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5 ABSTRACT: To better formalize the notorious inverse-QSAR
6 problem (finding structures of given QSAR-predicted properties) is
7 considered in this paper as a two-step process including (i) finding
8 “seed” descriptor vectors corresponding to user-constrained QSAR
9 model output values and (ii) identifying the chemical structures
10 best matching the “seed” vectors. The main development effort
11 here was focused on the latter stage, proposing a new attention-
12 based conditional variational autoencoder neural-network archi-
13 tecture based on recent developments in attention-based methods.
14 The obtained results show that this workflow was capable of
15 generating compounds predicted to display desired activity while
16 being completely novel compared to the training database (ChEMBL). Moreover, the generated compounds show acceptable
17 druglikeness and synthetic accessibility. Both pharmacophore and docking studies were carried out as “orthogonal” in silico validation
18 methods, proving that some of de novo structures are, beyond being predicted active by 2D-QSAR models, clearly able to match
19 binding 3D pharmacophores and bind the protein pocket.

1. INTRODUCTION
20 Predictive quantitative structure−activity/property relations
21 (QSAR/QSPR)1 are regression or classification models that
22 are able to compute, upon input of a molecular structure, an
23 estimate of the activity/property value the compound is
24 expected to display. One may formulate the above as activity =
25 f(structure), where function f needs first to be calibrated in
26 order to have f(structure) returning accurate approximations of
27 known activity values. If the above holds, then inverse mapping
28 would allow to retrieve the “optimal” chemical structure(s),
29 maximizing the expectancy of having an activity matching the
30 input argument, that is, the desired activity level needed to
31 achieve success in the current research project.
32 Since the first pioneering linear regression model by Hansch
33 and Leo,2 procedures to “fit,” for example, machine learn
34 f(structure), have progressed to the point of routine calibration
35 of nonlinear models based on a plethora of machine learning
36 methods (support vector machines, partition trees, neural
37 networks�to cite only the most popular3−7).
38 Typically, the structure argument in f(structure) is the
39 molecular graph with vertices colored by chemical elements
40 and edges colored by bond types. Since f(structure) returns a
41 real number, it is obvious that the information content of the
42 input molecular graph could first be translated in this process
43 into some purely numerical representation�a vector of N real
44 numbers D⃗ known as the “molecular descriptor vector.” In
45 classical QSAR, the two formal steps, descriptor calculation D⃗

46= θ(structure) and model fitting, activity = μ(D⃗) are clearly
47separated into successive steps, and hence activity = μ(θ-
48(structure)) = f(structure). Hence, the inverse QSAR problem
49may be conceptualized as a succession of two formal steps:8−10

501. finding descriptor vectors (“seed vectors”) matching the
51desired activity level: D⃗ = μ−1(activity)
522. finding the structures that correspond to the D⃗ above:
53structure = θ−1(D⃗)

54Since : N , searching extremal points of μ(D⃗) is a
55standard optimization problem, and albeit solving may prove
56challenging when μ is highly nonlinear or if N is large, this step
57of inverse QSAR is conceptually an easy one.
58By contrast, step 2 is both technically and conceptually
59hard�to the point that, until recently, the typical way to
60discover molecules with activity values matching a desired
61activity level is to enumerate candidate structures and apply, to
62each, the QSAR model until all input candidates were herewith
63“virtually screened11,12” or until enough events f(structure) ≈
64desired activity occurred, for example, “virtual hits” were
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65 found. Virtual screening (VS), however, is limited by the
66 choice of candidate structures either from public/commercial
67 databases or from user-designed virtual libraries. In contrast to
68 systematic VS, sampling techniques of chemical structures
69 consider molecular structure as evolvable.13−15 This is de novo
70 design,16−23 which fundamentally differs from VS by the fact
71 that structures are not a predefined library but are generated
72 and/or modified “on the fly” by some automated molecular
73 structure editor.
74 The recent advent of deep neural networks (DNNs), able to
75 extract information from arbitrary “brute” data and herewith
76 learn to recognize patterns, had a major impact in the field of
77 QSAR.24−28 The idea of DNNs is mimicking a human brain in
78 which neurons communicate by generating and passing signals.
79 Along with many applications of DNNs, Rana et al.29 reviewed
80 the application of the simplest example of DNN models�
81 multilayer perceptron (MLP)�to disease diagnostics. MLP
82 was also shown as a method to build successive QSAR
83 models.30 Later, parsing a chemical structure given in the form
84 of a SMILES string by DNNs using the natural language
85 processing technique was proposed as a new approach for
86 QSAR model training.31 This success was not the end, and
87 soon graph convolutional networks were proposed as a
88 replacement of recurrent neural networks (RNNs) in QSAR
89 modeling.32 As the research domain is in full effervescence, an
90 exhaustive overview of already envisaged DNN architectures is
91 beyond the scope of this article. The reader is encouraged to
92 access the most recent reviews.33

