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Abstract

The use of machine learning methods for the prediction of reaction yield is an emerg-

ing area. We demonstrate the applicability of support vector regression (SVR) for

predicting reaction yields, using combinatorial data. Molecular descriptors used in re-

gression tasks related to chemical reactivity have often been based on time-consuming,

computationally demanding quantum chemical calculations, usually density functional

theory. Structure-based descriptors (molecular fingerprints and molecular graphs) are

quicker and easier to calculate, and are applicable to any molecule. In this study, SVR

models built on structure-based descriptors were compared to models built on quantum

chemical descriptors. The models were evaluated along the dimension of each reaction

component in a set of Buchwald-Hartwig amination reactions. The structure-based

SVR models out-performed the quantum chemical SVR models, along the dimension
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of each reaction component. The applicability of the models was assessed with respect

to similarity to training. Prospective predictions of unseen Buchwald-Hartwig reactions

are presented for synthetic assessment, to validate the generalisability of the models,

with particular interest along the aryl halide dimension.

Introduction

Advances in medicinal chemistry rely on the discovery and synthesis of novel molecules.

Time, cost and efficiency pressures in the pharmaceutical industry are key drivers in ac-

celerating drug design and development. The success of artificial intelligence and machine

learning in other fields, such as image recognition and text processing, has sparked increased

interest in their application to drug discovery.1–3 This attention includes the design and opti-

misation of small molecules. The availability of large reaction datasets and high-performance

computing have been key in the development of computer-aided chemistry,4 for example in:

molecular design,5 retrosynthetic planning tools,6–10 reaction prediction10–12 and the opti-

misation of reaction conditions.13–15

Whilst the prediction of biological activities and molecular properties using quantitative

structure-activity or structure-property relationship (QSAR/QSPR) models has been well-

studied,1,16 reactivity prediction, has been explored much less. This is largely due to a lack

of appropriately curated data, for example, on reaction yield and enantiomeric excess (%ee).

Performing a large number of experimental reactions is expensive, time-consuming, resource-

consuming and requires synthetic chemists. High-throughput chemistry, along with batch

and flow systems, have recently opened up opportunities to generate reaction data for use

in machine learning.17–19

Support vector machines (SVM) are a supervised learning technique that can be applied

to classification and regression problems, whereby the label is either a class/category or

continuous value, respectively.20 For non-linear relationships, SVMs use a kernel function to

map data from an input space to a high-dimensional feature space, where classification or re-
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gression is performed linearly. The kernel function computes the inner product in the feature

space directly, without applying the non-linear transformations at a higher computational

cost. Different types of kernels have been assessed for both classification and regression

problems related to chemo-21 and bioinformatics.22–26 Applications of SVMs in chemistry

include bioactivity prediction, toxicity-related properties and physicochemical property pre-

diction.1,26–29

A dataset consisting of chemical structures or reactions must be converted to a machine

readable format before it is presented to a machine learning algorithm. Molecular descriptors

are based on the structural, physiochemical, electronic, or topological nature of molecules.

Quantum chemical descriptors are common for the prediction of chemical reactivity.19,30–32

They have also been used to build kernel-based QSAR and QSPR models, employing the

Gaussian radial basis function (RBF) kernel.33–35 Site-specific, atomic properties including

NMR shifts, vibrational frequencies, vibrational intensities and partial atomic charges have

been used, along with global descriptors such as HOMO (Highest Occupied Molecular Or-

bital) energies, LUMO (Lowest Unoccupied Molecular Orbital) energies, dipole moment and

polar surface area. Three-dimensional steric descriptors have been included in models of

catalyst selectivity to improve predictions, by capturing important conformational infor-

mation.31,32 Quantum chemical descriptors are typically calculated using density functional

theory (DFT), which can be computationally demanding. Therefore, quantum chemical

descriptors may not always be appropriate for large datasets, particularly if the dataset

contains large molecules. Site-specific descriptors require overlapping, common structural

features within the molecules.19,30,31 Reaction components that consist of a large variety of

molecules with no key shared atoms between them all, require alternative representations

such as structure-based descriptors.

A chemical hashed fingerprint defines the two-dimensional topology of a molecule in the

form of a vector of binary bits. For example, MACCS Keys36 depict the presence or absence

of a set of predefined structural fragments, while other fingerprints consider each atom and
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its local environment. Morgan circular fingerprints37 encode the neighbourhood within a

particular radius of each atom, whereas RDK fingerprints38 encode topological paths up to

a specified path length. Molecular fingerprints are fast and easy to calculate, making them

a popular choice for representing molecules. They are established in machine learning for

virtual screening39 and have emerged in the prediction of reaction conditions.13,14 Sandfort

et al.40 have shown that two-dimensional, structure-based molecular fingerprints can achieve

similar accuracy to quantum chemical descriptors in the prediction of chemical reactivity.

Reactions were represented by a concatenation of multiple fingerprint features (MFFs) and

were used to build random forest models to predict reaction yields and %ee.40 Fingerprints

have also been utilised in kernel-based QSAR/QSPR relationship models, using the Tanimoto

or RBF kernel.27–29

Labelled molecular graphs are another two-dimensional representation that depict the

connectivity of a set of nodes, labelled with atom type, by a set of edges that are labelled by

the bond order. From herein, we refer to labelled molecular graphs as molecular graphs. The

global molecular structure is considered, in contrast to the local environments in fingerprints.

The kernel trick can be applied to molecular graphs to build machine learning models based

on kernel methods, including SVMs.41 Kriege et al..23 give a detailed overview of graph

kernels and provide guidelines to aid researchers in the identification of successful kernels

for different applications. The Weisfeiler-Lehman (WL)42 graph kernel is well-established

in cheminformatics.23 The WL graph kernel has been embedded in a neural network43,44

and applied to the prediction of chemical reactivity.12,44 Molecular graphs have been used in

combination with deep learning to generate graph convolutional network models for reaction

prediction,12 retrosynthetic route design7 and the prediction of reaction conditions.45

The prediction of reaction yields and enantiomeric excess are multidimensional problems

as reaction outcomes depend on multiple reaction parameters, including both categorical and

continuous variables. Small changes in the reaction conditions such as catalyst(s), reagent(s),

solvent(s), as well as temperature and pressure can result in radically different reaction out-
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comes or possibly failed reactions. Even with the chemical intuition and experience of expert

synthetic chemists, chemical reactivity and reaction outcomes can be challenging to antici-

pate. High-throughput experimentation enables the screening of multiple discrete reaction

variables (catalysts, reagents, solvents) on a nanomolar scale.46,47 A matrix of parallel re-

actions is performed on a plate at the desired temperature and pressure, with the same

reaction time. The samples in each well are analysed using liquid/gas chromatography-mass

spectrometry (LCMS/GCMS). There are challenges associated with such high throughput

chemistry. These include the handling of very small volumes of liquid, evaporative solvent

loss due to the use of volatile organics and solubility. The technique has proved useful for the

optimisation of reaction conditions, as well as the discovery of new chemical reactivity in the

pharmaceutical industry and academia.46,47 It is also a lower cost alternative for generating

reaction data with which to build machine learning models.19,32,40,48

An open-source combinatorial dataset, including reaction yields, was reported by Doyle et

al.19 The experiments were performed on three 1536-well high-throughput plates with the use

of the Mosquito robot. The dataset contains a set of Buchwald-Hartwig amination reactions

between 4-methylanaline and 15 aryl halides, under varying reaction conditions (Scheme 1).

