
UC Berkeley
UC Berkeley Previously Published Works

Title
Automated Adsorption Workflow for Semiconductor Surfaces and the Application to Zinc 
Telluride

Permalink
https://escholarship.org/uc/item/17g8k1pz

Journal
Journal of Chemical Information and Modeling, 61(8)

ISSN
1549-9596

Authors
Andriuc, Oxana
Siron, Martin
Montoya, Joseph H
et al.

Publication Date
2021-08-23

DOI
10.1021/acs.jcim.1c00340
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/17g8k1pz
https://escholarship.org/uc/item/17g8k1pz#author
https://escholarship.org
http://www.cdlib.org/


An Automated Adsorption Workflow for

Semiconductor Surfaces and the Application to

Zinc Telluride

Oxana Andriuc,†,‡,¶ Martin Siron,†,§,¶,‖,⊥ Joseph H. Montoya,⊥ Matthew

Horton,§,‖ and Kristin A. Persson∗,§,#

†contributed equally

‡Department of Chemistry, University of California, Berkeley, CA 94720, USA

¶Liquid Sunlight Alliance and Chemical Sciences Division, Lawrence Berkeley National

Laboratory, Berkeley, CA 94720, USA

§Department of Materials Science and Engineering, University of California, Berkeley, CA

94720, USA

‖Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,

USA

⊥Toyota Research Institute, Los Altos, CA 94022, USA

#Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: kapersson@lbl.gov

Abstract

Surface adsorption is a crucial step in numerous processes, including heterogeneous

catalysis, where the adsorption of key species is often used as a descriptor of efficiency.

We present here an automated adsorption workflow for semiconductors which employs
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density functional theory calculations to generate adsorption data in a high-throughput

manner. Starting from a bulk structure, the workflow performs an exhaustive surface

search, followed by an adsorption structure construction step which generates a mini-

mal energy landscape in order to determine the optimal adsorbate – surface distance.

An extensive set of energy-based, charge-based, geometric, and electronic descriptors

tailored towards catalysis research are computed and saved to a personal user database.

The application of the workflow to zinc telluride, a promising CO2 reduction photo-

catalyst, is presented as a case study to illustrate the capabilities of this method and

its potential as a materials discovery tool.

Introduction

Adsorption plays an important role in a broad range of materials-based technologies, includ-

ing heterogeneous catalysts,1 energy storage,2,3 and solid-state synthesis.4,5 From a compu-

tational perspective, evaluation of adsorption energetics is a complex process, due to the

breadth of possible adsorption structure configurations requiring comprehensive and gener-

alized surface site-finding algorithms, and the complexity and elevated computational cost

of first-principles calculations on such systems.

One application of adsorption that is of particular interest, given the need for novel,

efficient renewable energy systems, is the photocatalytic conversion of carbon dioxide to

fuels, which represents the driving force behind the work presented in this paper. Devel-

oping efficient and cost-effective solar-driven CO2 reduction reaction (CO2RR) devices has

the potential to both alleviate greenhouse gas emissions and offer a sustainable liquid fuel

production method. In recent years, many computational studies on CO2RR photocata-

lysts have been carried out, offering insights into already-existing, as well as potential new

photocatalytic systems.6 Nevertheless, the search for a robust CO2RR photocatalytic sys-

tem remains an active area of materials discovery, motivating the need for a computational

search approach.

While a number of high-throughput searches for photoelectrodes have been previously

published,7,8 existing literature frequently does not address the adsorption of relevant reac-

tants and intermediates on the surface, despite it being a crucial step in the photocatalytic

process. Existing adsorption workflows have been mainly designed for metallic systems,9,10

or metal-organic frameworks,11 and tend to focus on a limited set of descriptors.
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The current work aims to provide a new and improved automated adsorption workflow,

which can be applied to a variety of systems and chemistries, including semiconductors,

which includes polar surfaces with more complicated electronic structure. With minimal

user supervision or input, the workflow performs DFT calculations on the bulk, all surfaces,

and all adsorption structures with a given set of adsorbate species. This is followed by

a comprehensive analysis step, which saves a set of computed adsorption properties to a

personal user database that can be easily queried, and ultimately facilitates the screening

of materials through a descriptor-based method. The generated data includes a series of

quantities relevant to photocatalysis without impinging on the applicability of the workflow

to other surface processes.

