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Abstract

Photoswitches are molecules that undergo a reversible, structural isomerization af-

ter exposure to different wavelengths of light. The dynamic control offered by molecular

photoswitches is favorable for applications in materials chemistry, photopharmacology,

and catalysis. Ideal photoswitches absorb visible light and have long-lived metastable

isomers. We used high throughput virtual screening to predict the absorption maxima

(λmax) of the E-isomer and half-lives (t1/2) of the Z-isomer. However, computing the

photophysical and kinetic properties of each entry of a virtual molecular library contain-

ing 103–106 entries with density functional theory is prohibitively time-consuming. We

applied active search, a machine learning technique to intelligently search a chemical

search space of 255 991 photoswitches based on 29 known azoarenes and their deriva-

tives. We iteratively trained the active search algorithm based on whether a candidate

absorbed visible light (λmax > 450 nm). Active search was found to triple the discovery
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rate compared to random search. Further, we projected 1 962 photoswitches to 2D using

the Uniform Manifold Approximation and Projection (umap) algorithm and found that

λmax depends on the core, which is tunable with substituents. We then incorporated a

second stage of screening with to predict the stabilities of the Z-isomers for the top 1%

of candidates. We identified four ideal photoswitches that concurrently satisfy λmax >

450 nm and t1/2 > 2 hours; the range of λmax and t1/2 range from 465 to 531 nm and

hours to days, respectively.

Introduction

Light is an ideal external stimulus to promote organic reactions. Photoswitches are a class

of molecules that absorb light and reversibly interconvert between their thermodynamically

stable and meta-stable forms to create photostationary states. Azobenzenes are a class of

well-studied photoswitches that undergo efficient isomerization from their thermodynami-

cally stable form (i.e., E) to their metastable form (i.e., Z) using ultraviolet light (314 nm).1

The Z → E isomerization is promoted with 365 nm light.1 This relatively high-energy

light (e.g., ultraviolet) may promote undesired side reactions that compete with the iso-

merization pathway (e.g., electrocyclic ring-closing reactions). UV light can also promote

[2+2]–dimerizations that alter the structure and function of nucleotides and has a limited

(epidermal depth, 0.1 mm)2 tissue penetration depth, thus limiting the therapeutic potential

of photoswitches in photopharmacology. The Z-isomer of azobenzene has a thermal half-life

(t1/2) of 4.7 hours, which prevents the establishment of photostationary states. Ideal photo-

switches feature long absorption wavelengths and long t1/2; unfortunately, the simultaneous

optimization of these parameters is challenging and has been empirically observed to com-

pete. Functionalizing the phenyl rings has been shown to shift the λmax of azobenzene-based

photoswitches into the visible range. Konrad et al. 3 recently demonstrated that function-

alizing the phenyl rings with halogens at the ortho positions led to a substantial red shift

to 410 nm. This functionalization strategy also increased the (t1/2) to 16 hours. Another
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strategy involves replacing one or both phenyl rings with heteroaryl ring(s), thus creating

a more general class of photoswitches, azoarenes. Azoarenes are substantially more diverse

than azobenzenes, and multiple examples show λmax in the visible range and t1/2 exceeding

1.5 hours. Figure 1 highlights some of the most promising synthesized azoarenes with respect

to λmax and t1/2.3–9

Figure 1: 14 azoarene photoswitches used to generate a new molecular library.

While this relatively new class of azoarene photoswitches is attractive, the full enumer-

ation of the chemical space approaches 106. Density functional theory (dft) calculations

are used to predict structures and photophysical properties at a relatively low computa-

tional cost.10,11 Thus, dft has been previously used in high throughput virtual screening

(htvs)12–15 for virtual libraries containing 500–500 000 molecules. The vastness of the chem-

ical space cannot be understated; conservative estimates suggest that 1023 organic molecules

are theoretically possible.16 This figure can be narrowed to roughly 106 for azoarenes by

focusing on those already experimentally realized. Abreha et al. 17 recently published a suite

of htvs tools and the Virtual Excited State Reference for the Discovery of Electronic Ma-

terials Database (the verde materials db). The verde materials db is unique because

it was the first open-access database to include excited state structures (S0, S1, and T1),

photophysical, and redox properties. Further, Adrion et al. 18 published the EZ–TS code,

3



which predicts thermal Z → E activation barriers efficiently and accurately.

