matrixes 𝐵1 , 𝐵2  and 𝐵3  of three sub-swarms, and the 

dimension of the problem is 6. The vector 𝑅 is generated by shuffling integers from 1 

to 6, and the elements in 𝑅  serially represent the positions of the column vectors 
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regarded as features in {𝐵1, 𝐵2, 𝐵3} (see where the arrows from 𝑅 point to in Figure 1). 

Each pbest matrix has two features, as all the features should be distributed evenly. When 

the feature exchange operation begins, 𝑅′ is generated, whose elements indicate the new 

locations of all the features in the next generation. The column vectors in the destinations 

are marked as 𝑃𝑗(1 ≤ 𝑗 ≤ 6) , who need to exchange with the features. In order to 

exchange information between different rows in each pbest matrix, the elements in all 

features and destination vectors should be shuffled (generating 𝐹𝑗
′, 𝑃𝑗

′ (1 ≤ 𝑗 ≤ 6) ). 

Then the corresponding column vectors 𝐹𝑗
′ and  𝑃𝑗

′ should be exchanged one by one, 

moving 𝐹𝑗
′ to their destinations and 𝑃𝑗

′ to the original positions of 𝐹𝑗. Note that there 

is a certain possibility that one or more features fail to change sub-swarms in one feature 

exchange operation (e.g. 𝐹1
′ in 𝐵2), but the shuffle inside the features still needs to be 

done in this situation. Combining these migrated vectors with the other elements in each 

pbest matrix, three new pbest matrixes 𝐵1
′ , 𝐵2

′  and 𝐵3
′  are obtained, with the positions 

of their features corresponding to the numbers in 𝑅′. 

 After the information exchanges between different sub-swarms, it is obvious that 

the new pbest positions may not be better than the original ones, so they should be 

evaluated after every exchange and the better ones are retained. After such evaluations, 

with respect to the pbest population in each sub-swarm, it probably contains better 

information from other sub-swarms, which definitely improves its diversity and leads the 

particles to search more effectively. Note that our preliminary experiments showed the 

number of energy function evaluations required between two feature exchange methods 

was 30𝑀, which is the appropriate setting to MSLDOCK for flexible ligand docking. 
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2.3 The local search method implementation 

Unlike in LGA and LPSO, the implementation of SWLS in MSLRDPSO has been 

modified, which can be adapted to the multi-swarm structure to enhance local 

optimization, and can further improve the diversity of each sub-swarm during the search 

process. After all the sub-swarms finished one-time RDPSO iterative process, the novel 

implementation gives a certain probability of performing the local search method on the 

best particle (the particle with the best fitness value in the current RDPSO iteration) in 

each sub-swarm. In this paper, the local search probability is set to 1/𝑇, which means 

that for the entire swarm, the expected number of particles to perform the SWLS method 

in each generation is 1. The other setting of SWLS is the same as that applied in LPSO, 

which can be referred to ref 13. 

2.4 MSLRDPSO and MSLDOCK 

The proposed MSLRDPSO algorithm combines the RDPSO with the multi-swarm 

strategy and the SWLS method with a modified implementation. Figure 2(A) illustrates 

the normal procedure of the MSLRDPSO algorithm (serial mode). In MSLRDPSO, one 

generation is composed of 𝑇 iterations with each iteration being the normal RDPSO 

iteration executed by a sub-swarm, or composed of 𝑇  iterations with each iteration 

being the hybrid of the normal RDPSO iteration and one local search process executed 

by each sub-swarm. As shown in Figure 2(A), all sub-swarms execute their own search 

process sequentially within one generation in the serial mode of MSLRDPSO. The 

pseudocode of the serial mode of MSLRDPSO is shown below in Algorithm 1. 

Algorithm 1: MSLRDPSO-serial (𝑇, 𝑀, 𝑁, 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥, 𝑛𝑒𝑣𝑎𝑙𝑚𝑎𝑥, 𝑒𝑥𝑛) 
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1   𝑝𝑒𝑥𝑛 = 0; /* 𝑝𝑒𝑥𝑛 records the count of evaluations of the previous information exchange */ 

2   𝑛𝑒𝑥𝑛 = 𝑒𝑥𝑛; /* 𝑒𝑥𝑛 is number of evaluations required between two feature exchanges */ 

3   𝑅 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑁); /* 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚 is a function to make sequence {1,2 ⋯ , 𝑁} out of order */ 

4   Distribute particles to each sub-swarm; 

5   Set the corresponding dimensions as features in each sub-swarm according to the 𝑅 vector; 

6   Compute 𝐶0 and find 𝐺0 among 𝑃𝑖,0 in each sub-swarm; 

7   While 𝑛𝑒𝑣𝑎𝑙 < 𝑛𝑒𝑣𝑎𝑙𝑚𝑎𝑥 do /* 𝑛𝑒𝑣𝑎𝑙 is the current number of evaluations */ 

8     𝑙𝑠𝑓 = 𝑟𝑎𝑛𝑑() < 1/𝑇 /* local search flag, if true, do local search in each sub-swarm */ 

9     For sub-swarm from 1 to 𝑇 do 

10        For particle 𝑖 in each sub-swarm do 

11           calculate new velocity 𝑉𝑖,𝑛+1 using (7); 

12           fix 𝑉𝑖,𝑛+1 if it is out of range; 

13           calculate new position 𝑋𝑖,𝑛+1 using (8); 

14           evaluate the objective function value 𝑓(𝑋𝑖,𝑛+1); 

15        End for 

16        If 𝑙𝑠𝑓 == 𝑡𝑟𝑢𝑒 /* do local search */ 

17           Apply the SWLS method to the best 𝑋𝑖,𝑛+1 in each sub-swarm; 

18        End if 

19        Update 𝑃𝑖,𝑛+1, 𝐶𝑡,𝑛+1 and 𝐺𝑡,𝑛+1 

20     End for 

21     If 𝑛𝑒𝑣𝑎𝑙 ≥ 𝑛𝑒𝑥𝑛 /* do feature exchange */ 

22        𝑅′ = randperm(𝑁); 

23        Do feature exchange according to 𝑅 and 𝑅′ to generate all 𝑡𝑃𝑖,𝑛; 

24        For particle 𝑖 from 1 to 𝑀 do 

25           Compare 𝑓(𝑡𝑃𝑖,𝑛+1) with 𝑓(𝑃𝑖,𝑛) and the one with better fitness replace 𝑃𝑖,𝑛; 

26        End for 

27        𝑅′ = 𝑅; 

