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ABSTRACT: Protein kinase family has become the hot spot for drug discovery especially 

in the area of cancer therapy. Many kinase inhibitors targeting the ATP-binding pocket of 

kinase domain have been approved in past decades. Scaffold hopping is a widely used 

strategy for drug design towards kinase inhibitors. Particularly for kinase targets, the high 

conservation of the ATP-binding pocket across all kinases provides abundant opportunities 

for scaffold hopping. In this study, as an extension of previously reported SyntaLinker 

generative model, we developed a fragment-based deep learning workflow, named 

SyntaLinker-Hybrid, for scaffold hopping purpose specifically for replacing the molecular 

segments bound at the conserved kinase hinge region. Through this automated workflow, 

new chemical structures can be generated by hybridizing novel hinge binding fragments 

with motifs of existing kinase inhibitors bound at the sub-pockets of non-hinge regions. 

Our study showed that this strategy could effectively generate novel kinase inhibitors, 

while to a great extent retaining the binding characteristics of existing kinase inhibitors. 

We expect that it could be a useful tool for making ‘me-too’ design especially for those 

heavily patented kinase targets. 

 

Introduction 

Kinase is a large protein family that plays a key role in the regulation of cellular signal 

transduction1. Aberrantly high expression and gene mutations of kinases usually cause the 

disorder of cell signaling pathways, which has been acknowledged to be responsible for 



 

several human pathological conditions, such as cancer and inflammation2-6. Kinase family 

is a highly druggable target family. Up till now, tens of kinase inhibitors have been 

successfully developed as marketed drugs for oncology and inflammation diseases7. 

Majority of approved kinase inhibitors are bound to the ATP-binding pocket of kinase 

domain and as a matter of fact, many kinase inhibitors are actually targeting multiple 

kinases due to the high structural conservation of the ATP-binding pockets among kinases8-

12. Due to its druggable nature, development of kinase inhibitor is a highly competitive area 

and thousands of chemical patents were filed for various kinase targets10. The high 

structural conservation among the kinase ATP-binding pockets also contributes to the fact 

that the structural novelty of hinge binding motif of kinase inhibitor is actually quite limited 

and some known hinge binding scaffolds are very crowded spaces for patenting. Therefore, 

achieving structural novelty is quite crucial in the development of kinase inhibitors due to 

the intensive competition. In this study, our interest is to explore the chemical space of 

kinase inhibitors from deep learning perspective, and provide a new strategy for scaffold 

hopping in the design of novel kinase inhibitors. 

Many reviews have summarized the structural characteristics of kinase inhibitors, which 

showed that the binding of kinase inhibitors are dependent on the interactions occurring at 

several key residues in the ATP-binding pocket10, 13, 14. The highly conserved hinge loop 

linking the N-terminal lobe and C-terminal lobe of the kinase domain seems to be essential 

for the binding of kinase inhibitors. Thus, scaffold hopping at the hinge region as a strategy 

was widely used in the design of novel kinase inhibitors.  

http://www.baidu.com/link?url=-ZPAJ4pKqyjtVXxr3DMS-9E2pD1xtk0NRfQKyTV9b_AQ-e0RCwW3WfJEkZ0m67TCKFyiDhYHv-eyfAT1EMfAkWvg3_YNwFfXxyTC6ElyTLK&wd=&eqid=b91f6ef3000cf22c00000006603457e2


 

In general, scaffold hopping, at a large extent, was achieved by designing bioisosteric 

replacement and this was usually done by medicinal chemist manually15. Some 

computational methods were also proposed to carry out automatic replacement in a large 

scale. 16 For example, a scaffold specific shape descriptor was defined in the CAVEAT 

program to replace the core fragment in active compounds. Ligand-based pharmacophore 

and molecular fingerprints have also been applied for scaffold hopping17, 18. Biological 

fingerprints encoding the biological profiles of compounds were emerging for scaffold 

hopping despite the lack of structural and chemical information19. In addition, various 

machine learning methods, for example self-organizing maps, can visualize the similarity 

distribution of compounds and have been used for scaffold hopping20-22. Fragment centric 

scaffold hopping methods were also proposed previously. Mukherjee et al. extracted the 

smallest fragments forming hydrogen bonds to the hinge residues in each kinase-ligand 

crystal structure and applied these fragments for substructure searching, which successfully 

led to the identification of novel kinase inhibitors23. Fragment linking or growing based on 

known binding fragments is also a way to design novel compounds. Dey et al developed a 

tool named GANDI (Genetic Algorithm-based de Novo Design of Inhibitors), which 

automatically linked the fragments docked at different sub-pockets with high two-

dimensional (2D) or three-dimensional (3D) similarity to known active compounds19. 