Even with high-performance computing and efficient quantum chemistry codes, comput-

ing the photophysical properties and stabilities of 105 photoswitches is a substantial under-

taking. We have employed the machine learning algorithm ‘active search’19 to intelligently

search the vast chemical space (255 991 candidates) of azoarene photoswitches. Active search

(as) was created to discover as many target molecules as possible while balancing compu-

tational resources. as uses the data observed at any given point throughout a search and

adaptively makes decisions informed by the latest observations. The prediction accuracy of

our predictive model improves as we frequently query from quantum chemical calculations.

We now combine these existing tools (the verde materials db,17 EZ-TS,18 and active

search19) to automatically identify top photoswitch candidates featuring visible-light λmax

and long t1/2. Scheme 1 shows an illustration of the iterative processes used to identify ideal

photoswitches

Scheme 1: The multipronged iterative procedure used to update the active search algorithm
with dft results.

Phase 1 : An initial screen of 50–100 molecules is processed through an automated compu-

tational workflow developed by Abreha et al. 17 . RDKit20 is used to generate 3-D coordinates

from a simplified molecular-input line-entry system (smiles)21 string, followed by a low-
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mode conformational search where each conformer (4 total) is minimized with the Universal

Force Field.22 The lowest energy conformer is determined through semi-empirical optimiza-

tions and a single-point energy calculation. The lowest energy structure is optimized with

M0623/6-31+G(d,p)24,25 and IEFPCMMeCN,26 and a vibrational analysis confirms the sta-

tionary point as the true minimum if it has only positive frequencies. The λmax is calculated

with a single point energy calculation using ωB97XD27/6-31+G(d,p)//M0623/6-31+G(d,p).

Figure 2 shows the automated workflow of quantum chemical calculations used to compute

the excitation energies and corresponding λmax for selected molecules from our virtual library.

Figure 2: Quantum chemical workflow for computing the λmax for all molecules considered
in this study.

Phase 2 : An in-house Python script assigns a “core id” (1–29) to each computed structure.

Cores are determined using a substructure analysis included in RDKit. True or False labels

are assigned to each smiles string based on the pre-determined threshold, λmax > 450nm.

Phase 3 : A machine learning model is trained on the set of molecules that are labeled to

guide the search algorithm. First, we generate the Morgan fingerprint28 of each molecule and

compute the Tanimoto similarity coefficient29 between each pair of molecules. We then build

a k-nearest neighbors (k-nn)30 predictive model that computes the probability of a given

unlabeled molecule having a positive label, given the data we have observed thus far. This

k-nn model is then utilized by the search algorithm. Note that the Morgan fingerprints and

Tanimoto similarity coefficients only need to be computed once, while the k-nn is updated

with newly labeled data at each iteration

Phase 4 : The active search algorithm builds the set of 50 recommendations, selecting
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among all unlabeled molecules. These recommendations are then sent to Phase 1 to be

computed and labeled. This procedure repeats for a total of 40 iterations, sampling 1 962

molecules from the space. We include a more detailed description of our methods in the

following section.