93 Some DNN architectures, namely, autoencoders, relate
94 input structure (simply rendered as SMILES34 ) to activity
95 within a unique computational framework, apparently
96 bypassing the need for molecular descriptors in QSAR. De
97 facto, SMILES string encoder architectures first translate
98 structure to a “latent” real vector L⃗, which the associated
99 decoder would use to regenerate the SMILES. Thus, L⃗ is
100 nothing but a machine-generated molecular descriptor vector.
101 Therefore, the decoder is a deep-learning-based model based
102 on latent space descriptors L⃗ implicitly allowing for a solution
103 to the inverse problem.
104 So far, the majority of QSAR models are still based on
105 classical, human expert-designed descriptors. This is first due
106 to historical reasons, latent space descriptors L⃗ being very new.
107 However, expert-designed descriptors D⃗ may still have a key
108 advantage over the former (such as atom order invariance,
109 which may be an issue in L⃗ spaces�and their support of
110 relatively small training sets in contrast to “big data”-dependent
111 DNN approaches). So far, only a few attempts to convert
112 arbitrary descriptor space D⃗ back to structure have been
113 described. One work35 reports two distinct RNN-driven
114 approaches labeled PCB (physchem-based) and FPB (finger-
115 print-based). The former inputs a vector of predicted physico-
116 chemical properties (including a QSAR-predicted bioactivity
117 value) to generate SMILES strings of compounds matching
118 these properties. The latter uses Morgan fingerprints for input.
119 Similarly, a transformer architecture has been implied to
120 “translate” various classical chemoinformatics fingerprints back
121 to structure.36 Both works can be considered as examples of
122 “hard” inverse QSAR approaches and were successfully used to
123 generate structures in the neighborhood of known actives.
124 However, they stopped short of coupling “easy” and “hard”
125 QSAR problems in order to investigate how their approaches
126 would cope with input vectors corresponding to optima of the
127 QSAR landscape, not to already known molecules.

128For the above reasons, the current contribution wishes to
129explore the feasibility of a genuine solution for the inverse
130QSAR problem for models based on classical, expert-defined
131molecular descriptors. The core of this work consists in the
132development of an attention-based conditional variational
133autoencoder (ACoVAE) based on transformer architecture.
134Given the seed vectors of ISIDA fragment descriptors, the
135ACoVAE generates corresponding molecules.
136We have used two types of in-house generated QSAR
137models of ABL tyrosine kinase 1 (CHEMBL1862) activity:
1381. Support vector regression (SVR) models for the
139inhibition constant (pKi) using D⃗ = ISIDA37,38 circular
140fragment counts. Seed vectors prepared with the help of
141a genetic algorithm used to sample D⃗ space with
142predicted pKi value as fitness.
143Additionally, the descriptor vector of the molecule
144possessing the highest affinity (“lead molecule” LM) from
145the CHEMBL1862 set was also used as a seed vector.
1462. Generative topographic mapping (GTM)-based predic-
147tive activity class landscapes using the “universal” map39

148based on D⃗ = force field-type colored40 ISIDA atom
149sequence counts. Sampling of D⃗ was performed around
150the coordinates of active-enriched nodes of the land-
151scape.
152The inverse QSAR problem is considered solved if (i) the
153obtained structures are valid and chemically feasible and (ii)
154the obtained structures are submitted to classical forward
155QSAR model prediction and return conveniently high activity
156values.
157Here, the ultimate goal was to obtain de novo structures that
158are perceived by a QSAR model to be highly active�whether
159they really are active or not is a question of underlying model
160quality, not of the quality of the inverse QSAR approach.
161Nevertheless, an alternative orthogonal in silico validation of
162these structures as ligands of the considered targets has been
163performed by pharmacophore analysis with the LigandScout41

164program and by docking using both LeadIT42 and S4MPLE43

165approaches.

