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Abstract
Feature attribution techniques are popular
choices within the explainable artificial intelli-
gence toolbox, as they can help elucidate which
parts of the provided inputs used by an underly-
ing supervised-learning method are considered
relevant for a specific prediction. In the context
of molecular design, these approaches typically
involve the coloring of molecular graphs, whose
presentation to medicinal chemists can be use-
ful for making a decision of which compounds
to synthesize or prioritize. The consistency of
the highlighted moieties alongside expert back-
ground knowledge is expected to contribute to
the understanding of machine-learning mod-
els in drug design. Quantitative evaluation
of such coloring approaches, however, has so
far been limited to substructure identification
tasks. We here present an approach that is
based on maximum common substructure al-
gorithms applied to experimentally-determined
activity cliffs. Using the proposed benchmark,
we found that molecule coloring approaches
in conjunction with classical machine-learning
models tend to outperform more modern, deep-
learning-based alternatives. However, none of
the tested feature attribution methods suffi-
ciently and consistently generalized when con-
fronted with unseen examples.

Introduction
Deep learning has quickly become a de-facto
first-class citizen modeling approach in drug
discovery applications, their main advantage
compared to other classical machine-learning
(ML) methods being their automatic feature
extraction capabilities.1,2 Among those ap-
proaches, message-passing methods, also known
as graph-neural-network models3,4 (GNNs)
have recently become increasingly popular in
chemoinformatics for relevant tasks such as
molecular property prediction,5 de novo gener-
ative design,6,7 or synthesis prediction.8

The rise of complex deep-learning methodolo-
gies in the discussed and related fields has also
been accompanied by an increasing demand of
explainability, as their inner workings continue
to remain elusive to interpretation among field
experts.9 Additionally, while these models have
been shown to provide impressive predictive ca-
pabilities in many use-cases, their performance,
especially in fields that feature heavy experi-
mental uncertainty, has been far from perfect,
making it natural to critically assess and ratio-
nalize their predictions before decision-making.
As a consequence, explainable artificial intelli-
gence (XAI) has become a very active topic of
research in theoretical ML,10 as well as within
other more applied fields such as computer vi-
sion and natural language understanding.11,12
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Figure 1: Two example ground-truth color-
ings for ligand pairs present in the benchmark
extracted from the 5BOT-4UM and 4F5Z-4F5
congeneric series, respectively. MCS calcula-
tions between the aforementioned pairs were
carried out and non-common atoms were as-
signed ground-truth labels according to their
activity difference sign.

In the specific context of chemoinformatics,
several attempts have been made in recent
years with the aim of uncovering black-box ML
algorithms in property prediction tasks.13–15
In particular, while some studies go to great
lengths to show how several modern feature
attribution methods can be used to some ex-
tent to identify structural motifs,16,17 or prop-
erty cliffs,18 it is hard to evaluate which fea-
ture attribution methods work best and under
which specific conditions. Along these lines, a
study by Sánchez-Lengeling et al.19 proposed a
quantitative benchmark for several well-known
feature attribution techniques in conjunction
with GNNs. While it was shown that some
modern feature attribution techniques can cor-
rectly highlight certain motifs, said benchmark
was limited to synthetic tasks where the train-
ing procedure solely consisted in identifying
whether certain molecules contained a set of
predefined molecular substructures. Further-
more, non-deep-learning approaches with other
classical coloring techniques were not consid-
ered in the study, while these have the advan-
tage of working under a wider umbrella of ML
models and descriptors.13,20–23