Methods

We adapted the active search method, which has shown impressive performance in molecular

discovery in previous studies.31–35 The method was first introduced by Garnett et al. 19 and

extended to the batch setting by Jiang et al. 35 . Formally, suppose we have a large set of

elements X = {xi}, among which there is a small subset R ⊂ X of valuable elements that

we wish to search for (i.e., molecules exhibiting a desired property). We do not know which

members of X belong to R a priori, but whether a specific element x belongs to R can be

determined by querying an oracle, requesting for the binary label y = 1{x ∈ R}, where

1{·} is the indicator function. In this work, the binary label denotes whether a molecule

exceeds the λmax threshold of 450nm. Further, we assume that at each iteration of the

search, b elements are inspected simultaneously, requiring that queries to the oracle be made

in batches of size b. This models experimental settings in which multiple experiments may be

run in parallel to maximize throughput, contrasting with the fully sequential setting where

queries are made one after another; here, b = 50. The goal is to design a sequence of queries

limited by a predetermined budget, such that the number of target elements uncovered by

querying the oracle is maximized. As such, we naturally define the utility of a given set of

observations D = {(xi, yi)} to be the total number of targets found:

u (D) =
∑
yi∈D

yi.

We aim to determine the sequence of queries that maximizes our definition of utility in the

expected case using Bayesian decision theory. This framework first requires a classification
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model that computes the posterior probability that an unlabeled point x belongs to R, given

the elements we have inspected thus far in D, Pr (y = 1 | x,D). The active search method

is model-agnostic and does not make any further assumptions about this predictive model.

In the next section, we describe the k-nearest neighbors model we use for this classification

task.

We denote T = t b to be the total number of queries allowed to be made given our

budget, where t is the number of search iterations). We further denote by Di the observations

collected at the end of iteration i. At iteration i + 1 ≤ t, the best batch of queries (of size

b) we can make, denoted as Xi+1, maximizes the expected value of the utility of the dataset

at termination Dt:

Xi+1 = arg max
X

E
[
u (DT ) | X,Di

]
.

Although this expected utility can be derived using the standard procedure of backward

induction,36 it involves t−i nested steps of sampling over unknown labels of candidate queries

and maximizing the future expected utility. This computation is prohibitively expensive for

horizons t− i ≥ 3, rendering the optimal query infeasible to calculate in practice.

We adopt the sequential simulation strategy proposed by Jiang et al. 35 as an efficient

approximation to the optimal batch of queries. First, the strategy builds on the efficient

nonmyopic search algorithm ens34 in the sequential setting where only one query is made

at each iteration. ens itself approximates the optimal sequential strategy by assuming that

all future queries after the current iteration are made at the same time. Jiang et al. 34

demonstrated that ens actively explores the search space when the remaining budget is

large, recommends increasingly promising molecules as the search progresses, and achieves

significant improvements in performance over greedy strategies Our sequential simulation

active search algorithm under the batch setting builds its recommendations by iteratively

adding elements to an initially empty set using the ens algorithm until the desired size

(b = 50) is reached. As a new element is added, we assume that this element will return

a negative label (i.e., the element is assumed to lack the desired property). Jiang et al. 35
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showed that by taking on this pessimistic view, the algorithm encourages the elements within

the same batch to be diverse, which helps explore the search space more effectively.

Finally, we aim to distribute our queries equally across the 29 cores. Our sequential

simulation strategy may be naturally modified in service of this goal as follows. As a new

element is added to the running batch in the iterative procedure described above, we tem-

porarily remove other candidates having the same core id as the newest batch member from

the search space. When no candidate remains, we add all removed molecules back to our

search space. This simple procedure effectively forces each batch of queries to be constructed

to span the available cores equally.

As previously described, our active search algorithm requires a probabilistic model that

computes the probability that an unlabeled element has a positive label (i.e., exhibiting

the desired property), given the current set of observations we have made so far. We first

generate the Morgan fingerprint28 of each molecule in our search space and compute the

Tanimoto similarity coefficient29 between each pair of elements x and x′, denoted as t(x, x′).

