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ABSTRACT 10 

We report for the first time the use of experimental electron density (ED) in the Protein Data Bank 11 

for modeling non-covalent interactions (NCIs) for protein–ligand complexes. Our methodology is 12 

based on the reduced electron density gradient (RDG) theory describing intermolecular NCI by 13 

ED and its first derivative. We established a database called the Experimental NCI Database 14 

(ExptNCI; http://ncidatabase.stonewise.cn/#/nci) containing ED saddle points, indicating 15 

~200,000 NCIs from over 12,000 protein–ligand complexes. We also demonstrated the use of the 16 

database for depicting amide–π interactions in a protein–ligand binding system. In summary, the 17 

database provides details on experimentally observed NCIs for protein–ligand complexes and can 18 
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support future studies, including studies on rarely documented NCIs and the development of 19 

artificial intelligent models for protein–ligand binding prediction. 20 

INTRODUCTION 21 

Non-covalent interactions (NCIs) govern protein–ligand interactions and are critical for 22 

understanding the determinants affecting ligand-binding affinity. To achieve a deep understanding 23 

of NCIs, many protein–ligand interaction databases have been established in the last decade.1-7 24 

Two types of technologies are primarily applied to build such databases: (i) structure-based data 25 

mining and (ii) quantum mechanical (QM) methods-powered computation. For the first type, 26 

protein–ligand complex structures in the Protein Data Bank (PDB) are used as the main source, 27 

and different indices, such as distance, angle, exposed surface, and line-of-sight statistics, are used 28 

to depict the possibility of NCIs between a pair or two groups of atoms.8-10 For the second type, 29 

different levels of QM methods, ranging from semiempirical to coupled-cluster singles-doubles-30 

and-triples wave function (CCSD(T)), are used to quantify the interaction energy of small model 31 

complexes.5, 11 The two technologies together have contributed greatly to the development of rules 32 

for the recognition of classical NCIs, such as hydrogen bonds, halogen bonds, salt bridges, and π-33 

π stacking. To further expand the ability to recognize and quantify the entire spectrum of NCIs in 34 

highly complicated polarization environments such as protein–ligand binding systems and 35 

protein–protein interaction systems, we need to address the gap in the direct evidence of NCI 36 

between two proximal atoms in macromolecule systems. The gap is caused by the limitation of 37 

applying quantum mechanics for large systems and by the uncertainty of atom positions in the 38 

structures in PDB: e.g., the absence of hydrogen atoms and errors induced during structure building. 39 

  A potential solution for this gap can be found in the field of materials research12 in studies 40 

applying the reduced electron density gradient (RDG) theory13 in analyzing experimental electron 41 
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density (ED) derived from the X-ray diffraction of small molecular crystals.14, 15 Stating the RDG 42 

theory in simple terms, NCI can be observed by pinpointing the ED saddle point, i.e. (3,-1) critical 43 

points and further quantified by measuring ED deviation from a homogeneous electron distribution 44 

using density and its first derivative (s = [1/(2(3π2)1/3)]|∇|/4/3). Some researchers have even 45 

proved that experimental ED can contribute to optimizing functions for density functional theory 46 

(DFT), given the fact that experimental ED is inherently time-averaged, whereas DFT ED 47 

represents pure ground-state.12 48 

  Inspired by research on small molecule crystals,12, 14, 15 we have developed a potentially path-49 

breaking procedure to extract critical points from experimental ED for protein–ligand complexes 50 

deposited in the PDB. We processed >12,000 protein–ligand complexes and extracted ~200,000 51 

saddle points. These data were subjected to noise reduction by varying the ED resolution and then 52 

consolidated into a database called the ExptNCI (Experimental NCI Database), available at 53 

http://ncidatabase.stonewise.cn/#/nci. In addition to database construction, we also present a case 54 

of using such data for empirical NCI mining. ED saddle points indicating amide–π interactions are 55 

extracted and used to support the QM interaction energy landscape scan. The QM result is well 56 

aligned with the observed points: 85% of the observed points are covered by the region with energy 57 

lower than -1.44 kcal/mol (semiempirical level). In addition to the attractive interaction of NH/π, 58 

which is consistent with previous research,16 we also found a -2.65 kcal/mol interaction (DFT level) 59 

between the edge of the aromatic ring and the amide plane when they interact in a perpendicular 60 