The mechanism of the Buchwald-Hartwig cross-coupling reaction is well understood, includ-

ing the role of the catalyst and base.49 This type of palladium catalysed C-N cross-coupling

of amines and aryl halides has attracted particular attention due to its wide application

in the pharmaceutical industry.50–52 The aromatic amine products are important building

blocks for the synthesis of small drug-like molecules.53 However, this key transformation

can be limited if the substrates contain a five-membered ring with a heteroatom-heteroatom

bond. Despite the drug-like characteristics of such heterocycles, for example isoxazoles, they

are not common in approved pharmaceuticals.53 Potentially inhibitory isoxazole additives

were included in the Buchwald-Hartwig reactions to assess the effect of compounds contain-

ing isoxazole heterocycles on the reaction performance. Glorius developed an approach to

identify catalysis inhibiting sub-structures by deliberately adding representative fragments
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to the catalytic mixture.54 This allowed assessment of the sub-structures’ effect on reaction

performance, without the need to synthesise and isolate isoxazole (or other) containing aryl

halides as a prior step to performing the coupling reactions. Doyle et al. performed addi-

tional experiments which supported their hypothesis that electrophilic isoxazole additives

undergo a competitive side reaction.19 The N-O oxidative addition of the electrophilic isox-

azoles to palladium results in a lower yield of the amine products in the Buchwald-Hartwig

reactions.

Scheme 1: Buchwald-Hartwig amination reaction.19

The dataset reported by Doyle et al. was used to build machine learning models to

predict reaction yield.19 The reactions were represented using quantum chemical descriptors

for each reaction component (aryl halide, additive, base and catalyst ligand). Datasets with

combinatorial structure have an intrinsic pattern (i.e. the presence or absence of molecules)

which can lead to large variations in the performance of a model depending on the train-test

split of the data.55 By splitting the data randomly, the reaction components in the test

reactions will also be present in different training reactions. This type of in-sample test,

where descriptors of molecules in the test reactions are already observed in training, can

result in an unreliable representation of model generalisability. Models may fit the pattern

of the data, rather than the relationship between chemically meaningful descriptors and the

observed data. These models would therefore struggle when extrapolating to unseen chemical

entities. One-hot encodings56 can be used as a baseline to validate model performance and

reveal potential patterns within the training data that may be fitted by models built on

chemically meaningful descriptors. This one-hot encoding of a reaction simply denotes the

presence or absence of each molecule in the form of a vector and encapsulates no information
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beyond this. For a random 70-30% train-test split of the Buchwald-Hartwig data, Chuang

and Keiser showed models built on one-hot encodings exhibited near identical performance

to quantum chemical descriptors.56

A more appropriate assessment of model generalisability is to test models with molecules

that are not present in the training set, an out-of-sample test.55 A set of reactions containing

specific molecules (one or more reaction components) are withheld from model training and

used to assess the predictive ability of the trained model. It is important to ensure models

are trained on reactions that cover a broad range of chemical space and observed variables.

Doyle et al.19 designed out-of-sample test sets by splitting the reactions along the high-

throughput plates, where each plate contained a different set of additives. The random

forest model built on quantum chemical descriptors was trained using the reactions on plate

1 and 2, then tested using plate 3. Chuang and Keiser identified that alternative splits of

the plates resulted in a much lower performance, suggesting the random forest model built

on quantum chemical descriptors was limited.56 Splitting the data along plate lines was also

not a reliable way to assess model generalisability as each plate did not cover an even spread

of chemical reactivity (Figure S5). Out-of-sample test sets were therefore redesigned using

activity ranking, along the additive dimension.57 The mean yield of the reactions containing

each additive were ranked from lowest to highest. The highest and lowest yielding additives

were included in all training sets. Test sets were constructed from the remaining additives

by taking every fourth molecule. This was repeated three more times to create a total of

four test sets. Designing test sets using activity ranking ensured the model was trained on a

range of reaction yields (Figure S6).57 The quantum chemical random forest model showed

good generalisability across the additive dimension, with a mean coefficient of determination

(R2) of 0.69 and root-mean-squared-error (RMSE) of 14.9% in the additive ranked test.

Doyle et al. did not perform out-of-sample tests using activity ranking along the aryl halide

dimension.

Support vector regression (SVR) models have been successful in the prediction of numer-
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ical values20 related to QSAR and chemoinformatics.58 Although Doyle et al. reported that

the random forest method outperformed SVR in an initial in-sample test,19,57 we investigate

the application of kernel methods further in the prediction of reaction yields, with more rig-

orous testing. In this study, SVR models are built on quantum chemical descriptors and two

types of structure-based descriptors: molecular graphs and molecular fingerprints. Structure-

based descriptors are applicable to a wider range of molecules and are less computationally

demanding than quantum chemical descriptors. Therefore, the extent of generalisability of

the molecular descriptors, without compromising on performance, is investigated by evalu-

ating model performance along the dimension of each reaction component. To ensure the

reported generalisability of the models is reliable, test sets are designed using activity ranking

and the applicability of the models was assessed. A set of prospective reactions are outlined

for model validation and predictions of reaction yields are reported prior to experimentation.

Methodology

Dataset

The data used in this study were 4608 single-step reactions reported by Doyle et al.19 This

open access dataset contains the reactants, products, reaction conditions and yields of a

single reaction class, the Buchwald-Hartwig amination reaction (Scheme 1). The reactions

varied in 23 isoxazole additives, 15 aryl/heteroaryl halides, three bases and four Buchwald

ligands (Figure S1, S2 and S3). The data was generated using ultra-high-throughput exper-

imentation in three 1536-well plates, giving a full matrix of reaction components including

controls. Once the control reactions and reactions containing additive seven were removed,

a total of 3955 reactions remained. Additive seven was removed as quantum chemical de-

scriptors could not be calculated;19 see the Supporting Information for details. The names

of the aryl halide, additive, base and ligand in each reaction were converted to SMILES

(Simplified Molecular Input Line Entry Specification) strings.59 This was completed using
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the NCI/CADD Chemical Identifier Resolver API60 with the exception of a few unrecognised

names, which were drawn and converted to SMILES strings in ChemDraw.

A set of prospective combinatorial reactions was compiled to validate the SVR models.

The proposed reactions will be performed experimentally using high-throughput chemistry

to identify reaction yields. All possible combinations of 59 aryl halides, three bases, four

catalyst ligands and two additives, formed a total of 1416 proposed reactions. Five of the

aryl halides are present in the Doyle et al.19 dataset and will be used as standards. The

remaining aryl halides cover ortho, meta and para substituents, with a range of electron

withdrawing and electron donating groups (Figure S4). The base, DBU, and catalyst ligand,

BrettPhos, were selected along with the two higher yielding bases and ligands from the Doyle

et al. dataset: MTBD, BTMG, t-BuXPhos and t-BuBrettPhos (Figure S3). The prospective

reactions will also be performed without a catalyst to investigate whether the reactions of the

ortho-substituted halopyridines are proceeding via an alternative reaction pathway. As the

aim of these reactions is to assess model generalisability, particularly along the aryl halide

dimension, the reactions will be carried out, with and without, a single isoxazole additive:

3-methylisoxazole (Figure S1).