28        𝑝𝑒𝑥𝑛 = 𝑛𝑒𝑥𝑛; 

29        𝑛𝑒𝑥𝑛 = 𝑝𝑒𝑥𝑛 + 𝑒𝑥𝑛; 

30      End if 

31   End while 

Meanwhile, due to the structure of the multi-swarm strategy and the modified 

implementation of SWLS method, the search process of RDPSO and SWLS within each 

sub-swarm can be performed simultaneously, that is, the parallel mode of MSLRDPSO, 

as shown in Figure 2(B). In the parallel mode, with the help of OpenMP interface, each 

thread is designed to load one sub-swarm so that all the sub-swarms can be performed 
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simultaneously. After each generation and each feature exchange operation, the sub-

swarms that have already finished their own work should wait for others. The parallel 

mode cannot maintain complete synchronization between sub-swarms mainly due to the 

uncertain searching time of each SWLS application4,13 (see the local search in Figure 

2(B)), but such a small idle time during the entire search process is acceptable. 

(A) 

 

 

(B) 

 

Figure 2. The procedures of the serial mode and parallel mode of MSLRDPSO. (A) 

The procedure of the serial mode of MSLRDPSO. (B) The procedure of the parallel 

mode of MSLRDPSO. 

The normal mode and multithread mode of MSLDOCK are the serial mode and 

parallel mode of MSLRDPSO integrated with the docking environment and scoring 

function of Autodock 4.2.6, respectively. To make the program be adapt to the OpenMP 

interface, some files in the original version of Autodock has been modified in 
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MSLDOCK, especially those related to scoring function calculation and local search, 

since they are not thread-safe. 

3. Experimental Setups 

3.1 Datasets 

In this paper, the experimental section comprises three parts: self-docking, cross-

docking and virtual screening. By examining the proposed docking program from 

different perspectives, the performance of MSLDOCK can be comprehensively 

evaluated. 

Two datasets were used for evaluating self-docking performance in this paper. One 

is a subset of the PDBbind dataset35. This dataset is carefully selected from the PDBbind 

refined set through a systematic, non-redundant sampling procedure, which is used as the 

dataset in the CASF benchmark and is named as the PDBbind coreset. The dataset 

included in the latest version of the CASF benchmark (CASF-201636), which was 

published in 2019, was employed in this paper. All the 285 complexes in this PDBbind 

coreset were employed in our experiments, and the number of torsions of the ligands in 

these complexes ranges from 0 to 36. The protein and ligand files of the PDBbind coreset 

can be download from http://www.pdbbind-cn.org/casf.asp. Another one is the widely-

used GOLD benchmark dataset21,37,38, which originally contains 134 test cases and are 

available at https://www.ccdc.cam.ac.uk/support-and-resources/Downloads/. 

Eliminating the test cases for which the compared docking programs cannot do 

successful docking preparations (e.g. failed to generate .pdbqt files by AutodockTools 

http://www.pdbbind-cn.org/casf.asp
https://www.ccdc.cam.ac.uk/support-and-resources/Downloads/
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within MGLTools 1.5.6 when docking with Autodock, or failed to generate .mae files by 

Schrodinger 2018-1 when docking with Glide), we used a set of 103 complexes from 

GOLD dataset for performance testing in this paper. The names of these test cases are 

listed in Table S1. The number of torsions of the ligands in these complexes ranges from 

0 to 28. Therefore, the two datasets for self-docking experiments totally contain 388 test 

cases, with their search dimensions ranging from 7 to 43. With the increase of dimensions 

of the search space, the algorithmic performance can be comprehensively evaluated. 

In cross-docking experiments, we used a collection of 20 protein-ligand complexes 

for two protein targets (CDK2 and MAPK14) to benchmark the performance of 

MSLDOCK. For each target, 10 protein conformer structures were selected from the 

Sutherland-crossdock-set39 and the names of these complexes are listed in Table S2. All 

the 20 complexes were downloaded from Protein Data Bank (PDB)40 and aligned by 

using PyMol. Then for each complex, the co-crystalized ligand and protein were saved 

as two individual files. The python scripts in AutodockTools were utilized to add 

hydrogens to the ligands and receptors for each test case. 

When it comes to virtual screening, the database of Useful Decoys-Enhanced (DUD-

E)41 was employed for this purpose. The entire dataset consists of 102 protein targets 

with known active ligands and computationally generated inactive ligands. The inactive 

ligands, called decoys, were made to have similar physicochemical properties such as 

molecular weight, number of rotatable bonds, calculated log P, and hydrogen bond 

acceptors and donors, but dissimilar 2D topologies from the active ligands so that it is 

challenging for docking programs to identify real positives from the positive-like ligands. 
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As docking all the compounds to their targets would require massive amounts of CPU 

time, we chose four targets with a relatively small number of total compounds from the 

“Diverse” subset in DUD-E (i.e., ampc, cxcr4, cp3a4 and kif11) as the dataset for the 

virtual screening experiments. 

3.2 Settings of compared docking programs 

According to the structure of the proposed multi-swarm strategy, the key parameter 

of the MSLRDPSO algorithm is 𝑇  (number of sub-swarms). According to our 

preliminary experiments (see the PDF file in the supporting information for 

corresponding results and analysis), MSLDOCK with 2 sub-swarms, i.e., MSLDOCK-

s2, outperforms other versions of MSLDOCK in terms of the lowest docked energy (the 

docked energy is the energy value calculated by the semi-empirical scoring function used 

in Autodock) but has relatively large standard deviations. Therefore, when there are 

enough repetitions for a single docking test, MSLDOCK-s2 may be more appropriate to 

find a docking conformation with lower binding energy and to generate poses with more 

different energy levels than the MSLDOCK versions with more sub-swarms. On the 

other hand, among all the compared versions of MSLDOCK, MSLDOCK with 6 sub-

swarms, i.e., MSLDOCK-s6, has the smallest standard deviation, and its mean docked 

energy performance in terms of different number of torsions is one of the best. 