In real drug discovery settings, however, one

is usually interested in the explicit prediction of
pharmacologically-relevant endpoints, such as
potency, or complimentary ones such as absorp-
tion, distribution, metabolism, excretion and
toxicity (ADMET),24 which in practice imply
a certain degree of inherent experimental un-
certainty.25 With the goal of overcoming the
limitations of previous studies, in this work we
propose what we believe to be a more realistic
approach to evaluate feature attribution meth-
ods for in silico drug discovery. We rely on
maximum common substructure (MCS) algo-
rithms to build a large data collection of bi-
ologically active pairs of closely-related com-
pounds and use their associated activity in-
formation as a proxy for producing “ground-
truth” colorings. We believe that this sys-
tematic, large-scale identification of examples
yields a more relevant, comprehensive and less
biased analysis than a purely qualitative vali-
dation that is based on manually-selected test
cases or well-known pharmacophores extracted
from the literature.18 Given their rising popu-
larity, we evaluate several popular graph neu-
ral network architectures, as well as different
associated coloring procedures, and benchmark
them against other classical techniques. To our
surprise, we find that a comparatively simple
approach reported by Sheridan,20 which uses
a random forest as the underlying machine-
learning model significantly outperforms all
of the modern GNN-based feature attribution
techniques in the proposed benchmark when
the ligands present in the latter are also con-
tained in the training sets. However, we also
find out that none of the considered approaches
manages to achieve satisfactory coloring per-
formance on previously-unseen examples. Fi-
nally, we investigate the obtained results to ra-
tionalize the observed performance differences,
describe possible directions for future research,
and provide usage recommendations.

Materials and methods
We used two databases for different and com-
plimentary purposes, namely the BindingDB
protein-ligand validation sets26,27 (accessed
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Jan. 2021), and the ChEMBL28 database of
drug-like molecules (version 27). The Bind-
ingDB protein-ligand validation sets were used
as an starting point to build the proposed
benchmark, which feature 1, 222 molecular con-
generic series of sizes ranging between 10 and
50 compounds. Having obtained an evalua-
tion set based on closely-related compounds,
additional activity data per target was neces-
sary in order to train all underlying supervised
ML models. Towards that end, we used the
UniProt29 identifier associated with each of
the targets considered in the benchmark data
and correspondingly ran a compound search
in a locally-installed PostgreSQL instance of
the ChEMBL database. Several selection cri-
teria were applied: only activity information
in either IC50, Kd or Ki units was considered,
and only training sets with at least 100 activity
data points were kept. After applying these
filters, 997 training sets could be successfully
extracted.

Determining ground-truth colors

In order to determine ground-truth atom-level
color labels for the considered benchmark sets,
an implementation of the FMCS30 maximum
common substructure algorithm was used, as
available in the rdFMCS module of the rdkit
software package.31 MCS calculations were run
for all compound pairs in each benchmark series
whose activity difference exceeded 1 log units.
We excluded those cases where at least one
compound had a molecular weight higher than
800 Da, those pairs whose fraction of common
substructure atoms was below 50%, and those
whose MCS calculation time exceeded 5 min-
utes, for computational expense reasons.
Each identified pair represents an activity cliff

and we assume that the observed potency dif-
ference has to be the result of the structural
variation between the two compounds.32 Moi-
eties present only in the more active compound
are expected to receive a positive feature at-
tribution and vice versa. Atomic labels were
therefore assigned depending on the sign of the
activity difference in a pair with the common
substructure being considered neutral (see Fig-
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Figure 2: Histograms portraying the distribu-
tion of the number of benchmark pairs, train-
ing compounds available per target considered
in the BindingDB protein-ligand validation sets
(before and after removing identical ligands
present in their respective benchmark sets),
and percentage of benchmark ligands initially
present in the training sets.

ure 1 for examples). In the benchmark analyses
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described below, we assess the performance of
the examined methods based on how well their
coloring correlates with the ground truth.
This procedure resulted in 738 series featuring

at least one colored pair of compounds, as well
as available training data meeting the previ-
ously discussed criteria. Histograms describing
the distribution of both the number of bench-
mark pairs and training compounds considered
per set, as well as the percentage of benchmark
compounds initially present in the training sets
is provided in Figure 2.

Models

We make use of the GNN implementa-
tions provided by Sánchez-Lengeling et al.,19
which includes four popular variants: Graph-
Nets,33 Graph-Convolutional Neural Networks
(GCNs),4 Message-Passing Neural Networks
(MPNNs),3 and Graph-Attention Neural Net-
works (GATs).34 Arguably, all of previous fall
under the umbrella of message-passing algo-
rithms, which for completeness we briefly sum-
marize here.
Given a graph G = (V,E, u) with vertices

v ∈ V , edges e ∈ E and optional global graph
information u ∈ Rk, a graph neural network
is a function f that takes a graph as an input
and whose output is another graph with equal
topology but with updated (i.e. latent) node,
edge and global information. In practice, up-
dated representations are aggregated via a read-
out function into a single latent vector that can
be then forward-propagated to a single scalar,
so that f : G → R. The previous architecture
variants mainly differ in the choice of message
function (i.e. the strategy which determines
how node and edge updates are carried out).
For all GNN block types considered, nodes and
edges in the molecular graphs were featurized
with the descriptors detailed in Table 1. As
baselines we furthermore consider a 3-hidden-
layer fully-connected neural network, and a ran-
dom forest model using Extended Connectivity
Fingerprints (ECFP4)35 as input descriptors.