Molecular Descriptors and Preprocessing

One-hot Encodings. One-hot encodings of chemical reactions are binary vectors that

denote the presence or absence (1 or 0) of each molecule in the training reactions as shown in

Table 1, where An, Hn, Bn and Ln are the number of additives, aryl halides, bases and ligands

present in the training reactions. The reactions are represented without using chemically

meaningful information and by construction are not able to generalise to unseen chemical

entities. Building machine learning models on one-hot encodings can reveal underlying

patterns in combinatorial datasets and should be used as a validation method.
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Table 1: Format and Notation of the Quantum Chemical Descriptors, Fingerprints, Tani-
moto Kernel Descriptors, WL Kernel Descriptors and One-hot Encodings for a Single Reac-
tion

Descriptor Additive Aryl Halide Base Ligand

One-hot Encodings A1 · · · An H1 · · · Hn B1 · · · Bn L1 · · · Ln

[ 1 · · · 0 1 · · · 0 1 · · · 0 1 · · · 0 ]
Quantum Chemical [ DA

1 · · · DA
19 DH

1 · · · DH
27 DB

1 · · · DB
10 DL

1 · · · DL
64 ]

Fingerprints [ · · · 0 1 · · · · · · 0 1 · · · · · · 0 1 · · · · · · 0 1 · · · ]
Tanimoto Kernel [ kTA ] [ kTH ] [ kTB ] [ kTL ]
WL Kernel [ kWLA

] [ kWLH
] [ kWLB

] [ kWLL
]

Quantum Chemical Descriptors. A combination of calculated molecular, atomic and

vibrational properties for the additive (DA), aryl halide (DH), base (DB) and ligand (DL)

formed a set of quantum chemical descriptors for each reaction (Table 1). The quantum

chemical descriptors for the Doyle et al. dataset were calculated by Doyle et al.19 The

molecular descriptors included molecular volume, surface area, ovality, molecular weight,

EHOMO, ELUMO, electronegativity, hardness and dipole moment. The atomic descriptors,

NMR shifts and electrostatic charge, were calculated for shared atoms in each reaction

component. The common molecular vibrational modes across the set of molecules for each

reagent class were identified. The vibrational frequencies and infrared transition intensities

were calculated for the common modes. The Spartan ’14 interface for the Q-Chem quantum

chemical software package61,62 was used to calculate 120 descriptors per reaction (19, 27,

10 and 64 descriptors for the additive, aryl halide, base and ligand, respectively) using the

density functional B3LYP with the 6-31G(d) basis set.63,64 The same method was used to

calculate the quantum chemical descriptors for the prospective reactions; computational

details can be found in the Supporting Information. The descriptors were standardised by

centring the data to have zero mean and scaling to unit variance. The mean and standard

deviation were calculated on the training set and used to standardise both the training and

test sets.
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(a)

(b)

Figure 1: Schematics of how (a) RDK fingerprints and (b) Morgan fingerprints are calculated,
using the chlorine atom in 1-chloro-4-ethylbenzene as an example. These processes would
be repeated for each atom in the molecule.
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Fingerprints and Tanimoto Kernel Descriptors. The topology of molecules can be

represented by molecular fingerprints. Three types were implemented using the RDKit pack-

age: MACCS Keys,36 RDK fingerprints38 and Morgan circular fingerprints.37 Fingerprints

are hashes (i.e. binary bit vectors) of a specified length, set to 512-bit for this study (see

the Supporting Information for further discussion), except the MACCS fingerprint which is

167-bit by definition. The bits within a MACCS fingerprint define the presence or absence

of predefined substructures/fragments, called MACCS Keys. A total of 166 public MACCS

Keys define the substructures/fragments as SMARTS strings. Note: There are 167 bits due

to zero indexing in python, to allow for the original numbering of the MACCS keys (1-166),

i.e. every fingerprint begins with a zero. RDK topological fingerprints and Morgan circular

fingerprints are topological descriptors that define the connectivity of molecules. For the

RDK fingerprints, fragments are generated by topological paths starting from each atom up

to a predefined path length (number of bonds); the default seven was used (Figure 1a). The

bond order and neighbour counts of each fragment are used with a hash function to set the

bits in the molecular fingerprint. Morgan circular fingerprints, also called Extended Connec-

tivity Fingerprints (ECFPs), initially set an identifier for each atom based on the number of

adjacent non-hydrogen atoms, number of bonds to ”heavy” atoms, atomic number, atomic

mass, number of bonds to hydrogen atoms and whether the atom is in a ring. Feature

Morgan fingerprints are a variant, also known as the Functional-Class fingerprints (FCFPs),

that differ in the assignment of the atom identifier by assigning a code for the atom’s role

instead, e.g. hydrogen-bond acceptor and donor, aromatic, halogen, basic or acidic. In both

types of Morgan fingerprints, each identifier is iteratively updated to include the identifier

and bond order of neighbouring atoms (Figure 1b) up to a specified radius. Each iteration

includes a larger circular environment around the atoms. Once the iterations are complete,

the identifiers are folded into the length of the bit vector using a hashing function. For

the purpose of this study, Morgan fingerprints with a radius of one was investigated. Fea-

ture Morgan fingerprints and radii greater than one were omitted from the study, see the
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Supporting Information for additional details.

The fingerprint of the aryl halide, additive, base and ligand in each reaction was cal-

culated. The fingerprints of the reaction components were used to generate fingerprint

descriptors, by concatenating to form a single reaction fingerprint (Table 1), and Tanimoto

kernel descriptors. Tanimoto similarity scores were calculated between the fingerprints of

molecules within the same reaction class, as implemented in RDKit. For two molecules in

a single reaction class represented by molecular fingerprints (Fm1 and Fm2), the Tanimoto

similarity65,66 is defined as

kT (Fm1 , Fm2) =
c

a+ b− c
(1)

where a and b are the number of bits set in fingerprints Fm1 and Fm2 , and c is the number

of bits set in common in Fm1 and Fm2 . Although small changes in the structure of small

molecules can lead to large changes in the Tanimoto similarity, it is a very well-established

measure and thus appropriate for us to consider. To calculate the Tanimoto kernel between

two reactions (Rx, Rx′), the Hadamard product of the reaction component kernels was taken.

This is shown in Eq. 2, where Ai, Hi, Bi, Li are the additive, aryl halide, base and ligand

in reaction i.

k(Rx, Rx′) = k (Ax, Ax′) k (Hx, Hx′) k (Bx, Bx′) k (Lx, Lx′) (2)

The training kernel is a symmetrical matrix generated using this method between all pairs

of training reactions. The test kernel matrix is generated by calculating the Tanimoto kernel

between the test reactions and training reactions. For a single reaction (Rx) in the training

or test set, the Tanimoto kernel (Table 1) is in the format

KRx = kAxkHxkLxkBx (3)

where the Tanimoto kernel of each reaction component is

kTMx
= [k(Mx,M1) · · · k(Mx,Mn)]
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M is the reaction component class and n is the number of training reactions.

Molecular Graphs and WL Kernel Descriptors. A molecular graph represents the

topology of a molecule by a set of labelled nodes corresponding to the atoms, connected by a

set of labelled edges corresponding to the bonds. From the SMILES string of each molecule

in the dataset, the atomic symbol, the index of each atom, the bond order, the index of each

bond and the adjacency matrix were obtained using RDKit.38 This information was parsed to

a module within GraKel to generate molecular graph representations.67 Weisfeiler-Lehman

subtree (WL) graph kernels42 were calculated for each reaction component using GraKel.

The number of iterations, hyperparameter h (also referred to as the WL depth), was set

to five (see the Supporting Information for further discussion). The Hadamard product of

reaction component kernels was calculated to give the WL reaction kernel as shown in Eq.

2. The training and test kernel matrices were also generated using the same method as the

Tanimoto kernel descriptors. For a single reaction, Rx, the format of the WL kernel (Table

1) is shown in Eq. 3.

Encoding missing molecules The descriptors must account for the missing molecules

included in the proposed reactions. For the quantum chemical descriptors, concatenated

molecular fingerprints and one-hot encodings, the bits corresponding to the missing molecules

were set to zero. For the kernel-based descriptors, the missing molecules were incorporated

in the calculation of the kernel of each reaction component. For example, the kernel between

two molecules (m1 and m2) represented by molecular graphs is defined below.

k′ (m1,m2) =


k (m1,m2) + 1, if m1 and m2 are both present

2, if m1 and m2 are both missing

1, otherwise
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If both molecules are present the kernel of the two molecules is the original kernel plus one,

if both molecules are missing the kernel equals two, otherwise the kernel is equal to one.