Recently, Sydow et al built a KinFragLib fragment library by decomposing known kinase 

inhibitors in the KLIFS database according to their spacial positions in the ATP-binding 

pockets24. More specifically, these compounds were broken down according to the sub-



 

pockets composing the ATP-binding site so that the resulted fragments can be classified 

into groups with sub-pocket ID as class label. Recombination of fragments across sub-

pockets can then generate millions of virtual compounds with high chemical novelty and 

diversity, while their substructures were still originated from known kinase inhibitors. This 

method showed good performance on target specificity via automatic fragment linking.  

Recent years, advances in the development of deep generative models have spawned a 

mass of promising methods to address the structure generation issue in drug design25. The 

deep generative models have been applied in de novo molecular design26-28 and lead 

optimization29-31. Methods for fragment linking based on generative model have also been 

proposed32, 33. We previously proposed a deep learning based method SyntaLinker to 

automatically assembly given fragments without using any predefined chemical rules or 

motifs35. Inspired by Sydow’s work, here we extended the SyntaLinker methodology and 

proposed a workflow, SyntaLinker-Hybrid, to automatically connect two terminal 

fragments designated as the binding motifs of specific ATP sub-pockets with novel hinge 

binding fragments. 

Firstly, a kinase-focused deep generative model was constructed by SyntaLinker 

algorithm using known kinase inhibitor data set; Then, the fragments bound at the non-

hinge sub-pockets extracted from the KinFragLib data set were used as the input terminal 

fragment pairs of SyntaLinker model and subsequently hinge binding linkers were 

generated by the SyntaLinker model to assemble into new molecules. The quality of the 

generated molecules was investigated regarding chemical space and structural similarity to 



 

known inhibitors. In order to further evaluate the capability of SyntaLinker-Hybrid on 

scaffold hopping for hinge binding motif, chemical space of generated linker fragments by 

SyntaLinker-Hybrid was compared to that of the fragments bound at the hinge region in 

KinFragLib. Additionally, the binding features of the linkers were studied by molecular 

docking. The method was finally applied to the scaffold hopping of CDK9 inhibitors. Our 

results showed that the proposed workflow is able to generate novel and diverse kinase 

scaffolds and represents a new strategy for designing kinase inhibitors.



 

 

Materials and Methods  

Data collection and preprocessing 

To collect a kinase data set for training the SyntaLinker model, 429,764 kinase inhibitors 

were retrieved from the ChEMBL database34, which in total consists more than 2 million 

bioactive compounds collected from various sources. They were downloaded as a SDF file 

and for molecules with multiple components, the largest component was retained as 

molecule structure. Then, the compounds with less than 2 rotatable single bonds were 

discarded to ensure successful compound decomposition in the following preparation steps. 

The compounds whose kinase activity (IC50, Ki, Kd) larger than 1 µM were also filtered 

out, which resulted to 101,520 compounds targeting 366 kinases. In addition, duplicate 

structures were removed as multiple activities can exist for the ChEMBL compounds. 

Finally, 50,420 unique compounds were collected and named as the KID data set. As 

described in the previous report33, each compound was then decomposed into three parts, 

i.e. a linker and two terminal fragments, using the MMPs cutting algorithm35, and was 

transformed into a quadruple form like “fragment 1, linker, fragment 2, molecule”, which 

was used as the input form for model construction. 

On the other hand, following Sydow’s protocol, kinase terminal fragments were 

extracted from the KinFragLib fragment library, in which the fragments were generated by 

applying sub-pocket based fragmentation protocol on available kinase crystal structures 

collected in the KLIFS database. The KinFragLib fragmentation method was carried out 



 

as following: the compounds bound with the DFG-in conformations of kinases were split 

into fragments with respect to their 3D proximity to the six predefined sub-pockets in the 

ATP binding site such as adenine pocket (AP), solvent exposed pocket (SE), front pocket 

(FP), gate area (GA), back pocket 1 (B1) and back pocket 2 (B2) (Figure 1A). The 

fragments were classified according to their belonging sub-pocket ID and dummy atoms 

were added to the anchor points of each fragment. Here, only the fragments bound at non-

AP sub-pockets were regarded as terminal fragments, because the AP sub-pocket is located 

at the hinge region which the scaffold hopping operation should focus on. In total, we chose 

1560 fragments bound at the SE sub-pocket, 1024 GA sub-pocket fragments, 98 B1 sub-

pocket fragments and 92 B2 sub-pocket fragments for fragment hybridization (Figure 1B). 

For fragments with multiple anchoring sites, all sites were used for hybridization. The 

hybridization scripts of Sydow’s work was used to make library enumeration and the 

generated structures were named as the K-MOL set.  

