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Abstract 

This work proposes a state-of-the-art hybrid kernel to calculate molecular 

similarity. Combining with Gaussian process models, the performance of the 

hybrid kernel in predicting molecular properties is comparable to that of the 

Directed Message Passing Neural Network (D-MPNN). The hybrid kernel 

consists of a marginalized graph kernel (MGK) and a radial basis function (RBF) 

kernel that operates on molecular graphs and global molecular features, 

respectively. Bayesian optimization was used to get the optimal 

hyperparameters for both models. The comparisons are performed on 11 

publicly available data sets. Our results show that the predictions of both 

models are correlated with similar performance, and the ensemble prediction 

of both models performs better than either of them. Through principal 

component analysis, we found that the features extracted by the hybrid kernel 

are similar to those extracted by D-MPNN. The advantage of D-MPNN lies in 

computational efficiency, while the advantage of the graph kernel models lies 

in the inherent uncertainty quantification and accurate uncertainty quantification. 

 

  



I. INTRODUCTION 

Predicting molecular properties is one of the central topics of 

cheminformatics that has attracted widespread attention for decades. This field 

is rejuvenated due to the advances in Graph neural networks (GNNs) recently1. 

Numerous methods have been developed for decades. To evaluate the quality 

of different methods, Wu et al. introduced a large-scale benchmark for 

molecular property predictions, MoleculeNet,2 which provides multiple public 

data sets, data splitting, as well as the implementation of popular algorithms of 

molecular featurization and learning algorithms. Their results demonstrated that 

graph-based models outperform molecular fingerprints methods in most data 

sets. GNNs have achieved impressive success in predicting quantum 

mechanical properties, physicochemical properties, biological activity, and 

toxicity.3–13 

Nevertheless, Yang et al. showed that a hybrid molecular representation 

that combines Directed Message Passing Neural Network (D-MPNN) and 

expert-crafted descriptors is superior to using either one model alone in 

extensive comparisons on 19 public and 16 proprietary data sets.14 Loukas 

demonstrated that when the amount of data is sufficient, the depth and width of 

the message passing neural networks (MPNNs) need to increase at least 

polynomially with the size of the graph to distinguish the graphs.15 However, in 

predicting molecular properties the optimal performance is usually achieved 

within a few message-passing steps. Therefore, the molecular representations 



learned through message passing are fundamentally local, and it is beneficial 

to introduce features that describe the molecular global features. We speculate 

that the gap lies in the fact that the real data sets are always insufficient. In the 

results of the 2021 KDD Cup Large-scale Challenge (OGB-LSC), the depth 

GNNs perform better for the PCQM4M-LSC data set containing about 4 million 

molecules.16 

Like GNNs, graph kernel is a branch of graph-based machine learning 

methods.17–26 Marginalized graph kernel (MGK) is a random walk graph kernel 

based on the Weisfeiler-Lehman isomorphism test. Compared to GNNs, graph 

kernel has received less attention due to the computational cost and 

programming difficulty. Recently, Tang et al. developed the GraphDot software 

package,27 which uses GPUs to compute MGK matrix efficiently.28 Using 

GraphDot, Tang and de Jong presented an MGK for molecular atomization 

energy prediction.29 Xiang et al. developed normalized marginalized graph 

kernels (nMGK) for predictions of thermodynamic properties of pure organic 

liquids.30 

Naturally, it is interesting to compare the two different Weisfeiler-Lehman 

approaches, i.e., MPNNs and MGK, to understand their advantages and 

disadvantages. In this work, we evaluate the performance of MGK coupled with 

Gaussian process regression and classification (GP-MGK) using the data sets 

commonly used in benchmark studies.2 The D-MPNN14 is used as the 

comparison model. In both GP-MGK and D-MPNN, global molecular features 



are incorporated and Bayesian optimization is used to optimize the 

hyperparameters. We compared and analyzed the performances of both 

methods on 7 regression and 4 classification data sets. We also provide 

suggestions for practical applications of GP-MGK and D-MPNN. 