“edge-on” geometry. 61 

RESULTS 62 

NCI observed in experimental ED of the protein–ligand complex 63 
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X-ray diffraction (XRD) detects the electron distribution of the target molecule and generates an 64 

ED map. By searching for the ED saddle points, we can not only recognize classical NCIs, such 65 

as hydrogen bonds, π stacking, and halogen bonds, but also find relatively rare NCIs such as 66 

fluorine interacting with sulfur and methyl interacting with pyridine, as shown in Figure 1a–e. 67 

Additionally, because experimental ED represents a time-averaged density, some dynamics of the 68 

NCIs can also be observed (Figure 1f and Figure 2). 69 

 70 

Figure 1. Observing NCI in X-ray diffraction-derived electron density maps (2Fo–Fc). Blue mesh 71 

indicates 2.5-Å resolution. All the maps are sigma-scaled and presented at specified counter levels. 72 
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Saddle points are indicated by red arrows. a) Hydrogen bond interactions (PDB: 1S38, map counter 73 

level 0.2 sigma); b) Interaction between methyl and aromatic ring (PDB: 1Q8T, map counter level 74 

0.2 sigma); c) interaction between F and methylthio (PDB: 2P4Y, map counter level 0 sigma); d) 75 

Weak π stacking revealed in low-resolution electron density map (PDB: 3LDQ; blue mesh 76 

indicates a 2.5-Å resolution map countered at 1.0 sigma; sand yellow mesh indicates a 3.5-Å 77 

resolution map countered at 1.0 sigma); e) Sulfur-involved NCI (PDB: 4I1R, map counter level 78 

0.3 sigma); f) Observing NCIs under dynamic context caused by the rotation of threonine side 79 

chain (PDB:1XKK, map counter level 0 sigma). 80 

 81 

Another benefit of using XRD ED for NCI detection is that we can clearly observe the signals 82 

of weak NCI; this can be done by checking them in low-resolution ED maps generated by only 83 

including XRDs at low-resolution. The intensity of XRD decreases as the ED map resolution 84 

increases, resulting in a relatively high signal-to-noise ratio for low-resolution ED maps, which 85 

enables us to confirm weak NCIs by checking them in ED maps at different resolutions (Figure 2). 86 

Doing so enables the identification of weak NCIs and helps distinguish them from false-positive 87 

signals. Our research conducted such a check in a low-resolution (3.5 Å) map for every NCI 88 

associated with saddle points having sigma-scaled intensity at 2.5 Å less than 0, i.e., less than the 89 

average.  90 
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 91 

Figure 2. Emphasizing NCI signal in low-resolution ED maps. All the maps are sigma-scaled and 92 

presented at counter level 0 sigma. Red dashed circles indicate the relatively weak NCIs, which 93 

are clearly observed in low-resolution ED maps. Hydrogen bonds in a dynamic environment are 94 

shown in panels a, b, and c, with 2Fo-Fc maps for PDB 1A28 at 2.5-Å, 3.0-Å, and 3.5-Å resolution, 95 

respectively. Red arrows indicate the rotation of the groups causing the dynamics. π stacking 96 

contacts are shown in panels d, e, and f, with 2Fo-Fc maps for PDB 1Z6E at 1.8-Å, 2.5-Å, and 3.0-97 

Å resolution, respectively. 98 

 99 

In addition to using saddle points as a general indicator for recognizing NCI, we also used RDG 100 

in experimental ED as a more comprehensive NCI descriptor. Both repulsive and attractive 101 
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interactions can be identified and visualized, as shown in Figure 3. Specifically, a spike in the 102 

RDG vs. sign(2) plot indicates the presence of NCIs (Figure 3b), with the location of the spike 103 

on the negative side of the horizontal axis indicating an attractive interaction and that on the 104 

positive side of the axis indicating a repulsive interaction.13 105 

 106 

Figure 3. Depicting NCI with RDG in experimental ED for protein–ligand complex (PDB: 107 

2WNC). a) Saddle points detected in 2fo–fc map (counter level 1.0 sigma). Three saddle points 108 

indicating three hydrogen bonds are respectively indicated by yellow, purple, and cyan arrows; b) 109 

plots of RDG versus electron density multiplied by the sign of the second Hessian eigenvalue for 110 