 

Figure 1. (A) 3D spatial locations of AP, GA, SE, FP, B1, B2 sub-pockets in the ATP-

binding pocket. The protein structure was shown as gray cartoon, while the local 



 

structures corresponding to the AP, FP, B2 sub-pockets were colored in green, orange 

and purple, respectively. The gate residue was shown as yellow stick. (B) 2D distribution 

of the six sub-pockets labeled by the number of fragments in the KinFragLib library. 

 

In addition, 11 highly active CDK9 inhibitors were chosen as a test case to evaluate the 

effectiveness of the deep learning model on target-specific scaffold hopping36. These 

inhibitors were manually decomposed into a terminal fragment pair and one linker 

fragment according to the sub-pockets defined in the KinFragLib method (Table S1). The 

terminal fragment pairs were used for sampling the SyntaLinker model. 

 

SyntaLinker model 

Recently, we proposed the SyntaLinker algorithm for fragment linking (Figure 2). Here 

we provide a brief introduction on the method. The details should be refer to the original 

literature33. SyntaLinker is a generative model based on the syntactic pattern recognition 

using deep conditional transformer neural network. The implicit rules of linking fragments 

in known molecules were learnt by recognizing the syntax patterns embedded in the 

SMILES notation. Firstly, a large amount of compounds were decomposed into terminal 

fragments and linkers, which were then used to train transformer models to learn fragment 

linking rules. In the process, each molecule was split into a terminal fragment pair and a 

linker fragment and dummy atoms were used to label anchor points. Additionally, the 

shortest 2D connectivity distance between the two anchor points of the linker can also be 



 

used as a constraint for liner generation. Once the SyntaLinker Model was trained, it can 

be sampled to output full compound which comprises the input terminal fragments and a 

linker.  

 

 

Figure 2. Illustration of training and sampling of a SyntaLinker model. An example of 

SMILES transformation from the source sequence to the target sequence with a constraint 

of L_4 was shown at the bottom of the picture.  

SyntaLinker-Hybrid workflow 



 

  

Figure 3. SyntaLinker-Hybrid workflow for generation of kinase inhibitors. 

 

As shown in Figure 3, SyntaLinker-Hybrid is a workflow based on SyntaLinker method 

and its main task is to make automatic fragment hybridization to form multiple terminal 

fragment pairs and sample SyntaLinker model with a pool of terminal fragment pairs to 

generate diverse solutions. Comparing with normal SyntaLinker method, this workflow 

embedded with a fragment hybridization process generating a lot more input fragment pairs, 

thus provide more diverse solutions. In current study, fragment hybridization was carried 

out on a set of the kinase fragments binding at non-AP sub-pockets to create a pool of 

terminal fragment pairs. Based on the positions of the sub-pockets in ATP-binding pocket 

of kinase (as shown in Figure 1), three sub-pocket combinations were considered for linker 

generation: The first one was the combination of the SE and GA sub-pockets, these two 



 

sub-pockets were direct neighbours of the AP sub-pocket and their distance constraint was 

set to 4~5 bond distance (Figure S1A); The other two alternatives referred to the 

combinations of the SE/B1 sub-pockets and the SE/B2 sub-pockets. They were utilized to 

explore the possibility of generating longer linkers that can cover the AP and GA sub-

pockets. The distance constraints were set to 8~10 bond distance (Figure S1B), which is 

roughly equal to the maximal bond length of the fragments spanning both AP and GA sub-

pockets. Exhaustive enumeration was employed for fragment hybridization, which meant 

all possible combination between fragments of the SE sub-pocket and the fragments of GA, 

B1 and B2 sub-pockets were considered. After fragment hybridization was finished, a pool 

of terminal fragment pairs can be generated.  

The same ChEMBL fragment set and training protocol which were employed in our 

previous study33 were again used to train a prior SyntaLinker model. Based on the prior 

model, the KID fragment set was then used to make a transfer learning to ensure the final 

model learning how to generate kinase specific linkers. The KID set was randomly split 

into training, validation and test sets with a ratio of 8:1:1. The first two sets were used for 

training a SyntaLinker model, while the last one was used as an internal test for model 

evaluation. During the transfer learning, the same type of neural network was created by 

initiating its parameters with those of the prior ChEMBL model. A small learning rate of 

0.0001 was used for transfer learning. Meanwhile, the training step was empirically set to 

50000 steps to avoid over-fitting. The rest settings were the same as described in our 



 

previous study. The model checkpoints were saved every 100 steps, and the checkpoint at 

the final step was used as the model for subsequent sampling. 