 

II. METHODS 

Marginalized Graph Kernel Method 

In MGK, molecules are represented by undirected labeled graphs, where 

vertices represent atoms, and edges represent chemical bonds. The MGK, 

which computes the molecular similarity, consists of five parts, namely atom 

microkernels, bond microkernels, a starting probability distribution, a stopping 

probability distribution, and a transition probability matrix. The atom and bond 

microkernels are further composed of elementary kernels, which act on 

individual features, using rules such as addition, tensor product, and R-

convolution.31 

The atom and bond features are listed in Tables 1 and 2. For features that 

are discrete variables, the associated elementary kernel is an elevated 

Kronecker delta function: 

𝛿(𝜙1 , 𝜙2) = {
1                , 𝜙1 = 𝜙2

     ℎ ∈ (0,1),  otherwise.
⑴ 

For features that are a list of discrete variables with variable lengths, the 

associated elementary kernel is a sequence convolution of Kronecker deltas: 



𝐶(𝑙1, 𝑙2) =
𝑓(𝑙1,𝑙2)

√𝑓(𝑙1,𝑙1)𝑓(𝑙2, 𝑙2)
, ⑵ 

where

𝑓(𝑙1, 𝑙2) = ∑ ∑ 𝛿(𝜙1, 𝜙2)𝜙2∈𝑙2𝜙1∈𝑙1 . ⑶ 

Here, 𝑙1, 𝑙2 are two variable-length feature vectors, and h is a hyperparameter 

that determines the tolerance of different feature values. If h is too small, MGK 

will be too strict, and the return value of two different molecules will be close to 

0. If h is too large, the difference between atoms and bonds will be ignored, for 

example, propanol and butane cannot be distinguished. 

 The microkernel for atoms or bonds used in this study is a weighted addition 

of elementary kernels between individual features: 

𝜅v(𝑣,𝑣′) =
∑ 𝑐𝑗𝜇𝑗 (𝜙𝑗(𝑣),𝜙𝑗(𝑣

′))𝑗

∑ 𝑐𝑗𝑗
, ⑷ 

𝜅e(𝑒, 𝑒
′) =

∑ 𝑐𝑗𝜇𝑗 (𝜙𝑗(𝑒),𝜙𝑗(𝑒
′))𝑗

∑ 𝑐𝑗𝑗
, ⑸ 

where 𝜇𝑗 is the elementary kernel for the jth feature 𝜙𝑗, and 𝑐𝑗 is a weight 

hyperparameter that determines the importance of the feature. 

 The starting probability of an atom is a weighted addition of elementary 

probabilities: 

𝑝s(𝑣) = 1.0 + ∑ 𝑝k(𝑣)

𝑘∈𝒦

, ⑹ 

𝑝k(𝑣) = {
𝑝,𝑣 in group k
0,    otherwise.

⑺ 

where 𝑝k  is the elementary probability for the group k and p is the 

hyperparameter that determines the importance of this group. Groups can be 



defined arbitrarily, and we use atom types 𝒦 = {B, C, N, O,F, Si, P, S, Cl, Br, I} in 

practice. 

 The stopping probability is set to be a hyperparameter 𝑝𝑞  which is the 

same for all elements. The transition probability is set to 1/𝑛  where n is the 

number of neighbors to the current atom. 

The MGK computes the expectation of path similarities from a simultaneous 

random walk process on a pair of graphs G and G’: 

𝐾(𝐺, 𝐺′) = ∑∑∑

[
 
 
 
 
 
 
 
 𝑝s(ℎ1)𝑝s′

′ (ℎ1
′ )𝜅v (𝑣ℎ1

, 𝑣
ℎ1

′
′ ) 𝑝q(ℎℓ)𝑝q

′ (ℎℓ
′ ) ×

(∏𝑝t(ℎ𝑖|ℎ𝑖−1)

ℓ

𝑖=2

) (∏𝑝t
′(ℎ𝑖

′|ℎ𝑖−1
′ )

ℓ

𝑗=2

) ×

(∏ 𝜅v (𝑣ℎ𝑘
, 𝑣

ℎ𝑘
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′ ℎ𝑘−1

′
′ )
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𝑘=2

)
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𝐡′𝐡

∞

ℓ=1

, ⑻ 

Where h and h’ are the random walk paths of length 𝑙 . A linear algebra 

transformation allows the fast numerical evaluation of eq 8 using 𝑂(|ℎ||ℎ’|) 

time. 

 The MGK can be normalized with an exponential factor: 

𝐾(𝐺,𝐺′) = 𝐹
𝐾(𝐺, 𝐺′)

√𝐾(𝐺,𝐺)𝐾(𝐺′ , 𝐺′)
exp [−

(𝐾(𝐺,𝐺) − 𝐾(𝐺′ , 𝐺′))
2

𝜆2 ] , ⑼ 

where F and 𝜆 are the hyperparameters. 