NCIs indicated in the panel (a) because the  here is sigma-scaled, to avoid negative value, all the 111 

  values used for calculating RDG and sign(2) have their value added by 3. Spikes indicating 112 

three hydrogen bonds are indicated by arrows. All the dots on the scatter plot are colored according 113 

to their positions in real space. In detail, the dots within 1 Å of the saddle points 1, 2, and 3 are 114 

colored in yellow, purple, and cyan, respectively; c) RDG-based NCI isosurface showing the 115 

ligand–pocket interaction. Regions inside the RDG isosurface at a value of 0.2 (arbitrary unit) are 116 

indicated with dots, and the dots are colored based on sign(2) using the rainbow scheme, in 117 
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which blue depicts large negative values indicating strong, attractive interactions, and red depicts 118 

large positive values indicating repulsive interactions. 119 

However, one limitation of using experimental ED for RDG analysis needs to be mentioned. 120 

Because of the lack of experimental measures on the forward-scattered reflection swamped by the 121 

transmitted beam, which is known as F000, the absolute value of ED is not available for 122 

macromolecule crystals. Therefore, the ED maps are contoured on a relative scale, and we had to 123 

use a sigma-scaled  for calculating RDG and sign(2). Consequently, the plot in Figure 3b has 124 

scales on the horizontal and vertical axes in arbitrary units. However, the spikes appearing in low-125 

density regions still can indicate the occurrence of NCIs. 126 

ExptNCI database content 127 

The current version of ExptNCI contains a total of 215,397 saddle points extracted from the 128 

experimental ED of 12,589 ligand–pocket complex structures in the PDB. The ED maps used for 129 

saddle points extraction have resolutions ranging from 2.5 to 4.5 Å, and 83% of them have a 130 

resolution greater than 2.5 Å. The ED topology information of the saddle points (such as sigma-131 

scaled , RDG, 1, 2, 3, and Laplacian) as well as the structural information of atoms at both 132 

ends of the saddle points (such as residual name, element, and its hybridization in the Mol2/Sybyl 133 

atom format)17 are included in the database (Table 1). We also included  at a low-resolution (3.5 134 

Å) at the position of saddle points in a 2.5-Å ED map to use it to distinguish noise from signals of 135 

weak NCIs. As discussed in the first part of the results section, blurring the map by only including 136 

low-resolution data with a relatively high signal-to-noise ratio can present weak NCIs more clearly. 137 

Here, we filtered out false-positive saddle points in a 2.5-Å resolution ED map to check if such 138 

points have negative sigma  in a 3.5-Å resolution ED map. 139 
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 140 

Table 1. List of fields in ExptNCI database 141 

Field Description 

NCI ID NCI ID in ExptNCI Database  

Complex ID Complex ID composed by PDBID and ligand name 

PDB Code PDB Code 

L_type Ligand atom type in Mol2/Sybyl format 

R_type Receptor atom type in Mol2/Sybyl format 

NCI_atom_pair NCI classified based on Mol2/Sybyl formatted type of atoms at both ends of the saddle point 

NCI_intuitive NCI classified based on the properties of the atoms at both ends of the saddle points 

NCI_ODDT ODDT based NCI type (hydrogen bond, salt bridge, halogen bond, pi stacking, pi cation) 

Resolution The high-resolution limit of electron density map available in PDB 

CP_type Type of critical point: (3,-1) indicates saddle points while (3,+1) indicates ring CPs 

RDG [1/(2(3π2)1/3)]|∇|/4/3, where  indicates the modified intensity of electron density. RDG is used as an 

indicator for NCI. 

slr 

sign(2), where  indicates the modified intensity of electron density at the critical point; 2 indicates 

the second larger value of the three eigenvalues of the electron density Hessian (second derivative) 

matrix. The value of slr is  when 2 is positive, indicating repulsive interaction; it is - when 2 is 

negative, indicating attractive interaction. 

1 Three eigenvalues of the electron density Hessian (second derivative) matrix, such that (1<=2<=3) 

2 
Three eigenvalues of the electron density Hessian (second derivative) matrix, such that (1<=2<=3), 

a positive 2 indicates repulsive interaction, while a negative 2 indicates attractive interaction 

3 Three eigenvalues of the electron density Hessian (second derivative) matrix, such that (1<=2<=3) 

Laplacian ∇2=1+2+3 

ED_2.5A_modified 
+3, where r is sigma-scaled ED intensity of the saddle point in 2Fo-Fc map at 2.5 Å. Such modified  

is used to calculate sign(2)  and RDG. 