2. METHODS
1662.1. ACoVAE. The proposed ACoVAE transformer model
167 f1is shown in Figure 1. It consists of three main parts:
168(1) During the training procedure, a GRU-based encoder
169parametrizes a random latent vector distribution based
170on the training set SMILES. Hyperspherical distribution
171with zero mean and variance equal to 1 is used as target
172latent vector distribution;
173(2) A condition vector encoder uses a grouped linear
174transformation (GLT) layer44 to transform initial
175descriptor vectors to a conditional latent vector;
176(3) A standard autoregressive multihead attention decoder45

177translates from condition and random latent vectors to
178SMILES. A more detailed architecture of the network is
179given in Supporting Information, Figures S1 (training
180stage) and S2 (inference stage). During the training, a
181SMILES strings and their corresponding descriptor
182vectors are used to train the ACoVAE. A reparamete-
183rization trick for latent vector sampling is used to train
184the network end-to-end. In the inference stage, the latent
185vector is sampled from a prior (0, 1) hyperspherical
186distribution, and a desired descriptor vector is used as

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c01086/suppl_file/ci2c01086_si_001.pdf


187 condition. Based on the random and condition vector,
188 the decoder generates a wanted SMILES. Notice, that
189 alternative SMILES for a given condition descriptor
190 vector can be generated both (i) by running inference
191 stage with different random vectors sampled from a prior
192 distribution and (ii) by sampling different text strings
193 using categorical sampling from token probabilities
194 predicted by the transformer for a given random and
195 condition vector.
196 The proposed architecture of the ACoVAE transformer was
197 inspired by the one proposed by Lin et al.46 In a similar way, a
198 random latent vector is fed as a START token. However,
199 substantial changes were introduced which helped us to
200 achieve better performance. In our architecture, a random
201 latent vector is encoded directly using a GRU, while Lin et al.
202 used a trick with a priori undefined random distribution

203parameterized by a separate network. Additionally, a hyper-
204spherical uniform distribution was preferred to a standard
205Gaussian one because during the tuning stage, the former
206performed better. A von Mises−Fisher distribution is
207commonly used for sampling from hyperspherical uniform
208distribution47 with the reparameterization trick. However, we
209found that the power spherical distribution48 used instead of
210von Mises−Fisher one allows a speeding up of the learning
211process without loss of the performance. Application of a GLT
212transformation layer49 better translates the descriptor vector
213into the internal representation used by the decoder network
214than MLP. Finally, inspired by the GELU approximation,50

215new activation function FTSwishG resulted from some
216modifications of the previously reported FTSwish51 was used
217throughout the ACoVAE network

x xFTSwishG RELU( ) sigmoid(1.702 ) 0.2= × 218(1)

219According to our tests, it gives better results compared to the
220ReLU, GeLU, and FTSwish activation functions. In such a
221way, our ACoVAE transformer architecture is a novel one,
222having only a few in common with the one proposed by Lin et
223al.46 The designed architecture is implemented using the
224TensorFlow framework and can be readily retrained for other
225descriptor types. It is available on our GitHub storage https://
226github.com/Laboratoire-de-Chemoinformatique/ACoVAE.
2272.2. SVR Models. A series of ligands for ABL tyrosine
228kinase (CHEMBL1862) from the ChEMBL v.23 database was
229standardized using a protocol reported by Sidorov et al.39 SVR
230models for thermodynamic instability constants of protein−
231ligand complexes (pKi) were generated using the evolutionary
232libsvm model tuner,52 which supports selection of the best
233suited descriptor space yielding to best performance models as
234a key hyperparameter. The best-suited ISIDA fragmentation
235schemes were defined together with the SVR-specific
236parameters (kernel type, cost, γ, etc.) optimizing model quality.
237The models were built on a training set containing 739
238molecules and validated on a test set of 82 molecules. The test
239set data were collected from recent publications posterior to
240model training. The best model relies on IIRAB-1-3 ISIDA
241fragment count descriptors (7372 atom-centered fragments
242with a radius of 1 to 3 atoms with restricted fragmentation)
243and the Gaussian kernel option. It displayed a reasonable
244performance in cross-validation (R2 = 0.79 and RMSE = 0.70)
245and on the test set (R2 = 0.80 and RMSE = 0.67).
246Computation of the “optimal” seed vectors has been
247confided to an evolutionary heuristic browsing through the
248D⃗ space in search of vectors maximizing computed pKi values.
249The “chromosome” of the approach is a 20-dimensional
250integer vector in which loci may contain either zero or a
251number denoting a training set compound. The vector
252encoded by such a chromosome is taken as the mean ⟨D⃗⟩ of
253descriptor vectors of the training set compounds mentioned in
254the chromosome (a compound may be mentioned several
255times in different loci, which amounts to increasing its weight
256in the computed average). The fitness score of the
257chromosome is nothing but the corresponding pKi =
258SVR(⟨D⃗⟩) to be maximized. Hence, the evolutionary algorithm
259is bound to find, by applying cross-over and mutation
260operators, chromosomes enumerating optimal sets of training
261set compounds, with the property that the centroid of the
262descriptor vector of the set is predicted to correspond to high
263affinity values. The procedure was applied for each SVR model
264for 150,000 generations. Sampled “high-affinity” ⟨D⃗⟩ values