Methods

Data and Software Availability

The adsorption workflow presented here is developed as part of the atomate open-source

software package,12 making use of the FireWorks,13 pymatgen14 and custodian14,15 software

packages and is freely available at https://github.com/oxana-a/atomate/tree/ads_wf.

The Fireworks workflow package facilitates the organization of the various computing jobs

(called Fireworks; an example being a density functional theory relaxation calculation) into

a sequence of individual computing tasks (called Firetasks; an example being creating input

files as part of a geometry optimization Firework). Density Functional Theory (DFT) cal-

culations are performed with the Vienna Ab initio Simulation Package (VASP).16,17 Details

about how to run the workflow can found in the Supporting Information.

Overview

The general structure of the workflow is shown in figure 1. The first Firework comprises the

crystal bulk structure optimization, which includes several Firetasks that are specific to DFT

geometry optimizations (writing VASP input files, running VASP with custodian14,15 in order

to manage common DFT errors automatically, passing information about the location of the

calculations to the next step, and saving the DFT outputs to an external user database) and

a step which identifies all the possible surfaces and adds the corresponding slab calculations

to the workflow. Once the slab calculations are completed, the adsorption sites are identified

for each surface, and the corresponding adsorption structure Fireworks are added to the
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Figure 1: General workflow structure. The workflow consists of individual computing jobs
(Fireworks), each of which is a sequence of computing tasks (Firetasks; example Firetasks
shown for the bulk optimization Firework). At the slab and slab + adsorbate optimization
levels the flowchart shown here follows only one of the multiple possible branches correspond-
ing to all of the surfaces, and adsorption structures, respectively.
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workflow. The last step is the analysis Firework for each adsorption structure, in which the

data generated throughout that specific branch of the workflow is organized, new descriptors

are computed, and everything is saved to a personal user database.

Surface generation

The surface identification is performed on the output structure of the bulk DFT geometry

optimization using pymatgen functionality14,18 up to a maximum Miller index that can be

specified by the user and is 1 by default. With this parameter value, the surface generation

algorithm will return all unique surfaces corresponding to Miller planes such as {100}, {110}
and {111}, amongst others. Additionally, surfaces with no center of inversion will be mirrored

and included. Each surface is modelled as a slab of a small finite number of atomic layers.

The dimensionality of the bulk is determined19 as part of the surface generation step, and

for 2D materials only the terminations that correspond to the van der Waals layers in the

material are considered.

For each of the identified slabs, a DFT geometry optimization step is performed. Slab

atoms are labeled as one of surface, subsurface or bottom surface. This categorization is

based on a surface height parameter, which is 0.9 Å by default and determines the thickness

at the top and bottom end of the slab within which atoms are labelled as surface and bottom

surface, respectively, with all remaining atoms being subsurface. By default, the position of

atoms that are more than 2 Å below the surface is kept fixed during the optimization using

selective dynamics. Due to the computational limitations on the number of atoms that can

be tractably modelled as periodic slabs, the use of selective dynamics ensures the bulk-like

character of the atom layers below the surface and prevents any unphysical contributions

from the relaxation of the exposed bottom surface to the total electronic energy. By default,

the minimum length and width of slabs is set to 10 Å, the minimum height of the slab is set

to 12 Å and the minimum vacuum is set to 20 Å. These can all be tuned at the workflow

level but were chosen to ensure that slab geometry optimization calculations are operating

with enough vacuum to prevent slab-to-slab interactions, with enough thickness to ensure

the bottom layers are bulk-like, and with enough length and width to prevent adsorbate-

adsorbate interactions in the upcoming steps of the workflow. Following the DFT geometry

optimization step, the density of states (DOS) data for the slab is generated.

In surface science, interfaces are often dynamic. Surface atoms can rearrange, forming

structures very different from bulk. Additionally, surfaces can also interact with the envi-

ronment, e.g. a solvent medium. The default settings of the workflow, where the surface is

generated from a bulk structure, can only capture local atomic relaxations, as described by
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density functional theory. However, the workflow can also be started from a slab structure,

bypassing the bulk calculation and surface generation. A user who wishes to model a surface

which has reconstructed and/or exhibits a different stoichiometry can start from there. As

our method is designed to be a high-throughput exploration of adsorption properties, we

expect that further studies are needed to model surfaces under more realistic environmental

conditions, especially in fields such as photocatalysis.