 For more detailed information about MGK, we refer a reader to 

references.18,28–30 Gaussian processes are used for regression and 

classification tasks.32 

 

Directed Message Passing Neural Network 



 The D-MPNN is used as the comparison model in this work. Herein, we 

briefly introduce the model.14 

The initial atom features 𝑥𝑣 and bond features 𝑒𝑣𝑤 used in D-MPNN are 

listed in Tables 3 and 4. The initial edge hidden states are: 

ℎ𝑣𝑤
0 = 𝜏(𝑊𝑖  cat(𝑥𝑣, 𝑒𝑣𝑤)), ⑽ 

where cat(𝑥𝑣, 𝑒𝑣𝑤) is the concatenated vector of the atom features 𝑥𝑣 and the 

bond features 𝑒𝑣𝑤 , 𝑊𝑖  is a learned matrix, and 𝜏  is the ReLU activation 

function.33 

 The message passing update equations are 

𝑚𝑣𝑤
𝑡+1 = ∑ ℎ𝑘𝑣

𝑡

𝑘∈{𝑁(𝑣)\𝑤}

, ⑾ 

ℎ𝑣𝑤
𝑡+1 = 𝜏(ℎ𝑣𝑤

0 + 𝑊𝑚𝑚𝑣𝑤
𝑡+1), ⑿ 

where 𝑁(𝑣) are the neighbors of v, 𝑊𝑚 is a learned matrix. The learned atom 

hidden states are 

𝑚𝑣 = ∑ ℎ𝑣𝑤
𝑇

𝑤∈𝑁(𝑣)

, ⒀ 

ℎ𝑣 = 𝜏(𝑊𝑎  cat(𝑥𝑣,𝑚𝑣)). ⒁ 

The molecular representation is the mean of atom hidden states 

ℎ =
1

|𝐺|
∑ℎ𝑣

𝑣∈𝐺

. ⒂ 

The final property is obtained through a feed-forward neural network 𝑓(∙), 

�̂� = 𝑓(ℎ). ⒃ 

 By training several copies of D-MPNN with different initial weights, the 

ensemble (averaged) prediction of these models is used as the final prediction.  



For more detailed information about D-MPNN, we refer a reader to reference.14 

 

RDKit-Calculated Features 

 The overview of GP-MGK and D-MPNN used in this study are sketched in 

Figure 1. Both of them use a hybrid molecular representation of graphs and 

descriptors. In Yang et al.’s work, 200 global features that can be rapidly 

computed using RDKit were concatenated with the learned molecular 

representation through message passing, which significantly improves the 

prediction performance.14 To make a fair comparison, we added the 200 

features in GP-MGK using a hybrid kernel: 

𝐾((𝐺, 𝐹RDKit), (𝐺
′ , 𝐹RDKit

′ )) = 𝐾𝐺(𝐺, 𝐺′)𝐾𝐹(𝐹RDKit, 𝐹RDKit
′ ), ⒄ 

where 𝐺, 𝐺′ are the molecular graphs and 𝐹RDKit, 𝐹RDKit
′  are RDKit features. 

𝐾𝐺  is the MGK described above and 𝐾𝐹  is the radial basis function kernel 

𝐾𝐹(𝐹RDKit, 𝐹RDKit
′ ) = exp (−

‖𝐹RDKit−𝐹RDKit
′ ‖

2

2𝜎2
). For the sake of simplicity, MGK and 

D-MPNN represent variants that incorporate the RDKit features in the following 

text. 

 

Implementation 

 All codes for the GP-MGK are available in our GitHub repository.34 We use 

the GraphDot27 python package to compute the marginalized graph kernels and 

perform GPR. We use the scikit-learn package to carry out GPC, principal 

component analysis (PCA), and kernel PCA.35 We use the Descriptatorus 



package36 to calculate the RDKit features and Hyperopt package37 to optimize 

hyperparameters. 

 

III. EXPERIMENTS 

Data sets 

 The publicly available data sets used in this study are listed in Table 5. 

These data sets are commonly used for benchmark studies in molecular 

property prediction.2,14 

 

Hyperparameters Optimization 

 There are 48 hyperparameters for Gaussian process regression (GPR), 47 

hyperparameters for Gaussian process classification (GPC), and four 

hyperparameters for D-MPNN. We use Tree of Parzen Estimators (TPE) to 

optimize hyperparameters to obtain optimal performance.38,39 

For GPR, we use different random seeds to perform Bayesian optimization 

repeatedly 20 times, with 100 iterations for each optimization. The best 

hyperparameters with the smallest leave-one-out loss are selected. The optimal 

hyperparameters are listed in Table S1. For GPC, the data is split 10 times at 

a ratio of 80:20, and Bayesian optimizations of 100 iterations are performed to 

determine the best hyperparameters based on the averaged performance on 

test sets of the 10 data splits. The optimal hyperparameters are listed in Table 

S2. It is noticed that the hyperparameter F in the last row is fixed in Bayesian 



optimization since it does not affect the predicted value but scales the 

magnitude of the predictive uncertainty. As we will discuss below, it is adjusted 

by minimizing the miscalibration area. 