MSLDOCK-s6 may be suitable for finding good docking results for the “fast” docking 

problems, that is, docking single test cases with a small number of repetitions. Therefore, 

MSLDOCK-s2 and MSLDOCK-s6 were chosen to compared with other docking 

programs in further experiments. 
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In this work, MSLDOCK-s2 and MSLDOCK-s6 were compared with two docking 

programs based on Autodock (i.e., Autodock-d and SODOCK), and three other non-

Autodock-based docking programs, including Vina5 (version 1.1.2), LeDock7 (version 

1.0), and Glide9 (version 7.8, integrated in Schrodinger 2018-1). Autodock-d was chosen 

since LGA is the default search algorithm in the latest version of Autodock. We selected 

SODOCK rather than other optimization algorithms integrated with Autodock (e.g. 

varCPSO-ls and FIPSDock mentioned in the “Introduction” section) since Guo et al.23 

has proved that the SODOCK generally has better docking accuracy and robustness than 

many optimization algorithms designed for Autodock. Vina was developed in order to 

improve the docking speed and accuracy of Autodock4, and thus this program was often 

used to compare with Autodock in many aspects5,24,42 and was also employed in our 

experiments. In ref 24, five commercial docking programs and five academic docking 

programs were compared, and among them, the LeDock program has been proved to 

have the best prediction accuracy for the poses with the best scores, while Glide was 

considered to be the most robust program. Therefore, the academic docking program 

LeDock and the commercial docking program Glide were chosen for performance 

comparison in our experiments. 

In all these docking experiments, only the flexibility of ligands was explored, and 

the receptors were always kept rigid. For each test case, all the compared programs 

started with the same structure of the ligand. And the translation, orientation and 

conformation of the ligand were all randomly initialized within their corresponding 

ranges. The self-docking experiments were carried out on a workstation with an Intel® 
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i7-6850K 12-core 3.60GHz processor and totally 128-GB RAM, while the other 

experiments were run on a workstation with an Intel® i9-9900X 20-core 4.00GHz 

processor and totally 64-GB RAM. The operating systems of both these two workstations 

are Ubuntu 16.04. The specific parameter settings of each docking program are listed 

below.  

Autodock-based programs 

The implementation of all the Autodock-based programs in our experiments, 

including MSLDOCK, Autodock-d, and SODOCK, utilized the docking environment 

and scoring function of Autodock 4.2.6. The detailed explanation of this scoring function 

can be found in ref 43. For all the experiments, the number of particles was set to 150 

and the maximum number of iterations of single SWLS method was set to 300. For 

virtual screening, the number of energy function evaluations was set to 2.5 × 105 (short 

length) and each test case was docked for 10 repetitions, since we cannot spend too much 

time on a single test case in virtual screening. For self-docking and cross-docking 

experiments, the number of energy function evaluations was set to 2.5 × 106 (medium 

length) and each test case was docked for 50 repetitions. With enough number of energy 

function evaluations and docking repetitions, the obtained statistical results can be 

considered as convincing ones. Other specific parameter settings of Autodock-d and 

SODOCK can be accessed in ref 4 and ref 13, respectively. As Autodock-based programs 

do not handle ligands with more than 32 torsions, for larger ligands recompiled versions 

allowing up to 64 torsions were used. 

The PDBQT format files of the receptor and ligand for each test case were generated 
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by using the AutodockTools. The energy grid maps were calculated with AutoGrid. To 

make the search area large enough for all the ligands to rotate, the grid size was set to 

60×60×60 points (a cube with an edge length of 22.5 Å) for all test cases. The center of 

the grid map was always set as the center of the reference ligand for each test case.  

Autodock Vina 

In Autodock Vina5, the implementation of the global optimizing algorithm is related 

to Markov chain Monte Carlo algorithm with restart supplemented by random mutating 

the current solution, while the Broyden-Fletcher-Goldfarb-Shanno algorithm is used as 

the local optimization method44. A superficially physics-based scoring function is 

adopted in Vina5. 

For each test case, the grid map for Vina was set the same as that for Autodock-based 

programs. The maximum energy difference between the best binding mode and the worst 

one reported in the result files was set to 10 kcal/mol, in order to generate enough modes 

with different energy level. With respect to self-docking and cross-docking experiments, 

the maximum number of binding modes to generate was set to 20, which is the maximum 

value can be set in Vina, and each test case was docked with the exhaustiveness set to 56. 

For virtual screening, 10 docking poses was generated and the exhaustiveness was set to 

8 for each test case. These two settings of exhaustiveness correspond to the medium-

length and short-length evaluations in Autodock, respectively42. 

LeDock 

The LeDock7 applies an empirical scoring function and the simulated annealing 
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search algorithm. The LePro (http://www.lephar.com) was used to add hydrogen atoms 

to receptors and write the input file for LeDock. The search range of LeDock program 

for each test case was set the same as that of the Autodock-based programs. The number 

of binding poses to generate for each test case was set to 10 for virtual screening and 50 

for both self-docking and cross-docking. 

Glide 

The Glide9 program uses a hierarchical series of filters to search for possible 

locations of the ligand in the active-site region of the receptor. The scoring function 

adopted in Glide is based on ChenScore45, but includes a steric-clash term, adds some 

rewards and penalties. 

The LigPrep program in Schrodinger 2018-1 was used to prepare ligands for docking 

with Glide. The Glide program was used for both grid generation and protein-ligand 

docking for each test case. The grid center and the box size settings were the same as 

those used by the Autodock-based programs. Docking precision mode was set to the 

standard precision (SP) rather than the extra precision (XP) since the docking poses from 

SP can have more diversity than those from XP24. The forcefield used in Glide was 

OPLS3e. The number of the poses reported for each docking test case was set to 10 for 

virtual screening and 50 for both self-docking and cross-docking. All the other 

parameters were set to default values. 

3.3 Performance metrics 

In this paper, the binding free energy, which was only reported at the end of a docking 
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test in Autodock, was compared among various Autodock-based programs. The binding 

free energy should be distinguished from the energy value calculated by the semi-

empirical scoring function in Autodock 4.2.6. The energy evaluated by the scoring 

function includes the intermolecular and intramolecular interaction energies4, while the 

binding free energy is only the sum of the intermolecular energy and the torsional free 

energy, but not including the internal or intramolecular interaction energy of the ligand. 

The final docking conformations in Autodock-based programs were ranked according to 

the binding free energy, which is instructive for the selection and specific research of the 

final conformations4. 