Adsorption structure construction

In order to generate adsorption structures, the first step is identifying all the possible ad-

sorption sites. This is achieved using a Delaunay triangulation method which finds all

1, 2, and 3-fold ensembles on a surface, as described in previous work.9 An adsorbate-

surface pair structure is generated for each adsorption site on each surface. Next, an optimal

adsorbate-surface distance is found prior to the adsorbate-surface DFT optimization. This

step maximizes the success rate for the upcoming optimization step by accounting for the

sensitivity of the optimization convergence on the input geometry in adsorption structures

of non-metallic systems, and saves computational time by indicating whether an adsorption

structure is promising enough to proceed to the costly optimization step. The energy land-

scape as a function of adsorbate-surface distance may be shallow and exhibit one or more

local minima, making it difficult for commonly used DFT minimizers to locate the desired

minimum. Static calculations are therefore performed at various adsorbate-surface distances,

which are, by default, 0.5, 1.0, 1.5, and 2.0 Å. The total energies obtained from these calcu-

lations are then analyzed in the next step to either determine an optimal input structure for

the geometry optimization, or discard that specific adsorption structure and terminate the

corresponding workflow branch if no structure successfully converges at the various distances

tested. As the distance increases, if none of the final energies are below 0 eV, the lowest

energy-distance pair is chosen. However, if the landscape is such that the 0 eV line is crossed

twice, the average of the last two distance-energy pair with a negative total energy is chosen.

If the energy landscape only crosses the 0 eV boundary once, and the two most negative

energy-distance pair are averaged. The user also has the option to fit the distance-energy

pairs to a second order polynomial and choose the distance corresponding to the minimum,

or to simply use the lowest distance-energy pair. Each adsorption structure that is retained

after the distance optimization step undergoes a DFT geometry optimization calculation in

which the atomic layers that are 2 Å below the surface are not allowed to move for the same

reasons as in the case of the slab relaxations. The adsorbate-surface optimization is followed

by a similar static, and uniform non-self-consistent calculation to generate DOS data.
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Data analysis and aggregation

The final step for each successful adsorption structure is an analysis step, which organizes

all the data from the previous steps, computes new data and saves it as a JavaScript Ob-

ject Notation (JSON) document to a new entry (per adsorption structure) in an external

user database (figure 2). The wide range of data computed and saved as part of the work-

flow allows for an in-depth descriptor-based analysis and further screening facilitated by the

accessible querying of the user database. The computed properties include descriptors rele-

vant for photoelectrocatalysis, which can be roughly split into four categories: energy-based,

geometric, electronic, and charge-based properties.

Figure 2: Schematic of database entry for each successful adsorption structure. Saved data
includes properties for the corresponding bulk and empty slab.

Energy-based descriptors include the cleavage energy, which is calculated as:

Ecleavage =
Eslab − αEbulk

2A
(1)
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where Eslab and Ebulk are the final DFT geometry optimization energies of the slab and the

bulk, respectively, α is a scale factor that accounts for differences in the number of atoms in

the slab unit cell and the bulk unit cell (α = Nslab/Nbulk), and A is the exposed surface area of

either termination of the slab unit cell. The cleavage energy can be used as an indication of

surface stability, however, noting that it only corresponds to the surface energy in the case

of slabs that have equivalent surface and bottom surface terminations.

Particularly relevant to photoelectrocatalysis is the adsorption energy, which, for simple

adsorbates, has been previously related to adsorption energies of more complex adsorbates

(through scaling relations),20 as well as to transition state energies (through Brønsted-Evans-

Polanyi relations).21 These correlations can offer insight into the efficiency of the reaction

under study. The adsorption energy is defined as:

Eadsorption = Eslab+adsorbate − Eslab − Eadsorbate (2)

where where Eslab+adsorbate and Eslab are the final DFT geometry optimization energies of the

adsorption structure and the empty slab, respectively, and Eadsorbate is the adsorbate ground

state reference energy. This reference value is supplied by the user through a dedicated

parameter.