Table 1: Node and edge molecular graph fea-
tures used in the training of the GNN models,
as computed with the RDKit31 software pack-
age.

Description level Features

Atom atom type, chirality, valence, formal
charge, hybridization, bond degree,
presence in ring, aromaticity, number
of hydrogens, number of radical elec-
trons, atomic mass, van der Waals ra-
dius

Bond bond type, bond stereo, conjugation,
presence in ring

Feature attribution techniques

Several popular deep-learning feature attri-
bution methods were used, as available in
the accompanying code repository of Sánchez-
Lengeling et al.:19 GradInput,36 Class Activa-
tion Maps (CAM),37 Gradient Class Activation
Maps (GradCAM),38 Integrated Gradients39
and Attention Weights.34 For completeness, a
masking-like approach where the atom features
in each node in the graph are sequentially
zeroed-out, and its corresponding graph then
forward-passed through the model, was also im-
plemented (this method referred to as “diff” in
what follows). Furthermore, for baseline pur-
poses, the fingerprint-based masking method
proposed by Sheridan20 was also implemented,
where the types in each atom of a molecule are
sequentially changed to one that is not present
in the training set, and the difference between
the predictions using the unmodified and mod-
ified fingerprints is taken as a proxy for atom
importance. ECFP4 fingerprints are computed
for these modified molecules and then used for
prediction using either a random forest, or a
fully-connected neural-network model trained
with the hyperparameters specified in the pre-
vious section. While there is a plethora of ML
models that can also be used also in combina-
tion with other molecular fingerprinting strate-
gies (e.g. Daylight fingerprints40), we consider
only the previous two combinations mainly due
to their simplicity and practical popularity.
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Figure 3: Predictive performance, as measured via root mean squared error (RMSE, above) and
Pearson’s correlation coefficient (PCC, below) for all the 6 considered model types and 738 training
sets considered in this study, using a 20% random test split in each. Dotted vertical black lines
marking the median value for each model and metric combination.

Training and other details

All GNN and fully-connected-layer models
models were trained for a fixed number of 300
epochs, using a learning rate of 3 × 10−4 and
a batch size of 32 samples. The rest of hy-
perparameters were set as the default ones
detailed in Sánchez-Lengeling19 et al.. Three
hidden layers with a size of 64 units were used
for the node-update multilayer perceptrons in
the GNN architectures, while for the fully con-
nected models we used three-hidden layers with
a size of 256 units. Random forest models were
trained with 1000 base trees, and ECFP4 fin-
gerprints with a bond radius of 2 units, com-
puted via the rdkit software. For the Inte-
grated Gradients feature attribution method,
500 Riemann integral approximation steps were
used. Since most of the deep-learning color-
ing approaches produce both a score per node
cv as well as per edge bu,v, and the proposed
benchmark only considers the first, edge con-
tributions were evenly distributed among their
connecting nodes according to:

c′v = cv +
∑

i∈N (v)

bi,v
2
, (1)

where N (v) is the set of neighboring vertices at
one bond distance from vertex v.

Results

Model predictive performance

A summary of the predictive performance of all
the considered machine-learning models (using
a 20% random test-set split) and for each tar-
get considered is provided in Figure 3. Most
model types show satisfactory predictive capa-
bilities, with median Pearson correlation coef-
ficient (PCC) values above 0.7, although the
GATmodel type falls slightly behind with a me-
dian PCC of 0.65. Furthermore, with a median
root-mean-squared error (RMSE) and PCC val-
ues between experimental and predicted values
of 0.7 and 0.82, respectively, the random for-
est model significantly outperforms the second
best-performing alternative, namely the fully-

5



Figure 4: Median color accuracy and median F1 scores (geometric average of precision and recall)
at different MCS thresholds of common atom percentage for all the molecular pairs considered in
the benchmark.

connected neural network that uses the same
descriptor type (Wilcoxon paired signed-rank
test, p-values < 0.01), and consequently the
rest of the other competing GNN-based mod-
els. These results are in line with some conclu-
sions drawn from previous related research41,42

where it was shown that bagging and boosting-
based43–45 ML models performed at least on par
with more modern deep-learning alternatives at
a fraction of their computational cost. This is

usually the case in small-to-medium sample-size
scenarios, which are arguably commonplace in
hit-to-lead or lead optimization campaigns.