The similarity between the produced conformation and the co-crystallized one is 

usually accessed by calculating the root mean squared deviation (RMSD) between them. 

Unlike the default way of calculating the RMSD value in Autodock (considering the 

symmetry of the conformations, probably working well when the two conformations are 

very similar46), the strictest definition of the RMSD was adopted in this paper by 

calculating its value using all the heavy atoms of the ligand without considering the 

symmetry. This means the changes in the conformation, as well as in the position and 

orientation of the entire ligand within the protein’s binding site should be measured. In 

this paper, two kinds of RMSD were evaluated: one is the best-scored RMSD, which is 

the RMSD between the reference structure and the conformation with the lowest score 

or binding free energy; the other is the best-sampled RMSD, which is the RMSD of the 

conformation closest to the crystal one among all the produced conformations. The 

conformations with the best-scored RMSD and the best-sampled RMSD found by each 
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docking program are correspondingly called the best-scored conformation and best-

sampled conformation, respectively. These two RMSD-related metrics were widely used 

for comparing docking programs with different scoring functions47,48. A common 

threshold used to determine whether the crystal structure was successfully reproduced is 

2 Å, which is also adopted in this paper. 

For self-docking experiments, the results of binding free energy, RMSD and docking 

speed were evaluated in this paper. Firstly, the correlation coefficients between the 

binding free energies of the best-scored and experimental conformations were compared 

among Autodock-based docking programs. Secondly, we evaluated the statistical results 

of the best-sampled RMSD and the best-scored RMSD for all compared algorithms, 

including the results for all test cases and those in terms of torsions. The computed errors 

of RMSDs were estimated via 2000 rounds of bootstrapping calculations49, and the 

Wilcoxon sign-ranked test50 was used to determine whether there was a difference 

between the mean RMSDs obtained by MSLDOCK and other docking programs at a 5% 

level of significance. Thirdly, the docking speed was evaluated by comparing the mean 

of computational time for generating per docking pose taken by each compared docking 

program. Besides, we also compared the computational time of MSLDOCK and 

MSLDOCK-M in order to show the speed-up performance of the multithread mode. 

Cross-docking refers to the docking of every ligand to every receptor structure 

obtained from a series of receptor-ligand complex pairs. It could be useful to evaluate 

the ability of a docking program to reproduce the experimental binding pose of a ligand 

to a protein target complexed with a different ligand. Moreover, cross-docking analysis 
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could help to access the efficiency of docking studies to support drug lead identification 

and structure-activity relationship studies51. In this paper, the cross-docking results were 

compared among Autodock-based docking programs, i.e., MSLDOCK-s2, MSLDOCK-

s6, Autodock-d and SODOCK, since these programs utilize the same scoring functions 

in Autodock 4.2.6. For each cross-docking family, the results obtained by every docking 

program were classified as three classes: docking success, scoring failure and sampling 

failure6. If the best-scored conformation was successfully docked, the corresponding 

program got a docking success. A scoring failure means a correct pose was sampled but 

not scored as the best-scored one. If a docking program failed to get a correct pose after 

50 docking trials, it got a sampling failure. In this paper, we mainly focused on the 

number of the test cases in these three classes to evaluate the cross-docking performance 

for each Autodock-based docking program. 

The performance of a docking method in virtual screening was evaluated based on 

the list of screened compounds ranked by the estimated binding affinities from low to 

high. Generally, a more effective docking method for virtual screening means it can make 

more actives get higher rank in the list. A threshold can be set in the list to classify the 

compounds with lower affinities as actives and the ones with higher affinities as decoys. 

By calculating the ratios of true positive fraction over the false positive fraction at 

different classification thresholds, the receiver operating characteristic (ROC) curve of 

different docking method can be plotted. One performance metric to access the virtual 

screening performance of a docking program is to calculate the area under the ROC curve 

(AUC-ROC). An AUC-ROC value of 1.0 indicates perfect classification, whereas a value 
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of 0.5 indicates random prediction21. Another metric used in this work for virtual 

screening is the enrichment factor (EF). The EF value is to measure the quality of the 

predicted top-𝑥% ligands in the list, since the drug discovery research mainly considers 

the top-ranked ligands from the virtual screening results for further investigation. The 

value of EF𝑥% is computed as21: 

EF𝑥% =  
actives at 𝑥%

total actives

ligands at 𝑥%

total ligands
⁄  (4) 

In this paper, the values of EF1% and EF10% obtained by all tested docking programs 

were accessed. Besides, since the parameter settings in virtual screening was different 

from those in self-docking and cross-docking experiments, we also evaluated the mean 

time of screening per docking ligand taken by every docking program for each target to 

show the virtual screening efficiency. 

4. Results and Discussion 

4.1 Comparison of self-docking results in terms of energy, accuracy and efficiency 

(A) 

 

(B) 
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Figure 3. The scatter plots of the experimental binding free energies and best-scored 

ones for all test cases obtained by (A) MSLDOCK-s2, (B) MSLDOCK-s6, (C) 

Autodock-d, (D) SODOCK. 

Figure 3 shows the scatter plots of the experimental binding free energies and best-

scored ones obtained by each docking program for all test cases. The correlation 

coefficients in Figure 3 indicate that the MSLDOCK-s2 has the best accuracy of binding 

free energy estimation, followed by MSLDOCK-s6 and SODOCK, and finally 

Autodock-d. More specifically, the difference between the correlation coefficients of the 

docking programs which adopt PSO algorithms as their search methods (MSLDOCK-s2, 

MSLDOCK-s6 and SODOCK) is relatively small. In addition, the distributions of many 

points in Figure 3(a) and Figure 3(b) are very similar, verifying that the number of sub-

swarms in MSLDOCK slightly impacts the binding affinity estimation of the proposed 

docking program. 