This method is only applied when the training or test data includes missing molecules.

Support Vector Regression Models

Machine learning models relating descriptors to reaction yield were developed using the SVR

method as implemented in scikit-learn.68 In ε-SVR, the aim is to find a function that deviates

from the observed variables by a maximum of ε for each training point. The following values

were considered for the ε hyperparameter: 1, 5 and 10. To prevent overfitting of the training

data, slack variables (ξ) are introduced to allow for errors larger than ε. Only the points

xi that fall outside of the ε-insensitive tube contribute to the objective function, with their

contribution being equal to ξi or ξ∗i .
20 Eq. 4 describes the optimisation problem that is

solved during the training of the SVR algorithm.

min
w,ξ,ξ∗

1

2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i )

subject to yi −wTxi ≤ ε + ξi

wTxi − yi ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0

(4)

The hyperparameter, C, can be tuned to determine the toleration of points outside of ε.

As C increases, the tolerance increases. The following values were considered for C: 1, 10,

100 and 1000.

SVR uses a kernel function to map input data to a higher-dimensional feature space

where regression is performed linearly. The kernel functions (Table 2) explored were: linear,

polynomial, Gaussian radial basis function (RBF) and sigmoid. The sigmoid equation is

not a valid kernel but has been successfully applied, see Schölkopf69 for further details.
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The equations of these kernel functions between two data points (x and x′) represented by

molecular descriptors are shown in Table 2. All four kernels were applied to the quantum

chemical, concatenated molecular fingerprint and one-hot encoding feature vectors, with

the hyperparameters set to the values in Table S3, using scikit-learn. Although Kriege et

al.23 suggest there is little benefit in the combination of the WL kernel with non-linear

kernels, we explored the WL kernel in combination with linear and non-linear kernels for

completeness. Both kernel-based descriptors were used as a precomputed kernel as well

as with the polynomial, RBF and sigmoid kernels applied to the individual entries of the

kernel descriptor matrix. The hyperparameters of the kernels were tuned over the values in

Table S3.

Table 2: Kernel Equations on two data points x and x′

Kernel Name Equation, k(x, x′)

Linear xTy

Polynomial
(
γpx

Tx′ + cp
)d

RBF exp
(
−γr || x− x′ ||2

)
Sigmoid tanh

(
γsx

Tx′ + cs
)

Model Building and Evaluation

The hyperparameters of the SVR models (ε and C) were optimised in scikit-learn by per-

forming an exhaustive grid-search over the specified parameter grid (Table S2 and S3) on

the training set, using five-fold cross-validation. For each train-test split of the data, the

training set was shuffled and split into five groups. In turn, each of the five groups was used

to test a model trained on the remaining four groups. The average performance statistics

were calculated and compared to identify the best combination of hyperparameters. This

grid search cross-validated and training performances are reported for each model in the

out-of-sample tests and the prospective SVR models in the Supporting Information. The

best combination of hyperparameters was used to build the SVR model on the training set

for the particular train-test split and are reported for the prospective SVR models in the
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Supporting Information.

Five-fold cross-validation was performed on the Doyle et al. dataset to identify the

optimal values for the bit length of the molecular fingerprints and the WL depth of the WL

graph kernel. Out-of-sample test sets were designed to assess model generalisability to unseen

molecules along each reaction component (additive, aryl halide, base and ligand). The models

were tested on a specific set of molecules that were withheld from model training. Activity

ranking was used to generate the additive and aryl halide test sets, to ensure the models

were trained on a range of reaction yields.57 The mean yields of the reactions containing each

additive and aryl halide were ranked from lowest to highest. The highest and lowest yielding

additives and aryl halides were included in all training sets for the additive and aryl halide

tests, respectively. Test sets were constructed using every nth molecule where n = 4 for the

additives (Table S34) and n = 3 for the aryl halides (Table S35). Due to the small number

of bases (three) and ligands (four) in the dataset, two leave-one-out test were performed.

In the first leave-one-out test, the dataset was split into three test sets based on the base

used in the reactions, herein called the leave-one-base-out. For the second test, the dataset

was split into four test sets based on the ligand used in the reactions, herein called leave-

one-ligand-out. In turn, each test set was withheld from model training. The performances

of the regression models were evaluated by the coefficient of determination (R2) and RMSE

for data points outside of the training set. The coefficient of determination can be negative

if the mean of the data is a better fit to the observed values than the predicted values, i.e.

SSres > SStot, see Eq. 5.

R2 (y, ŷ) = 1−
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − ȳ)2

= 1− SSres
SStot

(5)

where ȳ = 1
n

∑n
i=1 yi; ŷi is the predicted value of the i-th sample; yi is the corresponding

observed (experimental) value; and n is the total number of samples. The residual sum of

squares, SSres is the discrepancy between the observed and predicted values. The total sum
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of squares, SStot is proportional to the variance of the data. All analysis was performed using

scikit-learn. SVR models built on one-hot encodings were used as a baseline, for comparison.

Results and Discussion

Diversity of the Train-Test Splits

The reactions in the Doyle et al.19 dataset cover a range of yields (Figure 2), with the

majority low yielding (0 to 10%) and few high yielding (90 to 100%). It is important in an

assessment of model performance, to split the data into training and test sets that ensure an

even spread of chemical reactivity is included in each. Chuang and Keiser have shown that

splitting this dataset by high-throughput plate (where all inhibitory additives were present

on a single plate) leads to an inaccurate estimation of performance due to an uneven cover

of reaction yields (Figure S5a).56 A similar conclusion is expected when assessing the models

along the aryl halide dimension, if split based on halide or ring type (Figure S5). Splitting

data using activity ranking ensures models are trained and tested on similar distributions of

reaction yields (Figure S6). Details of the activity ranking test sets, including the calculated

mean reaction yields are presented in the Supporting Information.

Figure 2: Distribution of experimental yields, excluding control reactions and reactions
containing 5-phenyl-1,2,4-oxadiazole (additive 7), corresponding to 3955 data points.
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It is important to assess whether the reactions in the test set are within the domain of

applicability. The similarity of test reactions to the training reactions was evaluated using

the maximum product of pairwise Tanimoto scores, calculated using the Morgan2 fingerprint,

of the reaction components. The maximum similarity to training reactions for the additive

and aryl halide ranked tests range from 0.30 to 0.65 and from 0.30 to 0.55, respectively

(Figure 3). The models are expected to predict instances with low maximum similarity

scores less accurately than those with high maximum similarity scores.

Figure 3: Distributions of maximum similarity to training reactions for the additive ranked
test sets (dark blue bars) and aryl halide ranked test sets (pale pink bars). Maximum
similarity to training was calculated using the maximum product of pairwise Tanimoto scores
(with the Morgan2 fingerprint) of the reaction components.

Prediction of Reaction Yield

An initial five-fold cross-validated test was performed to optimise the bit length of the

molecular fingerprints and the WL depth of the WL graph kernel. The cross-validated

performance of the SVR models is presented and discussed in the Supporting Information.

The overall best fingerprint length was 512 (Table S4 to S9, Figure S10 and S11) and the best

WL depth was five (Table S10 to S12, Figure S13). To evaluate the generalisability of the

models, out-of-sample tests were designed without activity ranking and with activity ranking.

The performance of the yield prediction models built on quantum chemical descriptors,
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fingerprints, Tanimoto kernel descriptors and WL kernel descriptors for the tests without

activity ranking and with activity ranking are shown in Table 3 and 4, respectively. The

performance metrics are reported as the average over the test sets for the specified split

of the data. The grid search cross-validated (on the training set), training set and test

set performances of the models for the individual test sets can be found in the Supporting

Information. The performance of the SVR models built on one-hot encodings are reported to

assess whether the models were fitting any underlying combinatorial structure in the training

reactions.