We then implement a k-nearest neighbor (k-nn)30 predictive model, which computes the

probability of an uninspected molecule being an active compound as:

Pr (y = 1 | x,D) =
γ +

∑
x′∈nn(x) t(x, x

′) y′

1 +
∑

x′∈nn(x) t(x, x
′)
,

where nn(x) is the labeled subset of the k nearest neighbors of x in X. γ is a parameter

of the model that acts as a “pseudo count” to define the prior probabilities for molecules

that do not have any labeled neighbor; we set γ = 0.1. This k-nn performs well in previous

work,19,31,32,34,35 as well as in our experiment. It can further be rapidly updated in light of

new observations, allowing for efficient lookahead computations that are central in active

search.

8



Results and discussion

We generated a relatively small virtual molecular library of 1 636 azobenzene, bisazopyrrole,

bisazothiophene, and bisazofuran photoswitches (Figure 3). The substituent sites (red cir-

cles) were replaced with the disubstituted alkenyl, alkynyl, or aryl (spacer) groups. The

unfunctionalized end of the growing molecule (–R) was substituted with functional (termi-

nal) groups. Figure 3 shows the sites where a set of 4 azoarene cores were substituted with

spacer and terminal groups to generate the initial training set.

Figure 3: The combinatorial method was used to generate an initial library of 1 636 photo-
switches with four azobenzene and azoarene core structures. An in-house Python algorithm
symmetrically substitutes red circles with spacer groups and R with H, OH, SH, OCH3,
OCF3, CH3, CF3, NO2, F, Cl, or CN.

From the 1 636 initial azoarenes, 198 were selected to train the active search algorithm.

A histogram of the λmax of these 198 azoarenes is shown in Figure 4.

Figure 4 shows that the λmax ranges from 301 to 541 nm for the selected 198 azoarenes.

To train the as algorithm, we assigned each candidate a label of True or False, depending

on whether the following expression is satisfied, λmax > 450 nm. 62 of the 198 azoarenes

were assigned True and 136 were assigned False. We designed a virtual molecular library
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Figure 4: Distribution of the λmax values of the photoswitch training set.

with 29 bisdiazoarene cores (Figure 5) to apply the trained algorithm. Each of these has at

least one functionalization site substituted with functional groups (i.e., terminals).

The cores were selected based on a literature search of previously synthesized azoarenes.

1–29 range from symmetric bisazoarenes to azoheteroarenes and known functionalization

strategies inspire the substitution sites. Figure 6 describes these positions for a smaller

subset of cores.

We then iteratively applied the algorithm 40 times on our new molecular dataset. Each

molecular batch featured 50 as-suggested candidates that would enter our computational

workflow. The first 20 iterations used an “equidistributed” policy, which equally sampled

molecules belonging to each core family of the 29. Since the as selected 50 molecules for

each iteration, we sampled the 29 cores by constraining the algorithm to select at least one

molecule per core. The remaining 21 slots for each batch were selected in a similar fashion

where no more than two molecules were selected for each core. The remaining iterations

(21–40) used a “targeted” policy that only selected molecules from a subset of 15 cores that

had derivatives where the λmax > 450 nm. Cores that did not show derivatives that fit the

criteria were excluded from the subset. After each iteration, we added a binary label to each
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Figure 5: 29 cores explored in this study.

Figure 6: A schematic representation of the substitution patterns of azoheteroarene cores. a)
a subset of 4 cores from the 29. b) The cores were substituted asymmetrically to enumerate
the chemical space systematically. Red circles indicate positions substituted asymmetrically
with terminal groups from Figure 2, H, OH, SH, OCH3, OCF3, CH3, CF3, NO2, F, Cl, or CN,
and X represents endocyclic heteroatoms (oxygen, nitrogen, or sulfur). The 11 substituents
are functional groups that range from electron-withdrawing (e.g., NO2) to electron-donating
(e.g., OH).
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molecule based on whether λmax > 450 nm. Figure 3 summarizes this iterative procedure.

We compared the as strategy to the performance of a random search strategy by sampling

three molecules selected at random from each of the 29 cores. Figure 7 shows the distribution

of the λmax values from as and the random search.