ED_2.5A Sigma-scaled ED intensity of the saddle point in 2Fo-Fc map at 2.5 Å 
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ED_3.5A Sigma-scaled ED intensity of the saddle point in 2Fo-Fc map at 3.5 Å 

Distance Distance between ligand atom and receptor atom 

is_backbone Boolean: 1 if NCI occurs on protein backbone 

is_ED_based Boolean: 1 if NCI is defined based on an ED saddle point 

is_ODDT Boolean: 1 if NCI is recognized by ODDT 

ResName Name of the receptor residue involved in the NCI 

ResAtomName Name of the receptor atom involved in the NCI 

ResID Residue ID of the receptor residue involved in the NCI 

ChainID Chain ID of the receptor residue involved in the NCI 

LigName Name of the ligand involved in the NCI 

LigAtomName Name of the ligand atom involved in the NCI 

Lig_ResID Residue ID of the ligand residue involved in the NCI 

Lig_ChainID Chain ID of the ligand residue involved in the NCI 

Group Type of atom in terms of protein, water, or heteroatoms  

 142 

By including strong saddle points with sigma-scaled intensity at 2.5-Å resolution above 0 and 143 

weak saddle points which can pass the false-positive test by using the low-resolution map of 3.5 144 

Å (the method described above), we selected 95,532 saddle points, accounting for 51% of the 145 

originally labeled points (Figure 4a). Among them, 32% were also recognized as NCIs by rules 146 

embedded in the widely used software ODDT18, with hydrogen bonds accounting for the majority 147 

(Figure 4b). For the 68% that were not recognized by ODDT, we made a rough classification based 148 
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on the properties of the atoms at both ends of the saddle points, as shown in Figure 1c, in which 149 

polar interactions (hydrophilic–hydrophilic), aliphatic C…hydrophilic (N/O) interactions, and 150 

aromatic …hydrophilic (N/O) interactions accounted for the majority. 151 

 152 

 153 

Figure 4. Database construction and dataset profile. a) Database construction workflow. AND and 154 

OR in the select box are logical operators; b) distribution of interaction type for NCIs recognized 155 

by both ODDT and ED saddle points; c) distribution of interaction type for NCIs recognized by 156 

ED saddle points but not ODDT. 157 

 158 

Usage Case: Depicting amide–π interactions in the ligand–protein binding system 159 

Amide–π interactions16 have been increasingly studied for their involvement in the binding of 160 

drug molecules to target proteins.19-21 Most previous studies focused on how the plane of the arene 161 

ring interacts with the amide,16, 20-22 which can be classified as focusing on face-on geometry, a 162 

configuration with  approximately 0° in a coordinate system, as shown in Figure 5a. To check 163 
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whether such face-on geometry represents the majority of amide–π interactions in the protein–164 

ligand binding system, we extracted 3,162 amide-π pairs from the ExptNCI database (details of 165 

the list provided in supplementary information). The amide–π pairs were extracted based on the 166 

fulfillment of the following requirements: (i) it must have ED saddle points between the aromatic 167 

carbon and any atom of the amide group and (ii) the ED map must have a resolution better than 168 

2.5 Å (examples shown in Figure 5b). Those with saddle points between C=O and hetero atoms in 169 

the aromatic ring were excluded so that classical hydrogen bonds are not included in the analysis. 170 

The spatial distribution of the aromatic ring center relative to the carbon atom of the amide plane 171 

was plotted and colored with a -related color scheme. Interestingly, most of the interactions 172 

displayed  values of approximately 90°, indicating an edge-on geometry (Figure 5c). Notably, 173 

face-on and edge-on interactions occur on two ellipsoids with different radii (Figure 5d and 5e). 174 
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Figure 5. Using experimental ED data to support the profiling of amide–π interaction. a) Examples 176 

of amide–π interaction identified by ED saddle points. 2fo–fc map is countered at 0.3 sigma; b) 177 

coordinate system of amide–π interaction; c) spatial distribution of aromatic ring center relative to 178 

the carbon atom of the amide plane. Green and yellow indicate edge-on and face-on geometry, 179 

respectively. Illustrations of edge-on and face-on are also provided; (d) and (e) are ellipsoids and 180 

parameters obtained by fitting edge-on and face-on positions, respectively, to the general equation 181 

of an ellipsoid; for (f), (g), and (h), the top part represents the sampling scheme of formamide–182 

benzene conformation on the ellipsoids, with edge-on conformation sampled in two ways: 183 

perpendicular and parallel; the middle part represents GFN2-xTB level energy landscape, with the 184 