Geometric descriptors include translation vectors, coordination numbers, adsorption

site type (both in the input and output structures), the distance between the adsorbate and

the surface, and the adsorbate bond lengths and angles (if applicable). These site specific

descriptors give insight into the bonding changes due to the surface-adsorbate interaction:

for example, a significant translation of surface atoms upon adsorption, a lengthening bond

within the adsorbate, or a change in the adsorbate bond angle could all be an indication of

strong chemisorption.

Electronic descriptors focus on the DOS calculations performed after each slab and

surface-adsorbate pair relaxation calculation. From the slab DOS, surface specific descrip-

tors are calculated, including: the surface work function, the conduction band minimum

(CBM) and valence band maximum (VBM) orbital and elemental make-up, and the band

center of the s, p, and d bands. The work function, and its change with the introduction of

an adsorbate gives an indication of the charge transfer into the catalyst.22 The orbital and

elemental make-up can give hints about the degree of separation of excited charge carriers

upon generation.23 The work function is calculated using the work function analyzer from

pymatgen24 by averaging the local potential across the c axis and shifting it with respect

to the vacuum energy level. The band-centers are popular surface-specific descriptors used

for photocatalysts in other material systems.25,26 From the surface-adsorbate pair DOS cal-
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culation, a new work function analysis is performed, which allows for the calculation of the

site-specific work function shift upon adsorption. The DOS overlap between surface species

and adsorbate species is also calculated. Depending on the character of the surface states

overlapping, stronger overlap could indicate the more repulsiveness or attractiveness of the

adsorbate-surface interaction.27

Charge-specific descriptors quantify the amount of charge transferred from the surface

to the adsorbate at each site and are obtained from DDEC628 and Bader29 charge partition-

ing analyses. Complemented by the work function shift upon adsorption, these quantities

offer further insight into the extent of bonding present at the adsorption site.

Semiconductor specificity

Modelling adsorption on semiconductor surfaces using DFT in a high-throughput manner

poses challenges due to the less homogeneous electron density at the surface compared to

metallic systems which can lead to numerical instability, potential dipoles due to polar

terminations, and generally more complex surfaces which exhibit stronger site dependence

of adsorption properties. To address the lack of already existing high-throughput adsorption

methodologies that are suitable for semiconductor systems, our workflow employs a threefold

approach:

1. Slabs and adsorption structures are generated from the outputs of the bulk and slab

relaxations, respectively, and the bottom atomic layers are not allowed to move during

their relaxations. This accounts for the propensity of semiconductor surfaces to relax

more than metallic surfaces by forcing them to keep their bulk-like positions and thus

mitigates any energy contributions from the unphysical relaxation of the bottom sur-

face, an artifact of computational limitations on the number of atomic layers that can

be tractably modelled.

2. Static calculations are performed to determine the optimal adsorbate-surface distance

prior to the adsorption structure relaxation. This is a relatively inexpensive way to

fine-tune the input adsorption structure in order to maximize its relaxation convergence

success, thus mitigating any issues where surface interactions are weak.

3. Descriptors specifically relevant to semiconductors are computed during the adsorption

workflow, such as the CBM and VBM electronic structure, and the s-, p-, and d -band

centers. Both the p-band center and d -band center have been previously used in CO2

reduction studies as descriptors of interest.25,26 In transition metals, the adsorption

energy, in the d -band model, can be separated into the sum of two contribution: one
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from the broad s-band, and the narrow d -band typical of these materials.26 A similar

relationship has been ported to semiconductors with the p-band center.25

DFT details

The DFT calculations performed throughout the workflow are carried out with the Vienna

Ab initio Simulation Package,16,17 using projector-augmented wave (PAW) pseudopoten-

tials.30,31 The default exchange-correlation functional used is RPBE, which is a revision of

the Perdew-Burke-Ernzerhof (PBE)32 functional and has been shown to give improved ad-

sorption energies compared to its predecessor.33 Dispersion is accounted for by Grimme’s