Molecular coloring benchmark

The main results of the proposed benchmark
can be seen in Figure 4, where color accuracy
and F1-scores are computed only taking into ac-
count the sign of the computed atomic attri-
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bution, and ignoring its magnitude. To evalu-
ate the generalization capabilities of the differ-
ent XAI approaches, we report results for both
the case where benchmark ligands are present
during the training stage and after removing
them. To investigate whether the size of sub-
structural change between pairs has an effect on
the performance of the different feature attribu-
tion methods, the proposed benchmark was fur-
ther studied at different percentage thresholds
of shared atoms between the considered pairs.
First looking at the case where benchmark

ligands had not been removed from the train-
ing sets, it is a surprising result that the best
performing molecular feature attribution ap-
proach, by a considerable margin, is the one
proposed by Sheridan,20 and particularly in
combination with an underlying random for-
est model as well as ECFP4 fingerprints. Cu-
riously, the next best-performing approach is
a feed-forward neural network model using an
identical featurization schema. The rest of
the deep-learning-based approaches (Integrated
Gradients, GradInput, CAM, GradCAM, diff)
fall significantly behind these two, with per-
formances only marginally better than random
color assignment (i.e. 50% accuracy). With a
margin of 6 absolute accuracy percent points
w.r.t. the second best-performing GNN-based
method (considering shared pairs with at least
50% common atoms, as per determined by the
computed MCS), the exception is marked by
the simple masking method (i.e. diff.) in com-
bination with the GraphNet block type. Simi-
lar results can be drawn from the F1 score plot,
although in this case the latter method strug-
gles to produce scores noticeably higher than
50% for pairs of compounds whose percentage
amount of common atoms is below 70%.
Conclusions drawn from the benchmark

where pairs were removed if existing in their
corresponding training sets are dramatically
different. None of the proposed methods, in-
cluding the two best-performing ones under the
previous case manage to surpass the 60% accu-
racy level line, and they only surpass the 50%
F1 score line only in cases of minor ligand struc-
tural differences (common atom share higher
than 90%, as per determined by their MCS).

In particular, 8 of the considered combinations
even failed to produce accuracies significantly
higher (one-sided t-test, α = 0.01) than ran-
dom color assignment at a threshold of 50%
MCS shared atoms, such as the GradInput or
the Integrated Gradients approach in combina-
tion with the GCN, GraphNet and GAT block
types.
This seems to either suggest that (i) many

of the studied underlying ML models strug-
gle at true mechanistic generalization (i.e., the
so-called Clever Hans effect46), and can only
provide meaningful explanations either if (i)
the compound had been previously seen dur-
ing training — a fact that is fundamentally at
odds with satisfactory predictive performance
as evaluated on their specific test-sets — or (ii)
that current XAI techniques are unable to cap-
ture if the underlying ML models are learning
activity cliffs.

Color agreement and influence of
other variables

We first assessed to what degree the different
molecular coloring approaches display any de-
gree of agreement, as methods with little color
correlation could be interpreted as orthogonal
and could potentially provide different inter-
pretations to specific property predictions. To-
wards that end, in Figure 5 we present the av-
erage Spearman’s rank correlation coefficient
ρ for all coloring methods considered in the
benchmark. While most approaches show a
low degree of correlation, and even negative
in some cases, the two fingerprint-based ap-
proaches — which coincidentally were the ones
that fared better in the presented benchmark
— display a moderate agreement (ρ = 0.41).
The Class Activation Map family of methods
(i.e. CAM and GradCAM), despite their poor
performance, also show a considerable degree of
agreement (about ρ ' 0.5 for some of the com-
binations) both within themselves and across
different GNN block types (e.g. GCN, MPNN,
GraphNet, GAT). Another interesting agree-
ment with a similar level of correlation is the
one found between the masking family of meth-
ods (i.e. diff.) for the GCN and MPNN block
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Figure 5: Average Spearman’s ρ coefficient among the colors produced by all the feature attribution
methods considered in this benchmark.