blue arrow pointing to a red star indicating global minimum; bottom part represents the 185 

conformation for global minimum on GFN2-xTB energy landscape and its M06-2x/6-311+G(d,p) 186 

energy calculated by GAMESS; i) energy landscape scan for N- acetyl glycyl glycinamide. The 187 

ellipsoid is with respect to the amide group indicated by the red circle. 188 

 189 

To further investigate the interaction geometry for amide–π, we identified the ellipsoids for face-190 

on and edge-on geometry by fitting the aromatic center positions of the two types of geometry to 191 

the general equation of an ellipsoid (Figure 5d and 5e). Subsequently, we computed the GFN2-192 

xTB level energy landscape based on the fitted ellipsoids using a formamide–benzene model 193 

system (Figure 5f, 5g, and 5h). For edge-on geometry (i.e., =90), the interaction is favored when 194 

benzene approaches the amide plane from the top of C=O perpendicularly (Figure 5f and 5g), with 195 

a minimum interaction energy of -2.65 kcal/mol calculated using M06-2x/6-311+G(d,p). For face-196 

on geometry (i.e., =0), the result of our energy landscape scan is consistent with previous 197 

studies,16 showing a favored interaction of NH/π and a repulsive interaction of C=O/π, as shown 198 
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in Figure 5h. The same approach was also applied to the amide group in a tripeptide to simulate 199 

the situation in the protein (Figure 5i). The computed energy landscape enjoyed a decent match to 200 

the spatial distribution of the observed amide–π interactions extracted from ExptNCI, with 85% 201 

of the latter covered by the former region with energy lower than -1.44 kcal/mol. 202 

In summary, the use of observed ED saddle points for NCI description is demonstrated in this 203 

case through its support for an energy landscape scan. 204 

DISCUSSION 205 

XRD provides an experimental ED map that contains massive amounts of information. Partial 206 

information is effectively interpreted into atom coordinates, and this information is entered in the 207 

PDB. However, in addition to atom coordinates, there is still plenty of information hidden in the 208 

experimental ED maps. For the first time, we extracted NCI signals from the ED maps and used 209 

them to establish the ExptNCI database. 210 

How does the ED-saddle-point-based observation complement and further improve geometry-211 

rule-based description? In most cases, the rule-based NCI descriptions have the following two 212 

characteristics: 1) they focus on a pair of atoms or groups by simplifying the environment and 2) 213 

they highly rely on the precision of atomic coordinates. Therefore, such description cannot always 214 

appropriately profile the NCIs in practical situations where the polarization environment is 215 

compilated and the model structures are inaccurate or have missing regions. Because ED-saddle-216 

point-based NCI observation mainly depends on electron density, it is less sensitive to the accuracy 217 

of the coordinates than rule-based descriptions. In addition, because the saddle points are detected 218 

from the experimental electron density, they can reflect the complex polarization environment and 219 

provide more information such as the relative strength of the NCIs and geometrically rare cases to 220 

support the development of new empirical rules. These superiorities are shown in two cases (Fig. 221 
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S1 and S2), where the saddle-point-based method is compared with that of the rules-based method 222 

for sulfur-involved NCIs and π-π stacking.18, 23, 24 223 

When exploring the ExptNCI database, users should check the three following aspects if some 224 

seemingly unusual NCIs are found: (i) check whether the structure is correctly determined, which 225 

can be judged by checking positive or negative densities around the NCI region of interest in the 226 

Fo–Fc map; (ii) check whether low-resolution causes merging of saddle points. An ED map 227 

becomes less detailed when the resolution is low, and two proximal saddle points may merge into 228 

one in a low-resolution ED map. As shown in Figure 6, just because there is only one saddle point 229 

between C=O and C=O in a 2.7-Å resolution ED map, it does not necessarily indicate the existence 230 

of NCIs between the two sp2 oxygen atoms. In other words, the case in Figure 6 resulted from the 231 

merging of two saddle points representing two individual classical hydrogen bonds; (iii) check 232 

whether there are any dynamics that can make the interaction more reasonable, e.g., the flip of the 233 

side chain for Gln, Asn, and His. 234 

 235 

Figure 6. Merging saddle points in low-resolution ED maps (PDB: 6MA1). a) Experimental ED 236 