Without Activity Ranking

The following tests did not take into account the distribution of reaction yields in the training

and test sets: additive plate split, aryl halide ring type and halide splits. The lower average

performances of these tests (Table 3) in comparison to the activity ranked splits (Table 4)

underscore the importance of test set design.56,57 These splits of the data give a low, mis-

representative estimate of model performance, due to the uneven distribution of reaction

yield across the test sets (Figure S5). The average model performances for the leave-one-

base-one and leave-one-ligand-out tests were modest (Table 3). The SVR model built on

the MACCS finerprints with the polynomial kernel (R2 = 0.57) and the WL kernel with

the Sigmoid kernel applied (R2 = 0.56) were the only models to outperform the one-hot

encodings model (R2 = 0.53) in the leave-one-base-out test. For the leave-one-ligand-out

test, all models have a negative R2 for the XPhos test set due to the uneven representation

of yields in the training and test set (Figure S5e), which resulted in overprediction of the

reaction yields. The quantum chemical model has a poor performance across all ligand test

sets (Table S33). The SVR model built on the Tanimoto kernel with the polynomial kernel

applied outperformed (R2 = 0.48) the other models (R2 ≤ 0.32) in the leave-one-ligand-out

test.
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Table 3: Mean Performance Statisticsa for the Top Reaction Yield Prediction Models Built
Using the SVR Algorithm Without Activity Ranking

Split Descriptor Kernel R2 RMSE (%)

Additive: Plate One-hot Encodings Polynomial 0.47 (0.28) 18.8 (3.9)
Quantum Chemical Sigmoid 0.24 (0.15) 23.1 (3.2)
Fingerprints: Morgan1 RBF 0.51 (0.35) 17.6 (5.3)
Tanimoto: Morgan1 Polynomial 0.53 (0.30) 17.4 (4.6)
WL Precomputed 0.50 (0.32) 17.9 (4.5)

Aryl Halide: Ring Type One-hot Encodings Polynomial -0.21 (0.29) 28.6 (1.7)
Quantum Chemical RBF -0.68 (0.82) 34.4 (14.5)
Fingerprints: MACCS RBF 0.34 (0.17) 21.6 (6.7)
Tanimoto: MACCS Precomputed 0.21 (0.22) 23.5 (7.5)
WL Precomputed -0.04 (0.22) 26.4 (1.9)

Aryl Halide: Halide Type One-hot Encodings Polynomial -0.47 (1.11) 26.9 (7.7)
Quantum Chemical RBF -0.95 (0.92) 32.3 (6.8)
Fingerprints: MACCS RBF -0.29 (1.15) 24.5 (9.3)
Tanimoto: MACCS Polynomial -0.20 (1.01) 23.9 (8.5)
WL Precomputed -0.27 (1.08) 24.3 (9.3)

Leave-One-Base-Out One-hot Encodings RBF 0.53 (0.25) 17.7 (4.9)
Quantum Chemical Sigmoid -0.19 (0.28) 28.8 (4.9)
Fingerprints: MACCS Polynomial 0.57 (0.17) 17.0 (3.3)
Tanimoto: MACCS Precomputed 0.45 (0.24) 19.7 (6.6)
WL Sigmoid 0.56 (0.20) 17.3 (5.3)

Leave-One-Ligand-Out One-hot Encodings Polynomial 0.32 (0.54) 18.9 (2.1)
Quantum Chemical RBF -0.13 (0.23) 27.1 (6.2)
Fingerprint: Morgan1 RBF 0.30 (0.90) 16.6 (6.4)
Tanimoto: MACCS Polynomial 0.48 (0.62) 14.3 (7.1)
WL RBF 0.42 (0.77) 14.9 (6.0)

a R2 and RMSE statistics are reported in the format “mean (standard deviation)” for the
specified test sets. Performance statistics for the individual test sets can be found in Table S19,

S23, S27, S30, S33.

With Activity Ranking

The performance of the yield prediction models built on quantum chemical descriptors,

fingerprints, Tanimoto kernel descriptors and WL kernel descriptors for the additive and

aryl halide ranked tests are shown in Table 4, Figure 4. The random forest model built

on quantum chemical descriptors from Doyle et al.57 was included for comparison. The

performance of the SVR and random forest models built on one-hot encodings are reported

to assess whether the models were fitting any underlying combinatorial structure in the

training reactions.
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A few trends in the performance of the algorithms, kernels and descriptors were present in

both the additive and aryl halide ranked tests. The SVR models built on one-hot encodings

had a better predictive performance than the random forest models built on the same one-

hot encodings. Random forest and methods based on decision trees may not handle well

the sparsity that one-hot encoding introduces into the dataset. This therefore sets a higher

baseline for the SVR models (additive split: R2 < 0.68, RMSE > 15.4%; aryl halide split:

R2 < 0.35, RMSE > 20.9%) than random forest, for model comparison. The one-hot

encoding models in the aryl halide ranked test have a much lower performance than in the

additive ranked test. This could be due to the aryl halide present in the reaction, generally

having a larger effect on the reaction yield than the additive (Figure S14), base or ligand

(Figure S5) present. There are only four additives that are considered reaction poisons

(additives 1, 4, 7 and 13) and hence have a large effect on the reaction yield. One-hot

encoding models tend to fit the intrinsic pattern in the combinatorial training data (i.e.

the presence/absence of each molecule). In the additive ranked test, the models learn the

reactivity of the aryl halides, bases and ligands in training and are able to predict the yield

of reactions in the test set to a relatively high level. However, in the aryl halide ranked

test, the models struggle to extrapolate to unseen aryl halides as they have a larger effect

on the reaction yield than the additives, bases and ligands that were fitted in training. This

is supported by the following observation. In the aryl halide ranked test, the predicted

yields (made by the one-hot encoding model) of the reactions containing the four inhibitory

additives, that have a clear effect on lowering the reaction yield, are closer to experimental

values than most of the other additives. If the molecules in the test set have a clear effect on

the reaction yield and are also observed in training, the model can learn the reactivity of these

molecules and appear to extrapolate well. The quantum chemical descriptors do not have a

linear relationship to reaction yield, as the linear SVR model predictions show no statistical

correlation. Non-linear kernels (polynomial, RBF and sigmoid) were considered, to transform

the input data into higher dimensional feature space where regression could be performed
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linearly. For the one-hot, quantum chemical and concatenated fingerprint descriptors, the

performance of the SVR models implementing the polynomial and RBF kernels are generally

better than the linear and sigmoid kernels. The application of non-linear kernels to the WL

and Tanimoto kernel descriptors did not substantially improve the performance of the SVR

models and therefore are not considered nor discussed further. The SVR algorithm performs

better with the structure-based descriptors compared to the quantum chemical descriptors.

It is encouraging that the Morgan fingerprints capture enough chemical information that

they out-perform the quantum chemical descriptors which were adopted by Doyle et al.19

Figure 4: Predictive accuracy (coefficient of determination) comparison of the SVR models
built on one-hot encoding, quantum chemical, fingerprint, Tanimoto kernel and WL kernel
descriptors with a range of kernels, in the activity ranked tests. Marker size is proportional
to R2. Numeric values can be found in Table 4.