Figure 7: Distribution of the random search compared to active search. Three molecules are
sampled for each core, resulting in a total of 87 randomly selected molecules. Active search
calculations entail 1 962 computed azoarenes. The values are normalized, and the bin size is
25nm.

The random search showed that 11 out of the 87 molecules (13%) had λmax > 450 nm.

Figure 8 shows how the proportion of hits changes with respect to the first 20 iterations

using the equidistributed policy. We define the hit rate as the percentage of molecules with

a λmax > 450 nm from the current batch.

The dotted orange line indicates a random search hit rate of 13%. The black data points

indicate the hit rate as the active search is iteratively applied. The equidistributed search

shows a range of hit rates from [12% to 35% (batch 3 and 18, respectively)]. The slope is

+0.82; the hit rate is improved relative to the random search in nearly all iterations. We then

turned our attention to the targeted as policy to maximize the number of hits corresponding

to the subset of cores with molecules that had a λmax > 450 nm, shown in Figure 9.
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Figure 8: The hit rate of the first 20 iterations of the search with the reset policy. The
orange dotted line indicates the hit rate for the random search of 87 molecules which was
13%. A linear regression gave the following equation describing the correlation between the
hit rate and batch number, [%HR=0.82(batch) + 15.26] with an R2 of 0.57.

Figure 9: A subset of cores searched for the second half of iterations from 21–40. Cores
represented yielded at least one substituted molecule that had a λmax exceeding 450 nm.
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For iterations 21–40, the as algorithm selected three derivatives corresponding to each

of the 15 cores for a total of 45 selected molecules. To keep the batch size consistent to 50,

as chooses five more from the top-ranked derivatives of the 15 core subset. Figure 10 shows

the hit rate for iterations 21–40 with the targeted policy.

Figure 10: The hit rate of the second 20 iterations of the search policy with 15 cores.

In the targeted policy, the hit rate varied from 44% to 56%; the average hit rate was

49%. Unlike the equidistributed policy, Figure 10 does not show an increase in hit rate as a

function of the batch number. The relatively high hit rate led to the rapid discovery of 485

candidates with λmax > 450 nm in batches 21–40.

Overall, we identified a total of 717 photoswitches with λmax > 450 nm after the 40

batches (1 962 molecules) of as-assisted virtual screening. The resulting hit rate is 37%,

corresponding to a tripling of the 13% hit rate from the random search. A two-sample z–test

rejects the null hypothesis that the two strategies result in equal hit rates with overwhelming

confidence, yielding a p–value of 5× 10−6.

We represented the complex molecular data with a Uniform Manifold Approximation

(umap)37 to visualize the molecular motifs responsible for candidates with λmax > 450 nm.

Each of the 1 962 structures was plotted based on the Tanimoto similarity29 in Figure 11.

The clusters are grouped based on structural similarity and color-coded based on computed
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λmax results.

Figure 11a shows the umap results with each azoarene candidate overlaid with the color

corresponding to the λmax. The data points shown in grey correspond to the ultraviolet range

of the electromagnetic spectrum (λmax < 400 nm). Cores 1–5, 17, 24, and 25 formed distinct

clusters, indicated by the dotted lines in the umap plot. These cores also had considerably

more derivatives with a λmax in the visible range, suggesting that these cores have especially

tunable λmax values and should be explored experimentally in the future.

We examined the influence of substituents on each core by plotting the distribution of

λmax. Figure 11b shows the range of λmax for 1 962 azoarenes. Spacings within each box

represent the degree of dispersion and skewness within the data. Cores with larger boxes

indicate a higher variation in absorbance due to the substitution pattern. We compared

unsubstituted cores 1–5, 17, 24, and 25 to the derivative with the highest λmax. These

values are summarized in Table S2 of the supporting information. 1 showed the highest λmax

at 514 nm with a range of 139 nm. 2 had the largest λmax value of 602nm and featured

an impressive range of 213 nm within the corresponding derivatives. This suggests that

the family of derivatives corresponding to 2 has the most tunable λmax. 3, 4, and 5 had

their highest absorbing derivatives at 584, 560, and 503 nm, with similar ranges at 193,

186, and 166 nm, respectively. 24 and 25 had their largest λmax values at 524 and 531 nm,

respectively. Their derivatives had ranges of 121 and 148 nm, respectively.