2Fo–Fc map at 2.7-Å resolution shown at the counter level of 1.4 sigma. Two classical hydrogen 237 

bonds, indicated by orange dash lines, exist within the red dashed circle, but only one saddle point 238 
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is observed; b) GFN2-xTB calculated electron density, showing two saddle points at the same 239 

region. The map is countered at 0.03 e-/Å3. The empirical QM calculation is conducted using xtb25. 240 

 241 

To further improve the data in terms of quantity and quality, we consider two directions. The 242 

first is to expand the scale of the database by extracting NCIs from the interface of protein–protein 243 

interactions (PPI). This may allow us to achieve a more detailed understanding of the interaction 244 

fingerprint and ultimately benefit peptide/protein design. The second direction is to improve the 245 

accuracy of the data by solving multi-crystal variance, which is a problem caused by the lack of 246 

absolute ED values for macromolecule crystals. Such a challenge could be tackled by converting 247 

the ED values from the sigma-scaled density to the number of electrons. Previous studies that were 248 

aimed at measuring the quality of structures in PDB by analyzing ED can serve as a good starting 249 

point.26, 27 250 

Including the experimental saddle point ED intensity as NCI information can also be considered 251 

as a solution to support artificial intelligence-based protein–ligand binding prediction. Although 252 

experimental NCI is not always available as input, because most often, pocket–ligand complexes 253 

are generated by docking or molecular dynamics and thus lack experimental ED, we can build two 254 

machine learning models to first predict NCI from a given protein–ligand complex structure, and 255 

then use the predicted NCI to facilitate ligand binding affinity prediction. 256 

In addition to providing more data resources, describing NCI from the perspective of 257 

crystallography ED also inspired us to consider leveraging crystallography as a solution for 258 

molecular representation for machine learning models. To date, the majority of attempts by 259 

researchers to find molecular representations have been in real space, and many reports have been 260 

made using strings, molecular graphs, molecular matrixes, potential fields, and atom density 261 
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fields.28 However, an ideal representation comprehensively reflecting physical and chemical 262 

information, friendly to mathematics, and supported with plenty of experimental data available for 263 

AI model training is still absent. By applying crystallography theory, we can further expand the 264 

attempt in reciprocal space (i.e., frequency domain) and take a big step forward to realizing the 265 

ideal representation for molecules. Specifically, we apply Fourier transform (FT) on the atomic 266 

coordinates to transfer the information from real space to the frequency domain and then apply 267 

reverse FT on the frequency domain to bring back the information to real space as ED. By varying 268 

the resolution when conducting reverse FT in the frequency domain, we can obtain ED in real 269 

space with different levels of detail, emphasizing scaffold, atom, or even bond properties. Unlike 270 

graphs composed of vertices and edges, such representations fill the space in a continuously 271 

differentiable manner, which is favored by the CNN model. Unlike other 3D molecular 272 

representations, such representations are naturally associated with a large amount of testing data: 273 

the experimental ED deposited in the PDB. We have already tested them on a 3D molecule 274 

generation model and have obtained some promising results that will be reported later. 275 

In summary, a massive amount of information is present in the experimental ED maps deposited 276 

in the PDB. The usage of only part of that information has created our current understanding of 277 

protein structures. We hope that our work can shed some light on leveraging experimental ED 278 

maps to further understand NCIs in the macromolecular system and on combining crystallography 279 

and AI from the perspective of providing reliable data sources and exploring better representation 280 

of molecules. 281 

 282 

METHODS 283 

Database construction 284 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2022. ; https://doi.org/10.1101/2022.01.24.468575doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.24.468575
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Experimental ED map processing and critical point labeling 285 

All coordinates and map coefficients were obtained from PDB-REDO.29 ED maps covering 286 

ligands and pocket residues within 5 Å of the ligands were synthesized at multiple resolutions 287 

using Phenix.30 The maps were stored in the xplor format with a 0.15-Å grid interval. The critical 288 

points were labeled using the following procedure: 289 

The ligand in our database is defined using PDBbind (version 2019) as a benchmark.31 290 

Ligand/receptor atom pairs with a distance <5 Å were identified, and the midpoint was set as the 291 

origin; 292 

The RDG value of all the grids was calculated within 1 Å of the origin; 293 

The gird point with local minimum RDG was found and marked as a saddle point candidate; 294 

For all the saddle point candidates, the eigenvalue of the Hessian matrix was calculated and 295 

sorted so that 3> 2> 1. If the eigenvalues did not fulfill the criteria of 3> >2> 1, the 296 

candidate was discarded; 297 

If there were two saddle point candidates <0.5 Å from each other, the one with the relatively 298 

weaker intensity was discarded. 299 

Atom property annotation 300 

The topology of ligands from PDB entries was curated by RDKit with isosteric SMILES from 301 