Table 1. The statistical results of the best-scored RMSD obtained by all compared 

algorithms for each dataset and all test cases 

 Mean RMSD for 

PDBbind (Å) 

Mean RMSD 

for GOLD (Å) 

Mean RMSD 

for all1 (Å) 
P-value-s22 P-value-s63 Succ4 

MSLDOCK-s2 2.423  0.295 2.332  0.422 2.399  0.246  0.076 248 

MSLDOCK-s6 2.512  0.293 2.411  0.465 2.485  0.259 0.076  241 
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Autodock-d 3.359  0.335 3.177  0.519 3.311  0.294 1.309e-29 1.075e-28 180 

SODOCK 3.121  0.341 3.273  0.537 3.162  0.305 3.260e-15 6.643e-11 203 

Vina 2.545  0.331 2.657  0.514 2.575  0.276 0.450 0.247 247 

LeDock 3.270  0.334 4.122  0.597 3.496  0.296 2.767e-12 9.528e-11 166 

Glide 2.273  0.295 2.662  0.513 2.376  0.265 0.111 0.050 244 

1 Mean best-scored RMSD and the corresponding bootstrapping errors for all test cases 

2 P-value for the results by the corresponding docking program and MSLDOCK-s2 for all test cases 

3 P-value for the results by the corresponding docking program and MSLDOCK-s6 for all test cases 

4 The number of the test cases for which the corresponding docking method can obtain a best-scored 

RMSD lower than 2Å 

Table 2. The statistical results of the best-sampled RMSD obtained by all compared 

algorithms for each dataset and all test cases 

 Mean RMSD for 

PDBbind (Å) 

Mean RMSD 

for GOLD (Å) 

Mean RMSD 

for all1 (Å) 
P-value-s22 P-value-s63 Succ4 

MSLDOCK-s2 1.061  0.111 1.042  0.135 1.056  0.089  6.883e-04 353 

MSLDOCK-s6 1.102  0.134 1.107  0.170 1.103  0.107 6.883e-04  346 

Autodock-d 1.627  0.192 1.593  0.274 1.618  0.153 1.089e-22 4.961e-24 293 

SODOCK 1.383  0.159 1.556  0.285 1.429  0.142 7.663e-12 4.570e-19 306 

Vina 1.101  0.141 1.412  0.305 1.184  0.124 0.299 0.084 346 

LeDock 1.212  0.168 2.472  0.347 2.168  0.169 4.274e-33 2.594e-31 230 

Glide 1.142  0.160 1.587  0.362 1.260  0.154 0.031 0.144 322 

1 Mean best-sampled RMSD and the corresponding bootstrapping errors for all test cases 

2 P-value for the results by the corresponding docking program and MSLDOCK-s2 for all test cases 

3 P-value for the results by the corresponding docking program and MSLDOCK-s6 for all test cases 

4 The number of the test cases for which the corresponding docking method can obtain a best-sampled 

RMSD lower than 2Å 

In order to evaluate the self-docking accuracy in terms of RMSD, the MSLDOCK-

s2 and MSLDOCK-s6 were compared with Autodock-d, SODOCK, Vina, LeDock, and 

Glide, irrespective of their score or binding free energy. Some statistical results in terms 

of best-scored RMSD and best-sampled RMSD obtained by these programs are 

illustrated in Table 1 and Table 2, respectively. The results for the test cases in each 

dataset reveal that MSLDOCK-s2 and MSLDOCK-s6 are the best two docking programs 

for almost all criterion in Table 1 and Table 2. The only exception is that for the mean 

best-scored RMSD results on the PDBbind coreset, Glide is better than the two 
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MSLDOCK versions. The similar phenomenon can also be observed in the results for all 

test cases, that is, Glide obtained the smallest best-scored RMSD, followed by two 

MSLDOCK versions and Vina, and then the other three programs. However, the P-values 

(calculated by using Wilcoxon signed-rank test, see section 3.3) in Table 1 indicate that 

there is no significant difference between the results of the mean best-scored RMSD by 

Glide, Vina and two MSLDOCK versions for all test cases. Moreover, the number of the 

successful docking test cases (the “Succ” criteria) by these four programs in Table 1 are 

also very similar, which verifies that the best-scored docking accuracies of MSLDOCK, 

Vina and Glide are equivalent. On the other hand, the advantages of the two MSLDOCK 

versions over the others in terms of best-sampled RMSD (in Table 2) are more obvious 

than those in terms of best-scored RMSD (in Table 1). Although the P-values in Table 2 

shows that Vina can be comparable to the two MSLDOCK versions and Glide can get 

similar results to MSLDOCK-s6 in terms of best-sampled RMSD, the mean RMSD 

values and the number of successful docking test cases obtained by the two MSLDOCK 

versions are the first- and second-best results among all the compared programs. Besides, 

unlike the comparison results based on the binding free energy accuracy obtained by the 

four Autodock-based programs, the overall results of RMSD by two MSLDOCK 

versions are significantly better than those by Autodock-d and SODOCK, verifying the 

effectiveness of the MSLRDPSO algorithm. With respect to the errors of the mean 

RMSDs in two tables, MSLDOCK-s2 and MSLDCOK-s6 are the two smallest ones and 

both have relatively large gaps with the others, which indicates that the MSLDOCK 

program definitely has the best robustness among all compared programs in terms of 
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RMSD. 
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Figure 4. The best-scored RMSD performance in terms of torsions. (A) 113 test cases 

with torsions between 0 to 4. (B) 120 test cases with torsions between 5 to 7. (C) 97 

test cases with torsions between 8 to 12. (D) 58 test cases with torsions between 13 

to 36. 

 
(A) 

 
(B) 
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Figure 5. The best-sampled RMSD performance in terms of torsions. (A) 113 test 

cases with torsions between 0 to 4. (B) 120 test cases with torsions between 5 to 7. 

(C) 97 test cases with torsions between 8 to 12. (D) 58 test cases with torsions 

between 13 to 36. 

 In addition to the overall results of RMSD, we also analyzed the docking accuracy 

performance in terms of torsions obtained by these compared docking programs, with 

the results shown in Figure 4 and Figure 5. For the best-scored RMSD in Figure 4, Glide 

and Vina may be the best two choices for the test cases no larger than 4 torsions, since 

they can both find the most successful dockings (RMSD less than 2 Å) among all docking 

programs, with fewer docking results of large RMSDs. For the same reason, the two 

versions of MSLDOCK are superior to others for the test cases with more than 7 torsions 

in Figure 4 and for those with more than 12 torsions in Figure 5. To show the 

effectiveness of the proposed docking program for highly flexible ligand docking more 

clearly, we lay out in Figure 6 the best-scored docked ligand conformations found by all 

compared docking programs for 2vkm with 20 torsions as an example. With respect to 

all the other torsions’ classes in Figure 4 and Figure 5, namely the classes with torsions 

between 5 to 7 in Figure 4 and the ones with torsions no larger than 12 in Figure 5, 
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MSLDOCK-s2 and MSLDOCK-s6 are both good choices. 