types, although these are correlated to a lesser
degree (ρ ' 0.3) with the best-performing GNN
block type, namely GraphNet.
We further studied whether other factors

could be used to forecast the color accuracy of
the different feature attribution methods. In
particular, we evaluated whether the molecu-
lar similarity between the training and bench-
mark series, the number of training examples,
and predictive performance on held-out data
had an influence on attribution performance, as
measured by the color accuracy reported in the
previous section. In Figure 6, we present re-
sults on the influence of chemical similarity, as
measured by the Tanimoto coefficient between
ECFP4 fingerprints corresponding to pairs of
molecules extracted from the train and bench-

mark sets, for the fingeprint-based methods and
the ones used with the GCN block type. With
PCC values between these two variables not
noticeably higher than zero, we conclude that
molecular similarity has no relevant influence
on the quality of the colorings produced by
any of the considered feature attribution meth-
ods. Similar conclusions can be drawn from the
rest of the block types and variables considered
(Figures S1-S16).

Discussion
In this work we proposed a simple benchmark
based on the MCS of closely-related compounds
featuring property cliffs, to evaluate the per-
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fingerprints — and color accuracy in each of the considered benchmark sets in this study. Results
presented for the masking approach proposed by Sheridan20 and the GNN-based feature attribution
methods for the GCN block.

formance of the molecular colorings produced
by feature attribution models. We believe that
this benchmark represents a realistic test case
that covers a wide range of compound series
and is closely related to how medicinal chemists
tend to think about chemical structures and
how leads are typically optimized.47,48 In molec-
ular machine learning, activity cliffs were in the
past often falsely discarded as outliers, but are
increasingly considered as particularly informa-
tive and relevant to assess the performance of a
model.32,49
We have furthermore shown that modern

graph-based deep-learning methods, while
able to correctly identify simple chemical mo-
tifs when trained on synthetically-generated
datasets, struggle to correctly highlight those
in real-world lead optimization datasets, even
when present in the training set. This work,
at some level, further highlights the impor-
tance of testing simple baselines when evalu-
ating newly-developed approaches in molecu-
lar machine-learning research, as these were
among the most performant ones. However,
these conclusions need to be taken with cau-
tion, as no combination of XAI method and
underlying ML model was able to successfully
color previously-unseen pairs of molecules in a
consistent manner (the best one only managed
to do so on 56% of all tested cases).

In general, based on the results obtained

in this study, we discourage the overall use of
modern feature attribution methods in prospec-
tive lead optimization applications, and partic-
ularly those that work in combination with
message-passing neural networks. In general,
while some methods displayed agreement with
ground-truth colorings, these were only under
scenarios where the colored ligands were present
in the training sets. While comparatively sim-
ple ML models, such as random forests or fully-
connected networks had shown the best results
overall, if graph neural networks are to be used,
the only combination that showed noticeably
more informative results than its peers is the
GraphNet block type in combination with a
simple masking approach. These conclusions,
however, do not imply that current feature at-
tribution methods cannot be used for other
tasks within the drug discovery pipeline. In
particular, these have been proven useful in the
context of structural alert identification50 (e.g.
identifying toxic moieties51). Alternatively,
the results suggest that the machine-learning
models, if providing accurate predictions, could
still offer an orthogonal view to how medicinal
chemists typically think of chemical structures
(e.g. in terms of small changes to a common
core)

Overall, we hope that the provided bench-
mark can serve as a new and more realistic
starting point to evaluate explainable artificial
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intelligence techniques in the context of predic-
tive lead optimization models, and that it can
motivate the development of new approaches
that can successfully provide meaningful pre-
dictions in this setting.

Data and code availability
All the results presented in this study can be
reproduced with the accompanying AGPLv3-
licensed code repository. (https://github.
com/josejimenezluna/xaibench_tf) In order
to encourage the future development and test-
ing of future molecular feature attribution
methods, all pairs of compounds with their re-
spective assigned colors are available as a com-
pressed tarball. Instructions to download these,
as well as all models and training datasets are
also provided in the repository.
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