DFT-D3 correction method.34 Slab calculations are performed using dipole corrections to

the potential and forces, applied in the direction of the lattice vector along which the slab is

oriented.35 The default DFT parameters have been selected to provide reasonable accuracy

while keeping the high-throughput workflow computationally tractable. All VASP calcu-

lations are performed using the custodian job management package, which identifies and

corrects common VASP errors automatically.14,15

Other parameters

The extensive data analysis is performed by the workflow without any user supervision or

input. The only input parameters required for workflow to run are the bulk crystal struc-

ture, adsorbate structures, and adsorbate reference energies. The ground state adsorbate

structures and reference energies can be computed using the already existing dedicated ato-

mate molecules workflow.12 Additionally, the user can also control parameters such as VASP

parameters, supercell size, vacuum size, adsorbate orientation, maximum Miller index to con-

sider when generating surfaces. The default values for parameters such as the slab length,

width and height, and vacuum size have been chosen based on the zinc-blende-structured

zinc telluride (ZnTe) benchmarking and convergence tests. Nevertheless, the use of the Fire-

Works framework allows for easy control over the workflow through both automated and

manual changes to individual steps.

Case study: ZnTe

There are few semiconducting materials for which the experimental evidence of CO2 re-

duction is clearly established and characterized.36,37 Its aqueous stability under reducing
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Figure 3: ZnTe surfaces generated as part of the workflow with a maximum Miller index
of 1. Each surface is identified by a Miller plane and the fractional shift applied in the c
direction to get to the specific termination

conditions38 and the existing evidence for the zinc-blende structure of zinc telluride being a

promising component of CO2RR photoelectrocatalytic systems, both experimental39–43 and

computational8 make ZnTe a suitable candidate for further adsorption studies. We present

here the application of our workflow to zinc telluride (referenced in the Materials Project

Database as mp-2176 ) as a case study, and note that a detailed analysis of its performance

as a CO2RR photocatalyst is beyond the scope of this paper. The adsorbates under consid-

eration are CO and H, as their adsorption energies on metallic catalytic surfaces have been

well established to be strong indicators of CO2RR and hydrogen evolution reaction (HER)

capabilities, respectively,44,45 thus warranting an investigation into the possibility of similar

trends applying to semiconductors.

The computed conduction and valence band edges (figure 4) are typical of other Zn-

chalcogenide semiconductors: a predominantly telluride, anion-p character for the valence

band and a conduction band of both zinc and tellurium and s- and p-type character. Like-

wise the valance and conductor band is rather well dispersed.46 Additionally, for ZnTe we

calculated a cubic crystal system with a lattice constant of 6.13Å, on par with published

crystallographic data.47

Seven unique surfaces up to a Miller index of 1 are generated from the relaxed bulk ZnTe

structure: two {100} surfaces with different terminations, one {110} surface, and four {111}
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(a) Orbital (s-, p-, d -) pDOS (b) Elemental (Zn, Te) pDOS

Figure 4: Projected Density of States (pDOS) at the band edges for the ZnTe (110) surface,
Gaussian-smoothed (σ = 0.1). Calculations show predominantly p-character at the VBM,
and predominantly s- & p-character at the CBM. There is a high Te contribution to the
VBM, whereas both Te and Zn states contribute to the CBM. This is in similar to other
metal-chalcogenide semiconductors.

Figure 5: Adsorption energy plots for ZnTe (110): CO (left), H (right). Adsorption sites are
marked by X and color coded by the adsorption energy value at that site: the data points
on the top plots are on the same scale, whereas on the bottom they are shown on narrower
adsorption energy scales. One data point was excluded from the CO adsorption plot because
the adsorbate dissociated at that site during the geometry optimization.
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surfaces with different terminations (figure 3). The computed cleavage energies are similar

in magnitude to previously reported surface energies48 and suggest that the (110) surface is

the most stable one, having the lowest cleavage energy of the seven slabs: 0.03 eV/Å2 (0.52

J/m2) compared to the next lowest energetic surface (111) with a cleavage energy of 0.06

eV/Å2 (0.91 J/m2). This is similar to previously published experimental literature in which

the [110] and [111] are the typical growth directions of zinc-blende ZnTe.48–50

Moreover, the (110) surface in our study exhibits a surface reconstruction similar to what

was previously observed experimentally, where the surface tellurium anions remain close to

their original positions, moving slightly outward by 0.2Å, while the zinc ions relaxed inward

much more noticeably by 0.5Å. This unique surface relaxation behavior exhibited by ZnTe

compared to other zinc-blende semiconductors is attributed to its elevated ionicity.51 Addi-

tionally, work function analysis shows the surface work function to match existing literature

for ZnTe in the 5-6 eV range.52

Figure 6: Difference of charge density between adsorbate-surface pair, adsorbate and surface
for a CO molecule on a (110) site on ZnTe.