 
(A) 

 
(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

 

(G) 

Figure 6. The best-scored docked ligand conformations for 2vkm (20 torsions) 

obtained by all compared docking programs. The red-colored ligand is the 

conformation from co-crystallized complex and the blue-colored ligand is the 

docked pose. (A) MSLDOCK-s2 (RMSD equals to 0.66 A°). (B) MSLDOCK-s6 

(RMSD equals to 0.84 A°). (C) Autodock-d (RMSD equals to 4.19 A°). (D) SODOCK 

(RMSD equals to 0.83 A°). (E) Vina (RMSD equals to 2.45 A°). (F) LeDock (RMSD 

equals to 2.01 A°). (G) Glide (RMSD equals to 5.54 A°). 

More specifically, according to the number of the successful dockings in Figure 4, it 

is clear that both Vina and Glide outperform MSLDOCK when the number of torsions is 

no larger than 4, while for the larger number of torsions, MSLDOCK is comparable to 

Vina and Glide (torsions between 4 and 7) or better than them (torsions larger than 7). 

With respect to the number of the successful dockings in Figure 5, the advantage of two 

MSLDOCK versions over Vina and Glide is more obvious than that in Figure 4, that is, 
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MSLDOCK-s2, MSLDOCK-s6, Vina, and Glide are comparable for the torsions no 

larger than 12, and for the torsions greater than 12, the two versions of MSLDOCK are 

still better ones. Comparing the results obtained by two versions of MSLDOCK for both 

best-scored and best-sampled RMSDs, MSLDOCK-s6 can be comparable to 

MSLDOCK-s2 for the less flexible ligand test cases and is a little worse than 

MSLDOCK-s2 for the highly flexible ligand ones. With the increase of the number of 

torsions, the advantage of both these two MSLDOCK versions over the other two 

Autodock-based programs, i.e., SODOCK and Autodock-d, become more apparent. For 

LeDock, it can only get comparable results to Autodock in terms of best-scored RMSD, 

and finds the least successful dockings in almost every class in terms of best-sampled 

RMSD.  

Table 3. Mean time for generating per docking pose taken by each aforementioned 

docking program (unit: second) 

 Mean time for all 

test cases 

Mean time for test cases with 

torsions no more than 13 

Mean time for test cases with 

torsions more than 13 

MSLDOCK-s2 27.193 19.880 68.802 

MSLDOCK-s6 30.418 23.114 71.974 

Autodock-d 78.897 55.715 210.797 

SODOCK 85.147 61.150 221.681 

Vina 58.841 30.229 221.637 

LeDock 2.444 1.895 5.570 

Glide 6.364 2.545 28.096 

In order to evaluate the docking efficiency of all aforementioned docking programs, 

Table 3 lists the mean of computational time for generating per docking pose taken by 

each docking program. Overall, the MSLDOCK has better docking efficiency than 

Autodock-d, SODOCK and Vina but worse than LeDock and Glide. The slight advantage 
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of MSLDOCK-s2 over MSLDOCK-s6 probably caused by the low probability of moving 

features to other sub-swarms when applying the feature exchange method in 

MSLDOCK-s2, resulting in the fact that not many features need to be shuffled. 

Comparing the MSLDOCK versions with the other two Autodock-based programs, we 

find that it takes by the MSLDOCK versions only approximately 35% of time taken by 

Autodock-d and SODOCK to execute one docking trial. This is because that the main 

structure of MSLRDPSO is less complex than those of the other two Autodock-based 

algorithms: with respect to LGA, in each iteration every particle should exchange its 

elements from genotype to phenotype4, which takes much time; for the LPSO, the 

neighborhood topology13 makes the search algorithm time-consuming due to its frequent 

search for the best pbest within each particle’s neighborhood. The mean time for all test 

cases taken by Vina is about twice of those by the two MSLDOCK versions, but it is very 

different for the test cases with small number of torsions and for those with highly 

flexible ligands. The reason is that the total steps for searching each docking pose in Vina 

are associated with the torsion numbers, and thus Vina is forced to do long-step search 

for these test cases. Glide and LeDock both consume much less time than MSLDOCK, 

illustrating their good docking efficiency. However, considering the results in terms of 

RMSD obtained by MSLDOCK, Glide and LeDock, we can conclude that MSLDOCK 

still can be a competitive docking program due to its superior docking accuracy, 

especially for the highly flexible ligand docking problems. 

Table 4. Statistical results of the computational time for the multithread mode of 

MSLDOCK-s2 and MSLDOCK-s6 for all test cases 

 MSLDOCK-s2 MSLDOCK-s6 



 33 

Mean time of MSLDOCK-M (unit: second) 16.577 5.733 

Speedup ratio of MSLDOCK-M relative to MSLDOCK 164.04% 530.55% 

Percentage of the real speedup ratio to the desirable ratio 

for MSLDOCK-M 
82.02% 88.43% 

Furthermore, some statistics of the computational time for MSLDOCK-M are 

recorded in Table 4. The speedup ratio cannot be close to the desirable value due to not 

only the incomplete synchronization between sub-swarms for the parallel mode of 

MSLRDPSO, but also the parallelization for only the calculation part of the scoring 

function (no parallelization for other parts of the docking program such as program 

initialization and analysis of final results). The latter reason also leads to the effect that 

with a greater number of sub-swarms (number of threads), the scoring function 

calculation consumes less computational time, and thus the percentages of the real 

speedup ratio to the desirable ratio for MSLDOCK-M-s6 are a little better than those for 

MSLDOCK-M-s2 in Table 4. 

Summarizing the above analysis in terms of binding affinities, docking accuracy and 

efficiency for self-docking, it can be concluded that the MSLDOCK is better than all the 

compared programs for most of the evaluation criteria, especially for test cases with 

highly flexible ligands. The two exceptions are that MSLDOCK performs relatively 

worse than Glide and Vina in terms of best-scored RMSD for the test cases with small 

number of torsions, and its docking efficiency is not as good as Glide and LeDock. 