For model sampling, terminal fragment pairs were used as the sampling input together 

with bond distance constraints, and 10 molecules were generated for each fragment pair. 

Invalid SMILES were always removed from the final list. In addition, the molecules whose 

terminal fragments cannot exactly match the input terminal fragments were also discarded. 

The structures generated from SyntaLinker-Hybrid were named as the S-MOL set. 

 

Model evaluation 

The SyntaLinker model was evaluated in terms of molecular validity, uniqueness, 

novelty and recovery based on the terminal fragments extracted from the compounds in the 

test set37, 38. Their calculation was illustrated as formula 1-4. Specifically, validity refers to 

the percentage of chemically valid molecules among generated molecules. Uniqueness 

refers to the percentage of the unique molecules among valid structures. Novelty, as the 

name implies, refers to the percentage of unique novel molecules in the generated set, i.e. 

the structures which doesn’t exist in the test set. Recovery refers to the percentage of 

generated molecules that can be found in the test set. To be noted, only 2D structure was 

used for above comparison. 

Validity =  
# of chemically valid SMILES with fragments

# of generated SMILES
           (1) 

Uniqueness =  
# of non−duplicate,valid structures

# of valid structures
             (2) 



 

Novelty =  
# of novel structures not in test set

# of unique valid structures
                (3) 

Recovery =  
# of valid strectures in test set

# of test set
                  (4) 



 

 

Coverage of chemical space 

Analysis on chemical space of S-MOL set and K-MOL set was carried out. Here, the 

chemical space was characterized either by structural fingerprints or physico-chemical 

properties. In current study, the MACCS fingerprint39 was used as structural descriptors 

and it is a 166-dimensional binary vector, where each dimension corresponds to a 

predefined seed structure. Principle component analysis (PCA) was done to map a high 

dimension space to a low dimension space constructed by a few orthogonal principle 

components that represent the implicit chemical feature. Besides the structural fingerprints, 

a set of physico-chemical descriptors was also used for the PCA analysis, including 

molecular weight (MW), number of rotatable bond (RTB), number of hydrogen bond 

acceptor (HBA), number of hydrogen bond donor (HBD) and lipid-water distribution 

coefficient (LogP). These descriptors were calculated with the RDKit package40. 

The oetoolkit41 based program Flush41 was used for clustering, it was developed based 

on Taylor clustering algorithm42. The Tanimoto similarity was calculated based on Foyfi 

fingerprints41 and two similarity thresholds (0.5 and 0.7) were used for clustering. 

  

Molecular Docking 

Molecular docking was employed to evaluate the quality of molecules generated by 

SyntaLinker in terms of their binding affinity to a specific target. BRAF kinase was a well-

known anti-cancer drug target. We docked the generated molecules to the BRAF crystal 



 

structure (PDB ID: 6U2V), which adopted the DFG-in conformation. CDK9 kinase was 

chosen as the other example and the crystal structure 3BLR (PDB ID) was selected as the 

protein model for docking. The Glide docking module in the Schrodinger software (version 

2020)43 was employed for docking study. All protein structures were prepared with the 

Protein Preparation Wizard in maestro module and ligands were prepared with the LigPrep 

module, in which all tautomers and isomers were enumerated. Their ionized states at the 

target pH 7.0 were determined using the Epik algorithm. Flexible docking was carried out 

for each compound and the docking precision was set to Glide-SP. For each compound, 10 

docking poses were generated and the best scored pose (based on Glidescore) for each 

ligand was saved for further analysis. Kernel density estimation (KDE)44 module 

implemented in python was used to calculate statistical probability distribution of the 

docking score.  

Results and Discussion 

Kinase model evaluation 

A transfer learning model for kinase inhibitors was constructed by using the SyntaLinker 

algorithm. It was evaluated in terms of validity, uniqueness, novelty and recovery based on 

the KID test set. There are 13,964 compounds in the test set and after fragmentation, in 

total 19,364 terminal fragment pairs were obtained for sampling the model. In the end 

193,640 molecules were generated, and 93.1% molecules were chemically valid. This 

percentage was larger than that of the prior ChEMBL model (Table 1). Moreover, 98.3% 

of valid molecules were unique. As for novelty, 92.4% of unique compounds cannot be 



 

found in the test set. On the other hand, it was found that 26,673 linkers of 694,584 unique 

compounds were novel to the test set, indicating decent structural novelty for generated 

linkers. There were 4221 linkers of 71756 unique compounds appeared in the test set, 

which means 70% of the linkers in the test set were reproduced. In other words, many 

linkers in the test set can be reproduced by the model, if not considering the consistence of 

terminal fragment pairs. In comparison, only 1272 linkers were reproduced by sampling 

the ChEMBL model with the same set of terminal fragments, suggesting that the transfer 

learning kinase model was quite effective on generating kinase specific linkers. This was 

also supported by the fact that around 76.8% of test set molecules were reproduced by the 

transfer learning model, while the percentage was only 27.3% for the ChEMBL model. 