 For D-MPNN, we optimized the hyperparameters following the setting of 

Yang et al. The data is split 10 times at a ratio of 80:10:10, and Bayesian 

optimizations of 20 iterations are performed to determine the best 

hyperparameters based on the averaged performance on validation sets of the 

10 data splits.14 The optimal hyperparameters are listed in Tables S3 and S4. 

 

Data Splits and Performance Evaluation 

 With the optimized hyperparameters, we evaluate both models on the same 

data splits. For each data set, we performed both random and scaffold data 

splits. The scaffold split is more challenging because the molecular scaffolds in 

the test set are not included in the training set. The data were divided into the 

training, validation, and test set according to the ratio of 80:10:10. The D-MPNN 

was trained for 50 epochs, and the model with the best performance on the 

validation set was used as the final model to make predictions on the test set. 

For the GP-MGK, we use the training set to build the model and make 

predictions on the test set. The data of the validation set is not used. The 

evaluation process was repeated 100 times. 

 

Evaluation Metrics 



 For regression tasks, mean absolute error (MAE), root mean square error 

(RMSE), and R2 are used. For classification tasks, area under the receiver 

operating characteristic curve (ROC-AUC) is used. For uncertainty 

quantification (UQ), negative log-likelihood (NLL) and miscalibration area are 

used. 

In statistics, likelihood measures the goodness of fit of the model to a 

sample of data, and minimize negative log-likelihood (NLL) is commonly used 

as the loss function for UQ.32,40 

 Miscalibration area is one way to evaluate the UQ quality. An example is 

shown in Figure S1. We plot the confidence interval versus the percentage of 

the experimental value of the samples in the test set covered by the confidence 

interval curve, which is called the calibration curve. The miscalibration area is 

the area between the calibration curve and the diagonal. 

 

IV. RESULTS AND DISCUSSION 

We compared the performances of optimal GP-MGK and D-MPNN models. 

In this section, “GPR-MGK”, “GPC-MGK” refers to Gaussian process 

regression and classification with MGK. “D-MPNN Optimized” refers to the D-

MPNN with RDKit features and optimized hyperparameters, and “D-MPNN 

Ensemble” refers to an ensemble of five “D-MPNN Optimized” models. 

“Ensemble” refers to a model that ensembling GPR-MGK (GPC-MGK for 

classification) and “D-MPNN Ensemble”. 



  

Benchmark on Same Data Splits 

 It is important to compare different models on the same data splits, 

otherwise, contradictory results could be obtained due to random noise. This is 

illustrated by applying the GPR-MGK model using the ESOL data set. In Figure 

2, the RMSE of the test set is plotted as a function of the repeated number of 

data splits. Each string is the statistical result of 100 individual runs with different 

random seeds. The difference between the best and worst results is 0.06, 0.02, 

0.01, 0.006 for repeating times of 5, 25, 50, 100. Therefore, the same data splits 

are used to compare GP-MGK and D-MPNN models. Dwivedi et al. also held 

this viewpoint when benchmarking graph neural networks.41 

 

GP-MGK VS D-MPNN: Prediction Performance 

 We first compare GPR-MGK with D-MPNN Ensemble on the ESOL data 

set. In Figure 3A,B, comparisons of predictions using GPR-MGK and D-MPNN 

Ensemble against the reference data are given, and the corresponding RMSE 

values are listed. The prediction performance of GPR-MGK and D-MPNN 

Ensemble is in the same level, and ensembling prediction by averaging both 

predictions is better. In Figure 3C,D, the prediction errors of GPR-MGK and D-

MPNN Ensemble are compared, and an obvious correlation between them is 

observed. In more detail, we draw the difference between the predictions of 



GPR-MGK and D-MPNN Ensemble for different molecules in Figure 3E,F. The 

gray area represents the standard deviation of the same molecule under 

different data splits. For most molecules, the predictions of GPR-MGK and D-

MPNN Ensemble are consistent. The results for QM7, FreeSolv, Lipophilicity 

and PDBbind data sets are shown in Figures S2-S5. The correlation between 

the predictions of GPR-MGK and D-MPNN are observed for all data sets and 

both random and scaffold splits, indicating that the molecular features extracted 

through D-MPNN are similar to the features extracted using marginalized graph 

kernels. We think the correlation of GPR-MGK and D-MPNN comes from the 

fact that both models are based on the Weisfeiler-Lehman graph isomorphism 

test. 