Figure 1. General scheme of the ACoVAE architecture used in this
study. The GRU-based encoder (top left) parametrizes SMILES into
latent vectors following a hyperspherical distribution, which is used
upon inference for random sampling. The descriptor vector which is
used as a condition in the generation is embedded by a GLT layer
(top right). Autoregressive transformer is used to decode random
latent vectors and combined conditions into SMILES strings. A
detailed representation of all three networks is given in the Supporting
Information.

https://github.com/Laboratoire-de-Chemoinformatique/ACoVAE
https://github.com/Laboratoire-de-Chemoinformatique/ACoVAE
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c01086/suppl_file/ci2c01086_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c01086/suppl_file/ci2c01086_si_001.pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf


265 were used as the condition vector for the ACoVAE decoder.
266 Details about evolutionary model building can be found in our
267 publication,52 which also provides instruction on how to obtain
268 and download that tool. Here, it was used with default setup,
269 meaning 12-fold-repeated three-fold cross-validation (with
270 steadily reshuffled cross-validation tiers at every iteration).
271 The model fitness score was the mean cross-validated
272 determination coefficient ⟨Q2⟩ penalized by 1 standard
273 deviation, fitness = ⟨Q2⟩ − σ(Q2).
274 2.3. GTM Landscape-Driven Models. GTM is a
275 dimensionality reduction technique developed by Bishop et
276 al.53,54 The method performs a nonlinear projection of an N-
277 dimensional space onto a 2D latent space. The former
278 corresponds to the descriptor space, where each molecule is
279 defined by an N-dimensional molecular descriptor vector. The
280 2D latent space corresponds to a manifold which is defined by
281 a set of radial basis functions and evaluated on sample points
282 called “nodes.” Simply put, the manifold can be seen as a
283 rubber band that can be folded in N-dimensions during
284 training to fit the data distribution in a way maximizing its
285 coverage of the space zones populated by relevant items (the
286 “frame set”). Any compound can subsequently be projected on
287 the manifold. For visualization purposes, the manifold is
288 “unfolded” into a 2D plane, organizing the nodes into a square
289 grid. GTM is a probabilistic method, meaning that compounds
290 are fuzzily projected on all nodes of the manifold. As such, an
291 item is associated with (“resident in”) each node with different
292 probabilities. The sum of the probabilities�technically named
293 responsibilities�over all nodes of the manifold equals 1. In
294 practice, this means that one compound will be defined by a
295 responsibility “pattern” potentially involving several nodes
296 instead of being confined to one node only. When projecting
297 compounds of experimentally known properties, neighborhood
298 behavior55 (NB) compliance implies that residents of the same
299 node should have related property values, so that the node may
300 be seen to “represent” that local average property, and
301 “colored” accordingly. Resulting property “landscapes” are
302 nothing but NB-driven QSAR models: the property of any
303 external item can be predicted from the “local color” of the
304 landscape zone onto which it is projected. In this work, the
305 fuzzy class landscapes (monitoring the likelihood to classify as
306 “active” with respect to a target) were employed. They were
307 based on the previously published56 universal map #1
308 (UM1)�the first of a series of GTMs parameterized (using
309 ChEMBL data), such as to maximize their “polypharmaco-
310 logical competence,” that is, their ability to host a large battery
311 of highly predictive fuzzy class landscapes associated with
312 diverse biological targets. Note that landscape-based QSAR
313 models are parameter-free (the landscapes are built by
314 projection of existing structure−activity data on the given
315 manifold in an unsupervised manner). Therefore, landscape-
316 based QSAR models are implicitly available as soon as the
317 supporting structure−activity data are available.
318 The structure−activity data set associated with the
319 CHEMBL1862 target was projected on the manifold of the
320 first universal map UM156 and was seen to “spontaneously”
321 segregate into zones populated predominantly by “actives” and
322 “inactives,” respectively. This map was built based on ISIDA40