Table 1. Statistics for model evaluation based on test set 

Metrics TLa PRb 

# of compounds in test set 13964 13964 

# of fragment pairs in test set 19364 19364 

# of linkers in test set 6045 6045 

# of sampled molecules 193640 193640 

# of valid molecules 180323 168709 

# of unique molecules 177257 165449 

# of novel molecules 166527 162028 

# of recovered molecules 10730 3821 

Notes: 

a) the transfer learning model based on KID data set 

b) prior model based on ChEMBL database 

 

Molecular Generation Based on the SyntaLinker-Hybrid Workflow 

Sydow et al constructed a kinase virtual library by making exhaustive enumeration on 

sub-pocket specific fragments extracted from KLIFS database. In their work, a set of fixed 



 

molecule enumeration rules needed to be defined and the hinge binding motifs are strictly 

limited to the ones defined in the KLIFS. However, one attractive feature for deep 

generative model is that the fixed enumeration rules are no longer needed for structure 

generation and model can learn assembling rules implicitly. In current study, we proposed 

the SyntaLinker-Hybrid workflow to automatically make terminal fragment pair 

hybridization to sample the kinase focused generative model for structure generation. In 

contrast to Sydow’s work, our methodology had two advantages: Firstly, we don’t need 

the predefined reaction templates for combining fragments into full structure, and it could 

be imagined that some constructed compounds could be unfeasible to synthesis due to the 

rigid rules; Secondly, in our method, the hinge motifs were generated via a kinase focused 

generative model constructed on a much larger kinase compound set, while the hinge 

binding fragments in Sydow’s method can only use a limited fragment set from KLIFS.  

In SyntaLinker-Hybrid workflow, the terminal fragment hybridization was carried out 

using the fragments extracted from KinFragLib fragment library. In total, 2,392,000, 

193,200 and 191,360 fragment pairs were generated for SE/GA, SE/B1 and SE/B2 sub-

pocket combinations, respectively. Sampling the kinase model by these fragment pairs 

generated 7,387,968, 1,114,506, 1,094,998 molecules respectively. After validity check, 

5,077,578, 770,123, 790,762 molecules were remained for these three sub-pocket 

combinations. The percentage of valid molecules was obviously smaller than that obtained 

in model evaluation. This difference was probably attributed to the fact that during 

fragment hybridization, a lot of terminal fragment pairs unseen to the known kinase 



 

inhibitors were generated, while in kinase transfer learning stage a lot of terminal fragment 

pairs actually came from the same molecule and part of their structural information had 

already been included in the training set. After removing duplicates and the molecules 

whose terminal fragments didn’t match to the ones of KinFragLib fragment library, 

eventually, 232,705, 42,117, 37,246 molecules were collected respectively for above 

mentioned three sub-pocket combinations. The hybridization scripts of Sydow’s work was 

used to make library enumeration and 102,733, 255,096, 359,554 molecules were 

generated for above sub-pocket combinations respectively. It can be seen that the transfer 

learning model generated more molecules for the SE/GA sub-pocket combination than the 

KinFragLib method, but much less molecules for the other two combinations. This 

indicated that it was still a challenge for the deep learning model to generate large number 

of molecules with long linkers. This’s probably because the linking rules for those long 

linkers was not learnt by the transfer learning model properly. For simplicity, only the 

molecules corresponding to the SE/GA combination were used for subsequent analysis.  

 

Structural Analysis for Generated Molecules 

The structural fingerprint based PCA analysis on generated sets of kinase model and 

ChEMBL prior model were carried out and their chemical spaces were compared. As 

shown in Figure 4A, the KID set covered only part of the ChEMBL space. This was 

understandable as the KID set was extracted from the ChEMBL database. The chemical 

space of generated set of kinase transfer learning model pretty much covered most of the 



 

chemical space of the whole KID set (Figure 4C), the same trend was observed for that of 

the ChEMBL model (Figure 4D). This means that the chemical space of sampling sets 

from both generative models can more of less mimic that of the whole training sets. This 

demonstrated that the kinase transfer learning model did learn the chemical features of 

general kinase inhibitors. 

 

 



 

Figure 4. Chemical space comparison (A) between the ChEMBL and KID data sets, (B) 

between ChEMBL and the generated set by sampling the ChEMBL prior model, (C) 

between KID and the generated set by sampling the kinase transfer learning model, (D) 

between the two sampled molecule sets. 