The regression results are numerically summarized in Table 6 and 

graphically summarized in the left of Figure 4. There are a total of 14 cases 

(seven data sets × two data split types). Compared with D-MPNN Optimized, 

GPR-MGK achieves better results in five cases, similar results in five cases, 

and poor results in four cases. Compared with D-MPNN Ensemble, GPR-MGK 

achieves better results in three cases, similar results in four cases, and poor 

results in seven cases. We emphasize that although the predictive abilities of 

GPR-MGK and D-MPNN are at the same level, their ensemble predictions are 

the best in 13 comparisons, except for the GPR-MGK on the QM7 dataset using 

scaffold splitting. 

 The classification results are numerically summarized in Table 7 and 



graphically summarized on the right of Figure 4. For the BACE, BBBP, and 

SIDER data sets, the conclusion is the same as the above, that is, the 

performance of GPC-MGK is similar to D-MPNN Ensemble, and the ensemble 

prediction of GPC-MGK and D-MPNN Ensemble is the best. For the ClinTox 

dataset, D-MPNN outperforms GPC-MGK. 

 

GP-MGK VS D-MPNN: Principal Component Analysis 

 We performed PCA42,43 on the latent representations of D-MPNN, and 

kernel PCA44 on the hybrid kernel. “D-MPNN latent 1” refers to the latent 

representations between the message passing phase and readout phase, and 

“D-MPNN latent 2” refers to the latent representations immediately before the 

output layer. 

 In Figure 5, the eigenvalue spectra of kernel matrices are plotted. For D-

MPNN, the kernel matrices are computed by the element-wise dot product. The 

eigenvalues of D-MPNN latent 1 decay fastly, which indicates the molecular 

representation learned after message passing is of low rank. The eigenvalues 

of D-MPNN latent 2 decay slowly, indicating that the molecular representation 

is transformed from low-rank to high-rank in the readout phase. We think this is 

why Hirschfeld et al. use D-MPNN latent 2 as the input of union-based methods 

for UQ, rather than D-MPNN latent 1.45 Based on the results in the previous 

section, the correlation of the predictions of MGK and D-MPNN indicates that 



their molecular representations contain the same information. Relatively, D-

MPNN latent 2 is more similar to MGK. 

 In Figure 6, we show the data embedding of the ESOL data set in the first 

two principal components (PC1 and PC2) of MGK and D-MPNN. In all 

molecular representations, PC1 and PC2 mainly contain two pieces of 

information: (1) whether the molecule is cyclic; (2) the number of heavy atoms 

contained in the molecule. In the data embedding of D-MPNN latent 1, cyclic 

and non-cyclic molecules are separated, and the distribution of the number of 

heavy atoms is messy. Compared with D-MPNN latent 1, the data embedding 

of MGK and D-MPNN latent 2 is very similar. A small part of cyclic and non-

cyclic molecules overlap, and the distribution of the number of heavy atoms is 

ordered. The similarity may provide an indirect clue as to why the predictions of 

the two models are correlated. The data embedding of other data sets is shown 

in Figures S6-S15. It is noticed that the data embedding on PC1 and PC2 only 

contains part of the information, and the real space is high-dimensional. 

 

GP-MGK VS D-MPNN: Uncertainty Quantification 

 GPR-MGK is a Bayesian inference method, and its prediction is Gaussian 

distribution. Therefore, the variance of the predicted Gaussian distribution can 

be used for UQ. This is crucial for the prediction of molecular property because 

it is currently impossible to have enough data to train an ML model that is 



applicable to all molecules. Therefore, we need to understand the range of 

capabilities of the trained ML model through UQ. Hirschfeld et al. have 

implemented a series of UQ methods for D-MPNN, among which the top three 

models are D-MPNN RF (random forest), D-MPNN GP (Gaussian process), 

and D-MPNN MVE (mean-variance estimation).45 In this work, we use D-MPNN 

MVE as a comparison model, because the former two need to retain a large 

amount of data as a validation set. D-MPNN MVE modifies the output layer of 

D-MPNN to mean and variance, and the loss function to NLL. In this section, 

we only use random split. 

The predicted uncertainty obtained directly from the ML models is 

uncalibrated uncertainty, which means that it needs to be scaled by a factor to 

obtain a meaningful predictive variance. In GPR-MGK, the scale factor is 

equivalent to the hyperparameter F in eq 9. Figure 7 shows how NLL and 

miscalibration area vary with the scale factor on the ESOL data set. The NLL is 

not sensitive to the scale factor, so the optimal scale factors were obtained by 

minimizing the miscalibration area. 