RCSB Ligand-Expo, and other ligands with missing data were curated using OpenBabel. The 302 

Mol2/Sybyl atom types of pockets and ligands in the database were annotated using OpenBabel 303 

and PyBel packages, and the rule-based molecular interactions in the database were analyzed and 304 

classified using the ODDT software package (version 0.7).18 305 

Web interface implementation 306 
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The database website was developed with a Java backend. The ligand similarity search or 307 

substructure search in the database was developed using RDKit, and NCI information was stored 308 

and queried through MySQL. NGL.js was implemented to display the receptor–ligand complex 309 

and the ED map. 310 

 311 

Amide–π interaction model 312 

  To avoid including O..N.ar hydrogen bonds, only amide–π systems with ED saddle points 313 

between C/N/O on the protein backbones and C.ar on ligands were subject to our analysis. To 314 

profile the spatial distribution of aromatic ring centers, all the amide groups of interest were 315 

superimposed and placed on the X––Y plane with a uniform orientation (Figure 5b), and all the 316 

aromatic centers of the amide–π systems were plotted in the Z-positive sector, given that the amide 317 

plane is a mirror plane. 318 

Four parameters including angles α, β, γ, and distance d are defined as shown in Figure 5b to 319 

describe amide–π geometry, in which the angle α is used to describe whether the π system is 320 

parallel (α=0 °±30° or 180 °±30°) or perpendicular (α=90±30°) to the amide plane; the angle γ is 321 

used to describe whether the aromatic ring center is facing toward the amide group in a “face-on” 322 

geometry (γ=0±30°), or showing its edge toward the amide group in an “edge-on” geometry 323 

(γ=90±30°). 324 

Ellipsoids for face-on and edge-on geometry were identified by fitting the aromatic center 325 

position for the two types of geometry to the general equation of an ellipsoid (Figure 5d, 5e). Then 326 

the fitted ellipsoids are represented by grids with an interval of 0.1 Å along both X and Y axes. To 327 

scan the interaction energy landscape based on fitted ellipsoids for benzene and formamide 328 

systems, we first determined the zero-point energy (-29.70 kcal/mol) by applying GFN2-xTB 329 
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calculation on a benzene–formamide complex with a distance of 50 Å between the two groups. 330 

Afterward, we placed benzene on the face-on grid in the pose where γ equals 0° to obtain a face-331 

on geometry complex subset (Figure 5h). For the edge-on geometry complex subset, when we 332 

placed a benzene group on the grid of edge-on ellipsoids, there were two types of poses that 333 

fulfilled the requirement of γ=90°. Therefore, we divided the edge-on geometry into perpendicular-334 

edge-on and parallel-edge-on subtypes. In detail, we used a plane defined by the Z-axis and the 335 

vector connecting the amide carbon to the benzene center to distinguish the two subtypes: if the 336 

norm of benzene was in the above-defined plane, then it was a parallel-edge-on sub-type (Figure 337 

5f); if the norm of benzene was perpendicular to the above-defined plane, then it was a 338 

perpendicular-edge-on sub-type (Figure 5g). The energy landscapes for the geometries of face-on, 339 

parallel-edge-on, and perpendicular-edge-on were synthesized by calculating GFN2-xTB energy 340 

and then subtracting the zero-point energy from it for the complexes on the corresponding grids. 341 

Complexes representing the global minimum of the three energy landscapes were also subjected 342 

to the M06-2x/6-311+G(d,p) calculation using GAMESS to obtain the DFT level energy. The 343 

energy landscape scan for benzene interacting with amide groups in the context of tripeptide was 344 

conducted in a similar way using a GFN2-xTB-optimized N-acetyl glycyl glycinamide as a starting 345 

point. Because the optimized molecule is not subject to mirror symmetry, we scanned the entire 346 

ellipsoid and combined the upper and lower halves by overlapping the grids of the two parts and 347 

using the lower energy on the two overlapped grids as the final value to compose the energy 348 

landscape. 349 

Software for figures and tables 350 

The structure and ED figures were made using Pymol.32 Statistical analysis was performed using 351 

Pandas33 and Numpy packages.34 Scatter plots were constructed using Matplotlib35 and Inkscape.36 352 
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