  The fingerprint based PCA analysis were also done on the S-MOL and K-MOL sets to 

investigate the corresponding chemical spaces of these two sets. As it was described before, 

the S-MOL set was generated through the kinase generative model in SyntaLinker-Hybrid 

workflow and the K-MOL set was generated via fragment hybridization, and both set used 

the same set of non-AP fragments in KLIFS database. First of all, the chemical space of 

the S-MOL and KID sets were shown in Figure 5A, not surprisingly, the generated set S-

MOL pretty much fully covered the KID set, which means the transfer learning kinase 

model did a good job in learning the chemical features in KID set and the generated 

compounds largely overlapped with that of the known kinase compounds. Regarding to the 

comparison between the K-MOL and KLIFS sets (as shown in Figure 5B), it seems that 

their spatial distribution was somewhat different. The KLIFS set was more or less evenly 

distributed, while the K-MOL set was more enriched on the two side regions and the 

density in the middle region was lower. Figure 5C demonstrated the comparison between 

the K-MOL and S-MOL sets. It can be seen that the S-MOL compounds distributed evenly 

in the space just like the KLIFS set, while the K-MOL set was more enriched in the side 

regions as shown in Figure 5B. It seems that the deep learning method was more effective 

on exploring the whole chemical space of kinase inhibitors than the direct enumeration 



 

method. S-MOL was focused on the linkers with the binding features at the SE, AP and 

GA sub-pockets. Its relatively balanced distribution in the chemical space indicated that a 

majority of kinase inhibitors in the KID set and KLIFS datasets were bound at these three 

sub-pockets. In fact, there were really very few fragments bound at the back pockets for 

kinase inhibitors in the KLIFS data set. Interestingly, K-MOL, which focused on the same 

sub-pocket combination, exhibited significantly biased distribution. The possible reason is 

that the deep learning model was able to bring more chemical diversity than simply 

fragment linking based on available kinase inhibitors.  

 

Figure 5. Chemical space comparison between the data sets of S-MOL (green), K-MOL 

(blue), KID (yellow), KLIFS (read).  

Six physico-chemical features of molecules of S-MOL, K-MOL, KLIFS and KID sets 

were calculated (Figure 6). Overall, the distribution of the six features for S-MOL was 

similar to that for KLIFS and KID sets. A majority of molecules in S-MOL were 

concentrated in the MW range from 300 to 600 that is usually corresponding to drug-like 

molecules. But, the MW distribution of K-MOL, KID and KLIFS was wider than S-MOL. 



 

The S-MOL doesn’t have extremely low or high MW as in K-MOL, KLIFS and KID set. 

As for LogP, that of S-MOL was on average higher than K-MOL, but its mean LogP values 

was still in the range of drug-like compound. Similar results were observed for nTotB, 

TPSA，HBD and HBA descriptors. PCA analysis based on the six physico-chemical 

features showed that the physico-chemical space of KID set was well aligned with that of 

KLIFS (Figure S2). most region of the S-MOL set were aligned well with that of other 

sets, while it still had some compounds stretching out to some unoccupied region. 

 

Figure 6. Boxplot of the features such as molecular weight (MW), LogP, number of 

rotatable bonds (nTotB), TPSA, number of hydrogen bond donors (HBD), and number of 

hydrogen bond acceptors (HBA). 

 



 

We further analyzed the structural diversity of generated inhibitors based on clustering 

results. The molecules in S-MOL and K-MOL were clustered at full compound level as 

well as molecular scaffold level and their clustering results are shown in Figure 7. The S-

MOL set had much more clusters than K-MOL at two different similarity cut-off levels. 

To verify this, we carried out molecular skeleton analysis using Murcko scaffold, which 

produced 137057 and 44092 unique skeletons for S-MOL and K-MOL respectively, the 

clustering analysis results on scaffold were shown in Figure 7.  

 

Figure 7. Histogram for the cluster numbers of S-MOL, K-MOL and their Murcko scaffold 

at two similarity cut-offs (0.5 and 0.7). The cluster numbers were labeled on the bars.  

Structural analysis for linker fragments 

The core idea of the SyntaLinker algorithm was to generate linker fragments by sampling 

a deep learning model with given terminal fragment pairs, while the enumeration method 

is to hybridize the linker fragments of AP sub-pocket with other components to form a 



 

virtual library. It would be interesting to make a structural comparison on the linker 

fragments of the AP sub-pocket between the S-MOL and K-MOL sets.  