The ideal t1/2 of photoswitches depends on the desired application. The t1/2 and λmax are

typically in competition because the π-delocalization effects that generally red-shift the λmax

also decrease the t1/2 by lowering the transition state energies. However, longer t1/2 values

are generally desirable; we chose those candidates with t1/2 > 2 hours as ‘hits.’ Determining

t1/2 values requires the computation of Z → E thermal isomerization transition structures,

which inform the activation free energies. Adrion et al. 18 recently benchmarked 140 model

chemistries to predict azoarene isomerization barriers and published the open-access code,

EZ-TS. We thus applied EZ-TS to compute the t1/2 of the Z-isomers of core derivatives
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Figure 11: a) Projection of 1 962 azoarene photoswitches suggested by active search using
umap, computed with a 2048-bit Morgan fingerprint (radius 2), ten nearest neighbors, a
minimum distance of 0.1, and the Tanimoto similarity. b) Range of λmax of 1 962 azoarene
photoswitches by core id. Lines within each box represent the median, while the box repre-
sents the interquartile range that includes 50% of values near the median. Tails of each box
show the high and low excitation energies of each core id. Black circles represent outliers.
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with the longest λmax, identified with active search. Figure 12 illustrates the candidate from

each family of cores subjected to transition state calculations with PBE036-D3/6-31+G(d,p)

to optimize the transition states. This was reported to give activation free energies that

approach chemical accuracy. Scheme 2 shows the Z → E isomerization transition state.

Figure 12: Structures of the 29 highest absorbing azoarene photoswitches for each core.
Molecules are labeled by their core id (in bold), their λmax in nanometers, and activation
barrier in kcal mol−1.

The λmax for these top 29 candidates ranges from 382 to 602 nm. The range of activation

free energies is 8.1 to 30.0 kcal mol−1. We plotted the activation free energies (∆G‡) against
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Scheme 2: Illustration of the Z → E thermal isomerization transition structure.

the λmax for these 29 candidates to determine if there was a relationship between these values

(Figure 13).

Figure 13: The activation free energy against the λmax of 29 azoarene photoswitches selected
by the active search. Their core id indexes the data points. Quadrant B is where both
criterion for an ideal photoswitch (λmax > 450 nm and ∆G‡ > 23 kcal mol−1) have been
satisfied. Quadrants A and D are where one criterion has been satisfied, and Quadrant C is
where none of the criteria have been satisfied. A linear regression gave the following equation
describing the correlation between the activation barrier and λmax, [λmax = 0.1189 ∆G‡ +
456] with an R2 of 0.0002.

Figure 13 shows no linear relationship between the λmax and activation free energy (R2

of 0.0002). However, we divided the plot into four quadrants to highlight those candidates

that meet both, one, or none of the λmax and t1/2 optimization criteria. Quadrants A (red

tint) and B (green tint) contain molecules that have λmax > 450 nm or 2.6 eV. Quadrants
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A and C (purple tint) are populated with molecules with an activation free energy less than

23.0 kcal mol−1. Quadrants C and D (blue tint) contain molecules that absorb UV light or

have λmax greater than 450 nm. Quadrants B and D have molecules with an activation free

energy greater than 23.0 kcal mol−1. The ideal candidates fall in Quadrant B, denoted by

two checks that satisfy both criterion; Quadrant A and D are partially optimized; Quadrant

C has candidates that do not meet any of the requirements. Molecules 8, 10, 15, and 25

have a high λmax value of 478, 465, 479, and 531 nm, respectively. They also have high

activation free energies of 24.5, 23.0, 30.0, and 26.5 kcal mol−1, respectively.
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