The NLL and the miscalibration area are the metrics for the overall 

evaluation of the quality of predictive uncertainty. More details of the UQ can 

be revealed by plotting the relationship between prediction errors and predicted 

uncertainty. The results of the ESOL data set are shown in Figure 8. In panels 

A and B, the prediction data are divided into 10 intervals according to predicted 

uncertainty. For each interval, the errors is plotted in the form of a violin shape, 



where the horizontal bars represent the maximum, median, and minimum 

values, and the width represents the probability distribution. The data 

percentage, MAE, and R2 of each interval are displayed below. In panels C and 

D, we plot the MAE of predictions as a function of predicted uncertainty, and 

the dashed line is the “ideal” MAE assuming that the truth values to be predicted 

perfectly obey the Gaussian distribution of predicted mean and variance. For 

both models, the prediction error increases with the predicted uncertainty, but 

the slope of GPR-MGK is larger and closer to the "ideal" MAE than D-MPNN 

MVE, which indicates that the predicted uncertainty of GPR-MGK is more 

reliable. 

 The NLL and the miscalibration area are summarized in Table 8, and the 

relationship between prediction errors and predicted uncertainties of other data 

sets is shown in Figures S16-S21. Among them, GPR-MGK outperforms in the 

ESOL, FreeSolv, lipophilicity, and PDBbind-R data sets. D-MPNN MVE 

outperforms in the PDBbind-C, PDBbind-F, and QM7 data sets. The problem of 

D-MPNN MVE is that the slope of the true prediction error relative to the 

predicted uncertainty is smaller, which results in the predicted uncertainty 

underestimate the error in the low-value range and overestimate the error in the 

high-value range. 

Unlike the case of predictive accuracy evaluation, we think that data quality 

plays an important role in the comparison of UQ methods. If the noise in the 

data is too large, it is difficult to judge whether the prediction error is caused by 



the model or the noise, which may lead to contradictive results. The prediction 

R2 of different data sets is summarized in Table S5. The ESOL and the FreeSolv 

data sets are the least noisy because the R2 is larger than 0.9. For the PDBbind 

data set, R2 is lower than 0.5, indicating that the data noise is too high. For the 

QM7 dataset, the NLL is too high because we use the two-dimensional graph 

converted by SMILES as the model input, and the three-dimensional coordinate 

information is ignored. According to Tang and de Jone’s work, using graphs with 

three-dimensional coordinates as input can improve prediction performance by 

about one order of magnitude and provide reliable UQ.29 Therefore, we 

conclude that the UQ of GPR-MGK is better than D-MPNN MVE. 

The advantages of GPR-MGK are its accuracy and its computational 

efficiency in small data sets. The advantage of MPNN MVE is its computational 

efficiency for large data sets. For example, Graff et al. used MPNN UQ as a 

surrogate model to perform high-throughput virtual screening on a data set 

containing 100M molecules through active learning,40 which is an impossible 

mission for GPR-MGK. On the other hand, MPNN UQ needs to retrain the 

neural network for each step of active learning, which is expensive. Therefore, 

a batch of samples must be added in each step of active learning, which limits 

its performance. However, GPR-MGK allows active learning by adding samples 

one by one.29 

 



V. CONCLUSIONS 

In this article, we proposed a state-of-the-art hybrid kernel for molecular 

property prediction. It consists of (1) the marginalized graph kernel with additive 

node, edge features, and inhomogeneous starting probabilities operating on the 

molecular graph, and (2) radial basis function kernels operating on RDKit 

features. Using D-MPNN as a comparison, we benchmarked the GP-MGK on 

11 public data sets. 

For prediction performance, GP-MGK is at the same level as that of D-

MPNN. In addition, by comparing the predictions on a molecule-by-molecule 

basis, a correlation between the predictions of GPR-MGK and D-MPNN was 

observed. In addition, the ensemble prediction of GPR-MGK and D-MPNN is 

more accurate than each of them. 

For uncertainty quantification, we demonstrate GPR-MGK outperforms D-

MPNN MVE. In practical applications, reliable prediction uncertainty is very 

important when predicting new compounds with unknown properties. 

Although the performances of GP-MGK and D-MPNN are close under the 

condition of optimal hyperparameters, the computational cost of finding the 

optimal hyperparameters of GP-MGK is still expensive. Therefore, an efficient 

algorithm to find the optimal hyperparameters of the graph kernel is needed. 