In total 43,784 linkers were generated by SyntaLinker-Hybrid workflow, which was 

roughly 7 times more than the linkers of compounds in K-MOL extracted from the AP 

fragments in the KinFragLib library, and there are 342 K-MOL linkers were reproduced 

(Figure 8A). Compared to K-MOL linkers, structural classification of linkers in S-MOL 

resulted to more clusters (Figure 8B), suggesting the higher structural diversity of the 

molecules in S-MOL. The PCA analysis based on fingerprint and physico-chemical 

features were shown in Figure 8C/D. Figure 8C shows that the linkers generated by 

SyntaLinker model not only covered the entire space of the K-MOL linkers but also had a 

large extra space exploited, which corresponds to novel linker structures. The overall 

physico-chemical properties were similar to that of the K-MOL linkers (as shown in Figure 

8D). The detailed analysis among the physico-chemical properties are shown in Figure S3. 

It seems that the MW of SyntaLinker generated linkers were distributed in a larger range 

comparing to the K-MOL linkers. But their LogP and TPSA distribution are rather similar. 

Moreover, over 90% SyntaLinker generated fragments had less than 4 rotatable bonds, 

which was similar to the K-MOL linkers. The number of nitrogen atoms contained in 

linkers were also compared, as this element was often employed as hydrogen bond related 

interaction sites when interacting with the key residues at the hinge region. As a result, the 

distributions of nitrogen atom contained in the two sets were similar, suggesting the 

potential of the SyntaLinker generated linkers mimicking the hinge hydrogen bonds formed 



 

in the available kinase inhibitors. This was also confirmed by the analysis on distribution 

of hydrogen bonds (Figure S4), which demonstrated that the SyntaLinker generated linkers 

had similar distribution to the K-MOL linkers regarding to the number of hydrogen bonds.  

 
 

Figure 8. (A) Venn diagram for overlapping between the S-MOL and K-MOL linker sets. 

The linkers were anchored at the AP sub-pocket of the hinge region. (B) Histogram for the 

cluster numbers of the S-MOL and K-MOL linker sets at two similarity thresholds (0.5 and 

0.7). The cluster numbers were labeled on the bars. (C) Chemical and (D) Physico-

chemical space comparison between the S-MOL and K-MOL linker sets. 



 

Structural similarity was computed between the generated linkers and the K-MOL 

linker fragments. According to the heatmap of similarity, we could see that there was 

always a portion of generated linkers having relatively high similarity to some K-MOL 

linkers (Figure 9A). This indicated that it was possible to find some SyntaLinker 

generated linkers capable of recovering the interactions of kinase inhibitors at the hinge 

region. In other word, scaffold hopping at the hinge region was feasible based on the deep 

learning model built in this study. In the meanwhile, the similarity was centered on the 

value of 0.4 while varying in a range from 0.2 to 0.6 in most cases (Figure 9B), which 

implied that most generated linkers had relatively high structural novelty. Examples of 

the linkers with high and low similarity were shown in Figure 9C. 

 

Figure 9. (A) Heatmap of similarity between the S-MOL and K-MOL linkers. (B) 

Frequency distribution of the similarity in the range from 0 to 1 using 10 equally spaced 

bins. (C) Examples for the fragment pairs with high and low similarity. 

 



 

Case Study on Scaffold Hopping 

In order to validate the effectiveness of the SyntaLinker-Hybrid workflow on scaffold 

hopping, BRAF kinase was selected as the target for the case study and SyntaLinker 

generated molecules in S-MOL were docked into the BRAF ATP-binding pocket. The 

crystal structure 6U2V was used for docking and the best docking pose (the pose selection 

was described in the method section) was reserved for each molecule. Figure 10A shows 

that the distribution of docking score of S-MOL set was left shifted comparing to the K-

MOL and KLIFS sets, which indicated that the S-MOL molecules in general had better 

docking score than the two other sets. This was further evidenced by the distribution of 

docking scores of the top 100 molecule set and top 1000 molecule set in each data set 

(Figure S5A/B). Moreover, randomly selected 2000 compounds from S-MOL also had 

better scores than the non-kinase bioactive compounds randomly selected from the 

ChEMBL database (Figure 10B). Since usually docking score is not necessarily correlated 

with binding potency, we examined the docking poses of S-MOL molecules to check if 

they can interact with the backbone atoms in Cys532 and Gln530 residues at the hinge 

region of BRAF kinase. As a result, 1,386 molecules of the 2,000 selected compounds can 

form at least one interaction with the hinge residues. Of the top 10 best scored molecules, 

six molecules can form two hydrogen bonds, while the other four molecules formed only 

one hydrogen bond. Their molecular structures and docking poses were shown in Figure 

S6. 