4.2 Comparison of cross-docking accuracy 
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Figure 7. Cross-docking results obtained by MSLDOCK-s2, MSLDOCK-s6, 

Autodock-d and SODOCK for (A) CDK2 family and (B) MAPK14 family. Bottom 

stacked bar plots indicate outcomes for all ligands with a given receptor. 

Table 5. The results of cross-docking accuracy for Autodock-based programs 

Protein family MSLDOCK-s2 MSLDOCK-s6 Autodock-d SODOCK 

CDK2 

Docking success 54 51 46 48 

Scoring failure 19 24 25 19 

Sampling failure 27 25 29 33 

MAPK14 

Docking success 24 22 14 18 

Scoring failure 32 32 28 23 

Sampling failure 44 46 58 59 

Figure 7 shows the heatmaps of the cross-docking results for two families obtained 

by four Autodock-based programs. In Figure 7, the matrix rows and columns correspond 

to a given ligand or receptor and are identified by PDB codes, and the diagonal entries 

indicate self-docking. Docking outcomes are classified as sampling failure (red), scoring 
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failure (green) and docking success (blue). Table 5 records the number of the test cases 

in each class. Overall, MSLDOCK-s2 can get the best results for these two cross-docking 

families, followed by MSLDOCK-s6 and SODOCK, and Autodock-d is the worst one. 

This implies that the PSO algorithms may be more suitable in handling cross-docking 

problems than the genetic algorithms, and the proposed algorithm can get better cross-

docking performance than SODOCK which is based on the canonical PSO algorithm. In 

addition, the little advantage of MSLDOCK-s2 over MSLDOCK-s6 is similar to that in 

the self-docking results, which demonstrates the MSLDOCK with fewer sub-swarms is 

more suitable for experiments with a large number of docking repetitions. With respect 

to the results for each cross-docking family, the superiority of two MSLDOCK versions 

over Autodock-d and SODOCK for the MAPK14 family are more obvious than that for 

the CDK2. This indicates that the proposed docking program can obtain good results not 

only for a relatively easy cross-docking family (CDK2), but also for a hard one 

(MAPK14). 

4.3 Comparison of virtual screening accuracy and screening speed 

The ROC curves obtained by all the compared docking programs are illustrated in 

Figure 8, and the corresponding AUC-ROC values are presented in Table 6. The ROC 

curves in Figure 8 demonstrate that the Autodock-based docking programs generated 

very similar ranking list only except the list by SODOCK for kif11. However, the results 

in Table 6 verify that the two MSLDOCK versions perform better than Autodock-d and 

SODOCK in terms of the average AUC-ROC values. On the other hand, the results 

obtained by Vina, LeDock and Glide are different from those obtained by the Autodock-
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based programs. Specifically, Vina performs slightly better than Autodock-based 

programs on cp3a4 and kif11 but shows a little worse performance on ampc and cxcr4. 

LeDock cannot get a good screening ranking list on ampc, while for other targets it is 

comparable to other docking methods. Glide is better than the Autodock-based programs 

according to the ROC curves on almost all targets expect the cxcr4. However, the average 

AUC-ROC values in Table 6 for the three non-Autodock-based programs indicate that 

the two MSLDOCK versions are better than Vina and LeDock, and that MSLDOCK-s6 

is slightly better than Glide, while MSLDOCK-s2 is a little worse than it. 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

Figure 8. ROC curves of virtual screening four targets using all compared docking 

programs. (A) ROC curves for ampc. (B) ROC curves for cxcr4. (C) ROC curves 

for cp3a4. (D) ROC curves for kif11. 
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Table 6. The AUC-ROC values of virtual screening four targets in DUD-E dataset 

using all compared programs 

 ampc cxcr4 cp3a4 kif11 Average 

MSLDOCK-s2 0.726 0.762 0.548 0.810 0.712 

MSLDOCK-s6 0.741 0.759 0.562 0.813 0.719 

Autodock-d 0.731 0.729 0.518 0.810 0.697 

SODOCK 0.701 0.764 0.533 0.693 0.673 

Vina 0.642 0.659 0.608 0.867 0.694 

LeDock 0.419 0.708 0.575 0.724 0.607 

Glide 0.761 0.641 0.625 0.840 0.717 

Table 7. The EF values of virtual screening four targets in DUD-E dataset using all 

compared programs 

  ampc cxcr4 cp3a4 kif11 Average 

MSLDOCK-s2 
EF1% 6.374 10.765 2.756 15.756 8.913 

EF10% 3.553 2.948 1.653 5.177 3.333 

MSLDOCK-s6 
EF1% 4.781 10.765 4.409 15.756 8.928 

EF10% 3.392 2.456 1.791 5.228 3.217 

Autodock-d 
EF1% 0.000 9.109 2.756 14.739 6.651 

EF10% 2.746 2.620 1.185 5.278 2.957 

SODOCK 
EF1% 0.000 9.937 2.756 7.116 4.952 

EF10% 2.423 3.275 1.460 3.147 2.576 

Vina 
EF1% 0.000 0.000 6.963 20.330 6.823 

EF10% 1.938 1.064 1.978 6.446 2.857 

LeDock 
EF1% 0.000 1.656 3.582 3.558 2.199 

EF10% 0.000 1.474 1.929 2.690 1.523 

Glide 
EF1% 0.000 4.109 4.973 29.008 9.523 

EF10% 3.061 1.639 2.548 6.090 3.335 

With respect to the EF values shown in Table 7, the average results indicate that the 

Glide program can obtain the best results for both the EF1%  and EF10%  criteria, 

followed by MSLDOCK-s6 and MSLDOCK-s2, then Vina and Autodock-d, and finally 

SODOCK and LeDock. The performance gaps between two MSLDOCK versions and 

Glide are much smaller than those between the two MSLDOCK versions and the other 

docking programs, which indicates that the proposed docking methods are one of the best 

screening programs in terms of the EF values. Specifically, the MSLDOCK-s2 and 
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MSLDOCK-s6 both perform better than all the other docking programs on ampc and 

cxcr4, and can get the closest results to Vina and Glide on cp3a4 and kif11 among the 

four Autodock-based programs. It should be pointed out that robustness of the two 

MSLDOCK versions are better than those of all the other docking programs on the EF1% 

criterion, since for the ampc target, MSLDOCK-s2 and MSLDOCK-s6 are able to obtain 

good results on EF1% values (6.374 for MSLDOCK-s2 and 4.781 for MSLDOCK-s6, 

respectively), while for all the other docking programs the EF1% values are all 0. This 

is very important in drug discovery research, since people mainly consider the top-ranked 

ligands from the virtual screening results, and the good robustness of the EF1% value of 

the MSLDOCK program can thus lead users to screen the actives very efficiently for 

many targets. 