Finally, we guide the application of GP-MGK and D-MPNN. The advantage 

of D-MPNN lies in computational efficiency, so it is suitable for property 



prediction tasks and active learning for large-scale (million) data sets. The 

advantage of the GP-MGK is its nature of Bayesian inference, which can be 

applied to small-scale data sets(less than 50k) for uncertainty qualification30 , 

active learning,29, and data noisy detection.46  
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Table 1. Atom Features for Marginalized Graph Kernel. 

 

 

  

feature description size 

AN atomic number 1 

AN_1_list atomic number for 1st layer heavy neighbors variable 

AN_2_list atomic number for 2nd layer heavy neighbors variable 

AN_3_list atomic number for 3th layer heavy neighbors variable 

AN_4_list atomic number for 4th layer heavy neighbors variable 

AN_1_count number of heavy atoms in 1st layer neighbors 1 

AN_2_count number of heavy atoms in 2nd layer neighbors 1 

Hcount number of bonded hydrogens 1 

MorganHash Morgan substructure at radius=3 1 

ringSize_list the ring size of all distinct rings variable 

ring_count the number of distinct rings 1 

chirality unspecified, tetrahedral CW/CCW, or achiral 1 



Table 2. Bond Features for Marginalized Graph Kernel. 

 

 

  

feature description size 

bond type bond order, single, double, triple, or aromatic 1 

stereo none/E/Z for double bond 1 

ring-stereo none/E/Z for single bond in a ring 1 

conjugated whether the bond is conjugated 1 



Table 3. Atom Features for D-MPNNab 

 

aAll features are one-hot encodings except for atomic mass, which is a real 

number scaled to be on the same order of magnitude. 

bThis table is the same as Table 1 in Yang et al.’s paper.2 

  

feature description size 

atom type type of atom (ex. C, N, O), by atomic number 100 

# bonds number of bonds the atom is involved in 6 

formal charge integer electronic charge assigned to atom 5 

chirality unspecified, tetrahedral CW/CCW, or other 4 

# Hs number of bonded hydrogen atoms 5 

hybridization sp, sp2, sp3, sp3d, or sp3d2 5 

aromaticity whether this atom is part of an aromatic system 1 

atomic mass mass of the atom, divided by 100 1 



Table 4. Bond Features for D-MPNNab 

 

aAll features are one-hot encodings. 

bThis table is the same as Table 2 in Yang et al.’s paper.2 

 

  

feature description size 

bond type single, double, triple, or aromatic 4 

conjugated whether the bond is conjugated 1 

in ring whether the bond is part of a ring 1 

stereo none, any, E/Z or cis/trans 6 



Table 5. Data sets Used in This Paper 

 

 

  

data set task compounds metric 

ESOL regression 1 1128 RMSE 

FreeSolv regression 1 642 RMSE 

Lipophilicity regression 1 4200 RMSE 

PDBbind-C regression 1 168 RMSE 

PDBbind-R regression 1 3040 RMSE 

PDBbind-F regression 1 9880 RMSE 

QM7 regression 1 6830 MAE 

BACE classification 1 1513 ROC-AUC 

BBBP classification 1 2039 ROC-AUC 

SIDER classification 27 1427 ROC-AUC 

ClinTox classification 2 1478 ROC-AUC 



Table 6. Prediction Results of GPR-MGK, D-MPNN, and their Ensembling Model 

 

data set ESOL FreeSolv Lipophilicity PDBbind-C PDBbind-R PDBbind-F QM7 

random split 

GPR-MGK  0.547±0.050 0.822±0.173 0.595±0.037 1.940±0.289 1.302±0.049 1.284±0.026 53.22±3.12 

D-MPNN Optimized 0.570±0.054 0.904±0.184 0.551±0.044 1.849±0.236 1.324±0.052 1.279±0.030 59.71±3.40 

D-MPNN Ensemble 0.557±0.051 0.882±0.175 0.539±0.046 1.853±0.232 1.297±0.048 1.261±0.029 57.06±3.34 

Ensemblea 0.537±0.049 0.817±0.167 0.534±0.041 1.812±0.239 1.273±0.046 1.244±0.026 50.29±3.13 

scaffold split 

GPR-MGK  0.789±0.090 1.789±0.605 0.641±0.041 2.005±0.282 1.408±0.067 1.352±0.042 66.90±9.62 

D-MPNN Optimized 0.822±0.090 1.782±0.591 0.603±0.056 1.901±0.271 1.417±0.074 1.334±0.050 83.98±10.32 

D-MPNN Ensemble 0.793±0.079 1.729±0.580 0.589±0.051 1.892±0.281 1.390±0.069 1.315±0.039 79.46±10.11 

Ensemblea 0.772±0.081 1.703±0.599 0.580±0.044 1.851±0.252 1.371±0.066 1.302±0.040 69.31±9.45 

aEnsemble prediction of GPR-MGK and D-MPNN Ensemble. 