The best descriptor-kernel combinations for the additive ranked split were One-hot-

Polynomial, Quantum-RBF, Fingerprints: Morgan1-Polynomial, Tanimoto: Morgan1-Precomputed

and WL-Precomputed, with R2 in the range 0.47 to 0.73 and RMSE 19.6% to 13.8% (Ta-

ble 4). The top two highest performing models, built on fingerprints and Tanimoto kernel

descriptors have an R2 of 0.70 and 0.73 and RMSE of 14.7% and 13.8%. These two models
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Table 4: Mean Performance Statisticsb for the Reaction Yield Prediction Models Built Using
the SVR Algorithm and Baseline Random Forest Models in the Activity Ranked Tests

Descriptor SVR Kernel
Additive Ranked Test Aryl Halide Ranked Test

R2 RMSE (%) R2 RMSE (%)

One-hot Linear 0.59 (0.05) 17.4 (1.5) 0.31 (0.05) 21.6 (0.5)
Polynomial 0.68 (0.05) 15.4 (1.5) 0.35 (0.04) 20.9 (0.5)
RBF 0.66 (0.06) 15.9 (1.8) 0.34 (0.09) 21.0 (0.9)
Sigmoid 0.49 (0.03) 19.4 (1.0) 0.24 (0.03) 22.6 (0.4)

Quantum Linear -0.56 (1.23) 32.2 (12.7) -505.21 (875.86) 336.4 (549.2)
Chemical Polynomial 0.18 (0.39) 24.0 (6.1) -4.34 (7.85) 47.3 (41.0)

RBF 0.47 (0.16) 19.6 (3.4) 0.41 (0.14) 19.9 (2.6)
Sigmoid 0.37 (0.03) 21.7 (0.9) 0.04 (0.26) 25.2 (2.3)

Fingerprints: Linear 0.29 (0.18) 22.8 (2.4) 0.52 (0.01) 18.1 (0.8)
MACCS Polynomial 0.47 (0.18) 19.6 (3.2) 0.55 (0.17) 17.2 (3.7)

RBF 0.48 (0.15) 19.4 (2.7) 0.56 (0.16) 17.1 (3.5)
Sigmoid 0.24 (0.06) 23.7 (1.1) 0.21 (0.08) 23.0 (0.9)

Fingerprints: Linear 0.50 (0.13) 19.2 (2.7) 0.55 (0.05) 17.5 (1.5)
Morgan1 Polynomial 0.70 (0.13) 14.7 (3.3) 0.69 (0.05) 14.6 (1.7)

RBF 0.69 (0.14) 14.9 (3.6) 0.68 (0.05) 14.6 (1.6)
Sigmoid 0.43 (0.06) 20.6 (1.3) 0.39 (0.07) 20.4 (1.4)

Fingerprints: Linear 0.56 (0.06) 18.0 (1.3) 0.54 (0.05) 17.7 (1.3)
RDK Polynomial 0.62 (0.09) 16.6 (1.8) 0.64 (0.11) 15.4 (2.4)

RBF 0.63 (0.07) 16.5 (1.6) 0.65 (0.11) 15.4 (2.5)
Sigmoid 0.20 (0.10) 24.3 (2.1) 0.09 (0.06) 24.9 (1.6)

Tanimoto: Polynomial 0.56 (0.17) 17.8 (3.4) 0.58 (0.05) 16.8 (1.2)
MACCS RBF 0.58 (0.16) 17.5 (3.4) 0.58 (0.04) 16.9 (0.7)

Sigmoid 0.56 (0.11) 18.0 (2.4) 0.54 (0.10) 17.6 (1.9)
Precomputed 0.54 (0.17) 18.3 (3.3) 0.57 (0.13) 16.9 (2.9)

Tanimoto: Polynomial 0.74 (0.11) 13.8 (3.1) 0.62 (0.06) 16.0 (1.1)
Morgan1 RBF 0.73 (0.10) 13.9 (2.9) 0.59 (0.06) 16.5 (1.1)

Sigmoid 0.70 (0.13) 14.6 (3.5) 0.66 (0.06) 15.1 (1.5)
Precomputed 0.73 (0.13) 13.8 (3.5) 0.67 (0.06) 15.0 (1.4)

Tanimoto: Polynomial 0.64 (0.05) 16.4 (1.3) 0.50 (0.13) 18.2 (2.3)
RDK RBF 0.63 (0.05) 16.5 (1.3) 0.47 (0.13) 18.8 (2.1)

Sigmoid 0.62 (0.05) 16.7 (1.1) 0.58 (0.12) 16.8 (2.4)
Precomputed 0.64 (0.05) 16.3 (1.3) 0.57 (0.13) 16.8 (2.4)

WL Polynomial 0.67 (0.17) 15.4 (4.0) 0.60 (0.05) 16.4 (0.9)
RBF 0.66 (0.16) 15.6 (3.8) 0.58 (0.05) 16.8 (0.8)
Sigmoid 0.65 (0.14) 15.8 (3.3) 0.61 (0.06) 16.2 (1.1)
Precomputed 0.67 (0.18) 15.3 (4.2) 0.63 (0.06) 15.7 (1.2)

Baseline Random Forest Models:
One-hot 0.59 (0.11) 17.4 (2.8) -0.04 (0.33) 26.2 (3.3)
Quantum Chemical 0.68 (0.11) 15.3 (3.0) 0.20 (0.17) 23.2 (1.5)

a R2 and RMSE statistics are reported in the format “mean (standard deviation)” for the
specified test. Performance statistics for the individual test sets can be found in Table S38 and
S41. For each type of descriptor, the models with the best performance are highlighted in bold.
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are not significantly different to one another, according to the χ2 test (with a p-value of 0.06),

under the null hypothesis that the distributions of the residual yield (Figure S15a) are the

same. The rest of the models are significantly different to one another with p-values < 10−7

(Table S42). The best one-hot and quantum chemical SVR models (One-hot-Polynomial,

Quantum-RBF) have a wider distribution of residual yields than the other highest performing

SVR models (Figure S15a), meaning larger associated errors. The random forest algorithm

learns more from the quantum chemical descriptors (R2 = 0.68, RMSE = 15.3%) than the

SVR algorithm (R2 ≤ 0.47, RMSE ≥ 19.6%).

Model performances along the aryl halide dimension were significantly lower than along

the additive dimension for the baseline and quantum chemical models (Table 4, Figure 4).

Models built on structure-based descriptors had a similar performance to those in the additive

ranked test. The best descriptor-kernel combinations for the aryl halide ranked test were

the same as the additive ranked test: One-hot-Polynomial, Quantum-RBF, Fingerprints:

Morgan1-Polynomial, Tanimoto: Morgan1-Precomputed and WL-Precomputed. There is

a large difference in performance between the structure-based descriptors, with an R2 of

0.63 to 0.69, compared to the Quantum-RBF (0.41) and One-hot-Polynomial (0.35) models.

The low performance of the quantum chemical and one-hot encoding models suggests that

they may only be fitting the intrinsic pattern in the training set and therefore, struggle to

extrapolate to the unseen aryl halides. In general, there is an even distribution of residual

yields around 0% for the best descriptor-kernel combinations (Figure S15b). However, the

models have a tendency to underpredict the reaction yields of the unseen aryl halides as

shown by the smaller, secondary peaks (between 12.5% to 37.5%) in the distribution of

residual yield (Figure S15b). This is partially due to the under-representation of higher

reaction yields, resulting in poorer model performances (Figure S16b). This issue is also

observed in the additive ranked test to a lesser extent (Figure S16a).
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Prediction Performance by Similarity to Training Data

Assessing model performance with respect to maximum similarity to training reactions helps

to identify molecules that may be outside the domain of applicability. Maximum similarity to

training is defined as the maximum product of pairwise Tanimoto scores (between molecules

in the training and test sets) of the reaction components. If all combinations of the additives,

aryl halides, bases and ligands are in the dataset (this is not always the case as reactions with

missing yield data were removed), the maximum similarity to training is dependent upon the

unseen molecules in the test sets (i.e. the additives in the additive ranked test and the aryl

halides in the aryl halide ranked test). For example, if the reaction R1 = (A1, H1, B1, L1)

is in the training set and the reaction R2 = (A2, H1, B1, L1) is in the test set (where An is

the nth additive, Hn is the nth aryl halide, Bn is the nth base and Ln is the nth ligand), then

the similarity score would only be dependent on the additives in the reactions as shown in

Eq. 6. The maximum similarity to training scores of the additives and aryl halides for both

activity ranked tests can be found in Table S43.