 

 

Figure 10. Statistical probability distribution of the docking scores for (A) all molecules 

in K-MOL, S-MOL, KLIFS data sets, and for (B) 2000 randomly selected molecules in K-

MOL, S-MOL and ChEMBL data sets. 

 

De novo design of CDK9 inhibitors 

In order to further evaluate the performance of the trained SyntaLinker kinase model, 

CDK9 was also selected for doing scaffold hopping with the method. 11 known CDK9 

inhibitor structures were selected from ChEMBL and 11 terminal fragment pairs (shown 

in Table S1) were extracted from these CDK9 inhibitors for doing scaffold hopping at the 

hinge motif. The SMILES strings of the terminal fragments were randomized to form 

63,273 pairs to augment the input query for sampling. As a result, in total 5,146 new 

molecules containing the input fragments were generated from the model. Among these 

molecules, 1934 unique linkers were generated and they were all novel linkers to the KID 

set. The linkers were clustered to into 29 clusters according to the scaffolds of the generated 



 

linkers. The results showed that N -heterocycles was most frequent functional group in the 

generated linkers (Table S2).  

Subsequently, the generated molecules were docked to the ATP-binding pocket of CDK9. 

Eventually, 2,457 molecules were able to make hydrogen bond interactions with the 

residue Cys106 that is the key anchor site at the hinge region of CDK9. The docking poses 

of three representative molecules demonstrated that not only the hydrogen bond 

interactions at the hinge region were preserved by the new linkers (Compound 1, 

Compound 2, Compound 3 in Figure 11A/B/C), but also the binding mode of non-AP 

sub-pocket fragments was the same as that of known CDK9 inhibitors. It was interesting 

to see that some known hinge fragments were partially reproduced by the deep learning 

model, although the corresponding terminal fragments was not the same to the original 

inhibitor. One example was SNS-032 (Table S1), whose linker fragment was quite similar 

to the linker of generated Compound 4. In the meanwhile, for Compound 4, the hydrogen 

bond of its hinge motif and the positions of terminal fragments were very similar to the 

known CDK9 inhibitor BAY-114357 (Figure 11D). This examples highlighted that the 

generated molecules from SyntaLinker model are structurally novel and potentially 

interesting compounds for synthesis. Accordingly, the SyntaLinker-Hybrid workflow can 

be a useful tool for scaffold hopping on kinase inhibitors by generating structures with 

considerable structural novelty.  



 

 

Figure 11. Docking poses of four representative compounds. The docking poses of 

Compound 1 (A), Compound 2 (B), Compound 3 (C) and Compound 4 (D) were shown 

as sky-blue sticks, and, correspondingly, the binding poses of CDK9 inhibitor Flavopiridol 

(A), ZK-304709 (B), (R)-Roscovitine (C) and SNS-032 (D) were shown in green sticks. 

The hydrogen bonds at the hinge region were shown as orange dashes. 

 

Conclusions 

In current study, the SyntaLinker-Hybrid workflow was utilized to carry out scaffold 

hopping at the hinge region for kinase inhibitors. A kinase-focused transfer learning model 

was first built using a diverse kinase inhibitor library. Then, large number of terminal 

fragments, extracted from the KinFragLib database, were hybridized to form terminal 

fragment pairs for sampling the kinase transfer learning model. More specifically, two 

fragments were hybridized into a fragment pair only if they were respectively bound at two 

different sub-pockets neighboring the hinge region. Through this workflow, a large number 



 

of kinase specific novel structures can be generated. Among the three selected sub-pocket 

combinations for hybridization, the SE/GA combination resulted to the most number of 

molecules, in which over 80% molecules were chemically valid. Further analysis showed 

that the generated molecules from SyntaLinker-Hybrid workflow occupied the same 

chemical space as known kinase inhibitors and achieved larger diversity comparing with 

the molecules generated from the library enumeration manner (i.e. by systematically 

combining the KinFragLib fragments). To illustrate the effectiveness of the workflow, 

SyntaLinker-Hybrid generated compounds and compounds generated by library 

enumeration were docked to a BRAF kinase structure and SyntaLinker generated 

compounds have better docking scores. A scaffold hopping exercise towards CDK9 

inhibitors was also carried out by using terminal fragment pairs from known CDK9 

inhibitors for sampling the kinase transfer learning model. Our results show that in the 

docking pose, about 70% of generated molecules can form at least one hydrogen bond with 

the key residues at the hinge region. At the same time, the binding conformations of some 

generated structures have high similarity to known CDK9 inhibitors while containing novel 

hinge binding motifs. We expect that this method could also be expanded to do scaffold 

hopping for other target families given enough structural information existed for transfer 

learning.  
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