 

 

 

  



Table 7. Prediction Results of GPC-MGK, D-MPNN, and their Ensembling Model 

 

aEnsemble prediction of GPR-MGK and D-MPNN Ensemble. 

  

data set BACE BBBP SIDER ClinTox 

random split 

GPC-MGK 0.883±0.028 0.921±0.023 0.658±0.023 0.774±0.081 

D-MPNN Optimized 0.893±0.026 0.924±0.021 0.655±0.026 0.900±0.049 

D-MPNN Ensemble 0.899±0.024 0.927±0.021 0.664±0.026 0.907±0.044 

Ensemblea 0.901±0.024 0.931±0.021 0.671±0.025 0.872±0.053 

scaf fold split 

GPC-MGK 0.858±0.044 0.907±0.030 0.623±0.023 0.814±0.062 

D-MPNN Optimized 0.858±0.042 0.911±0.030 0.634±0.030 0.888±0.042 

D-MPNN Ensemble 0.864±0.043 0.915±0.026 0.638±0.023 0.897±0.039 

Ensemblea 0.870±0.042 0.920±0.027 0.650±0.031 0.870±0.058 



Table 8. Uncertainty Quantification of GPR-MGK, D-MPNN MVE 

 

data set ESOL FreeSolv Lipophilicity PDBbind-C PDBbind-R PDBbind-F QM7 

GPR-MGK 

NLL 0.824 1.037 0.900 2.380 1.699 1.690 156.4 

Miscalibration Area 0.018 0.026 0.007 0.014 0.003 0.006 0.049 

D-MPNN MVE 

NLL 0.877 1.286 0.836 2.137 1.725 1.661 80.27 

Miscalibration Area 0.032 0.028 0.014 0.010 0.006 0.003 0.029 

 

  



 

Figure 1. Overviews of machine learning models. Top: In GP-MGK, the 

marginalized graph kernel with the molecular graph as the input and the RBF 

kernel with the RDKit features as the input are hybridized, followed by 

Gaussian process regression or classification. Bottom: In D-MPNN, the 

learned molecular representations using message passing are concatenated 

with RDKit features, followed by a feed-forward neural network. 

 



 

Figure 2. Performance evaluation of GPR-MGK on the ESOL data set with 

different repetition times. Each column corresponds to the distribution of 100 

evaluations. For each evaluation, the data is randomly divided into a training 

set and a test set at a ratio of 80:20. 

  



 

Figure 3. A comparison between GPR-MGK and D-MPNN Ensembles. Top: 

Random split. Bottom: Scaffold split. (A, B) The prediction on the test set using 

GPR-MGK  (red) and D-MPNN Ensemble (blue) are compared. (C, D) The 

relationship between GPR-MGK  error and D-MPNN Ensemble error. (E, F) 

The prediction differences between GPR-MGK  and D-MPNN Ensemble are 

sorted by molecule ID. The gray region is the standard deviation obtained by 

making predictions based on different training sets. 

  



 

Figure 4. Comparisons of graph kernel models against direct message passing 

neural networks. Top: Random data split. Bottom: Scaffold data split. Left: 

Regression data sets. Right: Classification data sets. 

  



 

Figure 5. Eigenvalues associated with the first 100 principal components of the 

latent representations of MGK, D-MPNN latent 1, and D-MPNN latent 2. All 

eigenvalues are normalized by the leading one. The eigenvalue spectra 

indicate the effective number of extracted features. 

  



 

Figure 6. First and second principal components of MGK, D-MPNN latent 1 

and D-MPNN latent 2 representations on the ESOL data set. Top: cyclic and 

acyclic molecules. Middle: the number of heavy atoms. Bottom: log solubility.  



 

Figure 7. Relationship between the negative log-likelihood (NLL, black), the 

miscalibration area (red), and the scale factor of predicted uncertainty. ESOL 

data set. 

  



 

Figure 8. Relationship between the prediction error and the predicted 

uncertainty using (A) GPR-MGK and (B) D-MPNN MVE. Relationship between 

the MAE and the predicted uncertainty using (C) GPR-MGK and (D) D-MPNN 

MVE. ESOL data set. 