A total of 44 unique adsorption sites have been identified for the seven relaxed slabs,

resulting in 44 CO adsorption structures and 44 H adsorption structures. Out of these,

23 CO structures and 28 H structures successfully converged in the geometry optimization

step. The highest convergence rates were obtained for the most stable surfaces. We note

that since unfavorable adsorption sites are predicted to lead to unstable input structures for

geometry optimizations and hence a low probability of convergence to a minimum, an overall

limited convergence rate for the DFT optimizations performed as part of the workflow is to

be expected and does not impede its purpose. In total, over 700 Fireworks were launched as
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part of the ZnTe workflow with CO and H as adsorbates. Using a single 64-core node for bulk,

slab, distance optimizations and density of states calculations, and 2 64-core nodes for the

adsorption structures optimizations, the workflow run finished within a few weeks. Typically,

bulk relaxations are completed in less than 2 hours, slab relaxations in 15-25 hours, static

calculations in less than 4 hours each on average, and slab-adsorbate calculations within 48

hours. Density of states calculations and static calculations finished in less than 3 hours on

average.

The use of the surface-adsorbate distance optimization algorithm was instrumental in the

success rate of the adsorption structure geometry optimizations, compared to the alternative

(i.e. using the default 2Å distance between the surface and the adsorbate for all input

structures). For 6 out of the 23 CO adsorption structures and 4 out of the 28 H adsorption

structures that were successfully relaxed to an equilibrium geometry, the energy landscape

generated by the distance optimization step revealed a local maximum between the default

2Å distance and the chosen optimal distance.

On the (110) ZnTe surface, 8 unique sites were found by the site-finding Firetask. The

adsorption energies for both CO and H on these 8 sites are depicted in figure 5. The two

plots reveal weak CO adsorption and unfavorable interactions with H at all adsorption sites.

No site exhibited significant charge transfer to the CO molecule, based on the Bader analysis.

An example of an adsorption site’s charge density differential between the adsorbate-surface

pair and the (110) surface and adsorbate is shown in figure 6. In this example, the bond

between the adsorbate species has been depleted of electron density while the C and the O has

gained electron density outside of the bond. The lack of charge transfer to the CO absorbate

combined with the weak CO-surface binding and unfavorable H-surface interactions on the

(110) surface is commensurate with the previously experimentally observed CO and H being

the predominant CO2 reduction products on ZnTe.41,43

Conclusions

In order to address the lack of high-throughput adsorption methods for semiconductor sur-

faces, we have developed as part of this work an automated adsorption workflow suitable

for such systems. Semiconductor specificity is achieved through rigorous design of input

structures for DFT optimizations, restrictions applied to the DFT calculations, and the com-

putation of descriptors relevant to semiconductors. While this work is primarily motivated

by the need to generate comprehensive adsorption data sets for the purpose of photocat-

alytic materials discovery, the workflow is suitable for any applications involving adsorption
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processes.

We applied the workflow to zinc telluride due to its potential as a CO2RR photoelectrocatalytic

material and presented the results here as a case study. Seven surfaces were identified, with a

total of 44 unique adsorption sites, leading to 88 adsorption structures for the two considered

adsorbates (CO, H). Overall, more than 700 distinct computations spanning bulk, slab, and

adsorption structure DFT relaxation calculations and analysis tasks were completed as part

of the workflow, with 51 adsorption structures successfully undergoing a geometry optimiza-

tion. Computed properties such as equilibrium geometries, cleavage energies, adsorption

energies, charge transfer values were found to be in accordance with or support previously

published experimental data, showing the reliability and robustness of the developed au-

tonomous workflow. While it is beyond the scope of this paper to delve into an analysis of

the generated ZnTe adsorption data in order to assess its CO2RR capabilities, the presented

case study establishes our adsorption workflow as a robust method for a previously over-

looked class of materials, encompassing minimal user supervision, exhaustive surface and

adsorption structure generation, and extensive data analysis.

Supporting Information

Workflow parameters selection, VASP details for the ZnTe calculations, instructions on how

to access and run the workflow
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