Comparing both the AUC-ROC and EF values among all the Autodock-based 

algorithms, we found that MSLDOCK-s6 has the best results for all the average criteria 

in Table 6 and 7, followed by MSLDOCK-s2, Autodock-d and finally SODOCK. This 

indicates that the proposed multi-swarm strategy and the random drift mechanism in 

RDPSO can really improve the virtual screening performance of the optimization 

algorithms. Moreover, the superiority of the MSLDOCK-s6 over MSLDOCK-s2 on 

virtual screening accuracy demonstrates that the MSLDOCK with larger number of sub-

swarms is more suitable for docking with fewer repetitions due to its higher robustness. 

With respect to the screening speed for each target, the mean time of docking per 

ligand taken by all compared programs are illustrated in Table 8. The average results in 

Table 8 reveal that the MSLDOCK-s2 and MSLDOCK-s6 has the third and fourth fastest 
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screening time among all the single-thread docking programs, only a little slower than 

Glide and LeDock, but much better than the other compared programs, which is similar 

to the results of docking-speed comparison in self-docking. The high efficiency along 

with the superior screening accuracy makes the MSLDOCK program to be one of best 

choices for virtual screening, for it is comparable to Glide but much better than all the 

other compared docking programs. 

Table 8. The mean screening time of docking per ligand for the four targets in DUD-

E dataset using all compared programs (unit: second) 

 ampc cxcr4 cp3a4 kif11 Average 

MSLDOCK-s2 2.530 4.902 5.536 4.396 4.341 

MSLDOCK-s6 2.771 5.180 5.778 4.698 4.607 

Autodock-d 6.875 13.759 15.496 12.146 12.069 

SODOCK 7.282 14.934 16.904 13.455 13.144 

Vina1 5.844 11.865 16.359 11.531 11.340 

LeDock 2.916 3.642 4.284 3.833 3.669 

Glide 0.837 1.893 4.632 1.100 2.116 

1 For all the tested targets in virtual screening, Vina ran in single-threaded mode 

5. Conclusions 

The MSLDOCK docking program has been proposed in this paper to provide a 

high-performance and high-efficiency method for solving flexible ligand docking 

problems. According to the experimental results and corresponding analysis for 

comparing MSLDOCK with two Autodock-based and three other widely used docking 

programs on self-docking, cross-docking and virtual screening, some conclusions can be 

drawn as follows: 

 MSLDOCK can be a reliable choice compared to many Autodock-based 

docking programs, since it is better than the default version of Autodock and a 
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high-robust and high-accuracy program named SODOCK on almost all 

compared evaluation criteria for self-docking, cross-docking and virtual 

screening; 

 In terms of both the docking accuracy and docking efficiency, MSLDOCK 

outperforms Vina, LeDock and Glide in many aspects, especially in self-

docking accuracy with highly flexible ligands. Although the docking time taken 

by MSLDOCK is not as little as that taken by Glide and LeDock, the 

MSLDOCK program is still considered to be competitive with the non-

Autodock-based docking programs; 

 For test cases with less flexible ligands (torsions no larger than 4) in self-

docking, Vina and Glide perform better than MSLDOCK in terms of the best-

scored RMSD. This demonstrates that for some test cases with relatively small 

number of torsions, MSLDOCK is not the best choice to obtain a good enough 

RMSD for the best-scored conformation, which is the limitation of MSLDOCK; 

 MSLDOCK-s2 is more suitable for docking a single test case with many 

repetitions. The corresponding examples shown in this paper are that 

MSLDOCK-s2 outperforms MSLDOCK-s6 in terms of both self-docking and 

cross-docking accuracies when the repetitions for a single test case is 50. With 

fewer sub-swarms and enough docking repetitions, MSLDOCK-s2 has stronger 

ability to find conformations with better best-scored RMSDs than MSLDOCK-

s6, especially for highly flexible ligand docking problems. 

 MSLDOCK-s6 should be appropriate for docking a single test case with a small 
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number of repetitions, such as virtual screening. Due to the high robustness of 

the MSLDOCK with a relatively large number of sub-swarms, MSLDOCK-s6 

generally has a higher probability of obtaining good docking results within a 

few docking repetitions than MSLDOCK-s2. 

In light of the above conclusions, we recommend here a selection of the number of 

sub-swarms for MSLDOCK, in order to obtain good docking results by using 

MSLDOCK program for most of the flexile ligand docking problems. It is suggested to 

set 2 sub-swarms for docking a single test case with many repetitions, and to set 6 or 

more sub-swarms for “fast” docking problems such as virtual screening. It should be 

pointed out that the default number of sub-swarms is set to 6 in current version of 

MSLDOCK. The reasons are that this parameter setting can help MSLDOCK obtain 

remarkable results in the case where only a few docking repetitions can be executed, and 

that MSLDOCK-s6 can find docking poses with only a little worse RMSDs than 

MSLDOCK-s2 when there are many repetitions for a single docking test. The source 

code of MSLDOCK can be downloaded for free from 

https://github.com/lcmeteor/MSLDOCK. 

Additionally, as shown in Table 4, MSLDOCK-M has a good speedup ratio in terms 

of the number of sub-swarms for running single docking tasks in parallel. This 

multithread mode of MSLDOCK can be used to complete a docking with a fairly highly 

flexible ligand in short time, or to quickly find appropriate settings of docking parameters. 

In our future work, we intend to evaluate in detail how the change of sub-swarm 

numbers influences the docking results, or make full use of the multithread mode to 

https://github.com/lcmeteor/MSLDOCK
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rapidly evaluate the setting of the number of sub-swarms so that MSLDOCK can 

automatically find the suitable choice for every specific docking problem. We will also 

further access the docking performance of MSLDOCK in terms of the atom number of 

ligands, since to some extent, the number of atoms for a ligand can really affect the 

docking accuracy and efficiency. Besides, we will integrate MSLRDPSO with other 

scoring functions and/or other docking programs to examine the potential of the proposed 

search algorithm. 
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