T (R1, R2) = T (A1, A2)T (H1, H1)T (B1, B1)T (L1, L1)

= T (A1, A2) · 1 · 1 · 1

= T (A1, A2)

(6)

In the additive ranked test, the models performed poorly for reactions in the lowest

maximum similarity to training interval, 0.30 to 0.35 (Figure 5a, S17a). These reactions

contain the additives: benzo[c]isoxazole (additive 10) and benzo[d ]isoxazole (additive 15).

The performance of the models, considering the additives individually, are generally good

for additive 15 (Figure S18d) but very poor for additive 10 (Figure S18a). The models

overpredict the yield of reactions containing the inhibitory additive 10 and result in neg-

ative R2 and high RMSE scores. These reactions may therefore be outside the domain of

applicability. Generally, the performance of the models improves with maximum similarity
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to training (Figure 5a, S17a), as expected. The models have a high RMSE (> 15%) for

the reactions in the maximum similarity to training intervals 0.35 to 0.40 (additives 1, 3,

5, 14) and 0.55 to 0.60 (additives 4, 6, 9). This is mainly due to the underprediction of

high yielding reactions, which is a result of the under-representation of higher reaction yields

(Figure 2, S16a). The structure-based SVR models demonstrate good prediction statistics

for reactions with a maximum similarity to training greater than 0.35.

(a)

(b)

Figure 5: RMSE against maximum similarity to training for (a) the additive ranked test and
(b) the aryl halide ranked test.
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For the aryl halide ranked test, there is a slight improvement in the performance statis-

tics as maximum similarity to training increases (Figure 5b, S17b). The higher yielding

reactions containing ethyl substituted aryl halides (0.30 to 0.40) and halopyridines (0.45

to 0.50) are underpredicted by the models (Figure S19), due to the under-representation

of higher reaction yields (Figure 2, S16b). Reactions containing the trifluoromethyl and

methoxy substituted aryl halides (0.50 to 0.55) are generally predicted well by the models.

It is important to consider the coefficient of determination (R2) and RMSE together, when

assessing goodness of fit.70 This is demonstrated in the model performance of reactions con-

taining 1-chloro-4-ethylbenzene (aryl halide 7) and 1-chloro-4-(trifluoromethyl)benzene (aryl

halide 1). These reactions are low yielding and therefore only cover a small range of reaction

yields. While this leads to low R2 scores across all models (Figure S19), the RMSE scores

are good (≤ 15%) for at least half of the models.

Predictions of Prospective Reactions

A set of combinatorial reactions was compiled to validate the generalisability of the SVR

models, particularly along the aryl halide dimension. Here, we present predicted yields of

these reactions prior to experimentation. The SVR model with the best predictive per-

formance for each descriptor in the aryl halide ranked test was employed: Quantum-RBF,

Fingerprints: Morgan1-Polynomial, Tanimoto: Morgan1-Precomputed, WL-Precomputed

and the One-hot-Polynomial baseline. The aryl halides in the prospective reactions cover a

range of maximum similarity to training scores between 0.15 to 0.60 (Figure 6). This excludes

the five aryl halides that are present in the Doyle et al. training set, where the maximum

similarity to training was 1.00. In the aryl halide ranked test, the models predicted the yield

of reactions containing the aryl halide with the lowest maximum similarity to training score

(0.30 to 0.35) reasonably well (Figure 5b). The models may however, struggle to extrapolate

to the aryl halides in the prospective reactions with maximum similarity scores lower than

0.30 (over half of the unseen aryl halides). These models in the base and ligand leave-one-out
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tests generally showed comparable correlation to the best kernel-descriptor combinations in

these tests (Table S30 and S33). The poor performance of the quantum chemical model in

these tests indicates that the model is limited and may be unable to extrapolate to unseen

bases and ligands.

Figure 6: Distributions of maximum similarity to training for all prospective reactions.
Maximum similarity to training was calculated using the maximum pairwise Tanimoto scores
(using the Morgan2 fingerprint) of the aryl halides in the training and test set.

Two tests were designed to investigate the predictive ability of the SVR models identi-

fied as the top descriptor-kernel combinations in the aryl halide ranked test. The first test

considered all 1416 proposed reactions for the comparison of the structure-based descriptors

and one-hot encodings. These descriptors can be applied to any molecule and are quick and

easy to calculate. In this test, the Fingerprints: Morgan1-Polynomial, Tanimoto: Morgan1-

Precomputed, WL-Precomputed and the One-hot-Polynomial models were trained on the

Doyle et al. dataset, including additive control reactions (i.e. no additive present); a total of

4135 reactions. The second test only considered a subset of the proposed reactions to com-

pare the quantum chemical descriptors with the structure-based descriptors. The quantum

chemical descriptors have a limited application range as they require predefined, key shared

atoms to be present for each reaction component. The subset excluded any molecules where

quantum chemical descriptors could not be calculated; this included aryl iodides (see the
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Supporting Information for further details). This prospective test set contained a total of

882 reactions, a combination of 49 aryl halides, two additives, three bases and three ligands.

The SVR models were trained on a subset of 2757 reactions from the Doyle et al. dataset,

including additive control reactions. The predicted yields of each reaction, calculated in both

tests, are shown in Figure S22 and S23.

The models built on chemically meaningful descriptors predicted the yield of test reactions

that are also present in the training reactions accurately, with R2 ≥ 0.98 and RMSE ≤ 4.4%

(Figure S20 and S21). In both tests, the one-hot encodings model predicted an arbitrary

number irrespective of the aryl halide present in the reaction. The predictions were primarily

dependent on the type of base and ligand in the reaction (Figure S25 and S27). The reaction

containing the base DBU and the reactions performed without a catalyst ligand contribute

the most towards the broad peak at approximately 35% in the distribution of predicted

yield for the subset of proposed reactions (Figure 7). The base MTBD and catalyst ligand t-

BuXPhos have broader range of higher yields contributing to the peak around 50%. The same

trend was observed when all prospective reactions were considered (Figure S26 and S28).

There is minimal difference in the distributions of predicted yield of the reactions containing

each base for the chemically meaningful SVR models. The baseline one-hot encodings model

was unable to extrapolate to unseen aryl halides from fitting the underlying patten in the

training data. Therefore, it is anticipated that the models built on quantum chemical and

structure-based descriptors were learning from chemically meaningful information.

Reactions performed without a catalyst were included in the prospective reactions to eval-

uate the following synthetic hypothesis; the reactions containing ortho-substituted halopy-

ridines are proceeding via an alternative reaction pathway, leading to higher reaction yields.

No examples of these reactions were provided in training and therefore, may be beyond the

limits of the models. The Quantum SVR model predicted the yield of reactions without

the presence of a catalyst to be a negative arbitrary number (-0.64%), irrespective of the

aryl halide or additive present in the reactions. Predictions of this negative number suggest
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Figure 7: Distributions of predicted reaction yield for the subset (882) of validation reactions.

these reactions are outside the domain of applicability for the Quantum SVR model. These

predictions largely contributed to the distinct peak in the distribution of predicted yield

around 0% (Figure 7). The structure-based models predicted a smaller range of yields for

reactions performed without a catalyst (∼ 30%) compared to the reactions containing a cat-

alyst (& 60%, Figure S27 and S28). This could indicate a potential limitation in the ability

of the structure-based models to predict reactions without a catalyst. The chemically mean-

ingful models predicted similar trends in the reactivity of the catalyst ligands (Figure S27

and S28), following the order: BrettPhos (where applicable) < no catalyst < t-BuBrettPhos

< t-BuXPhos.

The prospective reactions were designed to validate the applicability of the SVR models to

unseen aryl halides that are not present in the training set. The models built on chemically

meaningful descriptors predicted higher yields for reactions containing aryl bromides and

aryl iodides (where applicable) compared to reactions containing aryl chlorides (Figure S29

and S30). Using the reactions containing the ortho-halo-substituted isopropylbenzene and

para-halo-substituted methylpyridazine molecules as examples, there is an increase in mean

predicted yield from the chloride to bromide to iodide (Table 5). This trend is plausible,

as it follows the trend in the training reactions (Figure S5c). Comparing the mean yield
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of reactions containing 1-chloro-4-isopropylbenzene (∼ 30% to 45%) with a similar alkyl-

substituted aryl halide used in training (1-chloro-4-ethylbenzene, ∼ 4%), suggests the models

may have overpredicted these reaction yields. Aryl halides with substituents at the ortho

position are sterically hindered which could potentially lower the reactivity. As there are

no reactions containing ortho-substituted aryl halides in the training set, it is possible that

the predictions were influenced by the higher yielding ortho-substituted pyridines (Table 5).

The pyridazine molecules contain a nitrogen atom at both the ortho and meta positions. It

is interesting that the structure-based models again appear to make predictions based on the

higher yielding ortho-substituted pyridines, whereas the quantum chemical model predicts

reactivity closer to the lower yielding meta-substituted pyridines (Table 5).

Despite the similar trends between the quantum chemical model and the structure-based

models, the predictions are only slightly correlated (Pearson correlation coefficient of <

0.67, Figure S31). The structure-based models are expected to be more robust than the

quantum chemical models for extrapolating to unseen chemical entities. The predictions of

the structure-based models are well correlated and have a Pearson correlation coefficient of

> 0.83 (Figure S31 and S32).
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Table 5: Mean Experiment Yields of Aryl Halides in the Training Set (Top) and Mean
Predicted Yields of Aryl Halides in the Prospective Reactions (Bottom)c

Mean Experimental Yields (%) of Aryl Halides in the Training Set

3.9 (3.8) 43.5 (24.6) 52.6 (24.2)

44.1 (26.8) 53.3 (26.5) 59.3 (26.6)

14.9 (16.2) 43.9 (29.1) 52.3 (29.0)

Mean Predicted Yields (%) of Aryl Halides in the Prospective Reactions

Subset All Subset All Subset All

One-hot - Poly 42.4 (6.7) 47.0 (7.7) 42.4 (6.7) 47.0 (7.7) N/A 47.0 (7.7)
Quantum-RBF 29.6 (4.4) N/A 73.3 (4.7) N/A N/A N/A
Fps: Morgan1-Poly 36.0 (4.2) 33.4 (8.6) 67.0 (4.1) 55.3 (10.6) N/A 63.2 (8.9)
Tan: Morgan1-
Precomputed 35.0 (3.7) 34.9 (7.0) 56.1 (3.8) 53.1 (9.3) N/A 59.4 (8.0)

WL-Precomputed 41.8 (3.8) 42.8 (8.2) 55.4 (3.7) 55.0 (10.3) N/A 56.6 (9.0)

Subset All Subset All Subset All

One-hot - Poly 42.4 (6.7) 47.0 (7.7) 42.4 (6.7) 47.0 (7.7) N/A 47.0 (7.7)
Quantum-RBF -4.9 (3.6) N/A 13.7 (2.2) N/A N/A N/A
Fps: Morgan1-Poly 45.3 (4.4) 39.8 (12.4) 61.2 (4.1) 57.2 (9.7) N/A 63.2 (7.3)
Tan: Morgan1-
Precomputed 41.0 (3.7) 39.0 (8.6) 58.3 (3.8) 55.0 (9.1) N/A 60.7 (7.6)

WL-Precomputed 49.8 (4.2) 48.9 (10.2) 57.3 (4.0) 56.2 (10.5) N/A 57.6 (9.6)

c Experimental and predicted yields are reported in the format “mean (standard deviation)”.
Reactions performed without a ligand were excluded.

33



Conclusions

SVR models built on structure-based and quantum chemical descriptors, for the prediction

of reaction yield, were compared. The models were applied to a set of Buchwald-Hartwig

reactions and the performance was assessed along the dimension of each reaction component.

The models built on structure-based descriptors (molecular fingerprints and graphs) demon-

strated good prediction statistics and outperformed the quantum chemical SVR models,

along the dimension of each reaction component. The models built on molecular fingerprints

consistently surpassed the other descriptors in each test, proving fingerprints to be robust

descriptors. The moderate performances of the SVR models in the base and ligand leave-

one-out tests, suggest they may benefit from including a larger variety of bases and ligands

in training. The applicability, ease and quickness of calculating molecular fingerprints makes

them particularly attractive (Table 6).

Table 6: Comparison of the Molecular Descriptors used in this Studyd

Descriptor Speed
Applicability Generalisability
to molecules Additive Aryl Halide

Quantum Chemical + Subset + +
Fingerprints +++ All ++++ ++++
Tanimoto Kernel ++ All ++++ ++++
WL Kernel ++ All +++ +++
One-hot Encodings ++++ All ++ ++

d Speed and generalisability are ranked from poor (+) to good (++++). The ranking of
generalisability refers to the performance of the top SVR model for each descriptor.

Predictions of reaction yield for the proposed reactions, not present in the Doyle et al.

dataset, were reported prior to experimentation. Similar trends in the reactivity of the

molecules along each reaction component were observed across the chemically meaningful

models. The reaction yields predicted by the structure-based models are reasonably cor-

related. Based on the performance of the models in the preceding tests and the analysis

of the predicted yields of the proposed reactions, it is anticipated that the structure-based

models will extrapolate better than the quantum chemical model. The reaction yields of

the proposed reactions will be attained using high-throughput experimentation, and used to
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validate and assess the limits of the SVR models.

The results presented show the promising applicability of computationally less demand-

ing, structure-based descriptors in the prediction of reaction yield, where quantum chemi-

cal descriptors have typically been preferred. The prospective prediction models and some

instructions on their use are available on GitHub (https://github.com/alexehaywood/

yield_prediction) to predict the yield of Buchwald-Hartwig reactions. The domain of

applicability for any unseen reactions should be calculated prior to making any predictions,

to assess the confidence of the model. The one-hot encodings model was only used as a

baseline and cannot make any valid predictions. The chemically meaningful models should

be used with caution and may struggle to extrapolate to unseen aryl halides with a similar-

ity to training score less than 0.30, as well as to reactions that do not contain a catalyst.

Further analysis of the prospective predictions is required once experimental data have been

collected. The machine learning models learnt from a relatively small (a few thousand in-

stances) combinatorial dataset, proving their use in facilitating the optimisation of reaction

conditions for the synthesis of novel molecules. In the future, it would be interesting to

explore the transferability of the structure-based SVR models to different reaction types or

other regression related problems. The framework presented could also be applied to larger

datasets when they become publicly available.

Software and Data Availability

The data and code used in this study is available online at https://github.com/alexehaywood/

yield_prediction.

Supporting Information Available

Additional dataset, descriptor and model details; cross-validated, training set, grid search

cross-validated and test set performances; prospective reactions and corresponding predic-
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tions of reaction yield.

Author Information

Corresponding Author

Jonathan D. Hirst – orcid.org/0000-0002-2726-0983; E-mail: jonathan.hirst@nottingham.

ac.uk

Authors

Alexe L. Haywood – orcid.org/0000-0002-0719-4907

Magnus W. D. Hanson-Heine – orcid.org/0000-0002-6709-297X
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