323 atom sequence counts with a length of two to three atoms
324 labeled by CVFF force field types and formal charge status (IA-
325 FF-2-3-FC). Recall that construction of activity landscapes on
326 a given GTM manifold is not supervised but a purely
327 deterministic procedure. The separation proficiency of the

328considered manifold was obtained by repeated leave-1/3-out
329cross-validation, in which iteratively two-third of the items are
330projected on the map in order to “color” the activity class
331landscape, whereas the remaining one-third of compounds a
332posteriori projected onto that landscape and have their activity
333classes assigned on basis of their residential zones in the
334landscape. Cross-validated balanced accuracy was 0.78,
335significantly above the randomness threshold of 0.5. The
336structure−activity dataset is herewith proven to be robust and
337modelable by both machine-learning (SVR) and neighborhood
338analysis-based mapping.
339Activity class landscape for CHEMBL1862 was used to
340identify zones in the chemical space in which “active”
341compounds tend to cluster preferentially. Note that the label
342“active” was assigned to compounds with the ∼25% highest
343affinity values according to the initial automated data curation
344procedure used for universal map fitting. The GTM nodes n in
345which active compounds were seen to preferentially reside
346were identified as key points if

R

R
N

N
c cn

c cn

Actives

all

Actives

all 347(2)

348Rcn represents the responsibility of compound c with respect
349to node n, summed over actives (numerator) and over all
350training compounds (denominator), with the ratio represent-
351ing the fuzzy-logic propensity to expect an active “resident” in
352node n. This propensity should be much higher than the
353baseline propensity to encounter an active throughout the
354training set (top nodes were selected according to the ratio of
355summed responsibilities). Coordinates of these key nodes
356correspond to vectors in ISIDA descriptor chemical space
357zones expected to harbor active compounds. The Gaussian
358neighborhoods of key node vectors were sampled by
359generating a multidimensional Gaussian distribution with a
360width of w = 0.05. Several vectors were generated from the
361initial node vector using this method.
3622.4. Solution of Inverse QSAR Problem: The ACoVAE
363Algorithm. Sampling with the ACoVAE transformer is
364accomplished by giving a descriptor vector to the trained
365decoder part of the model. Each descriptor vector, which
366corresponds to the “condition” part of the ACoVAE, is
367combined with a batch of random vectors from a power
368spherical distribution, which serves as the basis for the latent
369space. Each descriptor vector/random latent vector combina-
370tion returns a sample of generated SMILES. Categorical
371sampling is the preferred method of generation since it allows,
372for the same input, to explore different possibilities, thus
373maximizing the generative “coverage.” Therefore, the batch of
374latent vectors returns a batch of generated SMILES. For
375example, for one descriptor vector concatenated with 200
376different sampled random vectors with a batch size of 512, the
377algorithm returns 200 × 512 = 102,400 generated SMILES. In
378such a way, a given descriptor vector can be used several times
379leading to different SMILES. In-house CGRtools57 software is
380used to verify the validity of the generated text string, directly
381removing any incoherent or incorrect SMILES.
382The following parameters were analyzed when monitoring
383the pertinence of the inverse QSAR approach:
3841. Validity = #valid SMILES/#all generated text strings,
385which measures success to generate a syntactically valid
386SMILES string (assessed by CGRtools), starting from
387the input “high-affinity” ⟨D⃗⟩ vectors.



388 2. Feasibility assessing chemical feasibility and drug-likeness
389 according to Ertl58 and QED59 indices.
390 3. Novelty. A compound generated with ACoVAE is
391 considered “novel” if it is not contained in the training
392 database.

393 A coherence between the ISIDA descriptor vector
394 recalculated for the generated SMILES string and the input
395 vector at the source of that SMILES was assessed using the
396 Tanimoto similarity score.
397 2.5. Filtering of Nonvalid SMILES Strings. During the
398 sampling procedure, output SMILES were parsed and
399 standardized using CGRtools. Then, they were transformed
400 into Kekule ́ form followed by verification of valences. If no
401 error detected, the SMILES strings were rearomatized and
402 then written to the output. Failure of any step in this workflow
403 leads to discarding the given text string as invalid SMILES.

3. RESULTS AND DISCUSSION
404 3.1. Finding Candidate Descriptor Vectors Associated
405 with High Affinity. For the SVR model, the evolutionary
406 sampler of the ISIDA descriptor space outlined in Section 2.2
407 is very fast to visit “high-affinity” ⟨D⃗⟩ values. Points in the
408 ISIDA descriptor space corresponding to predicted pKi values
409 close to the ones of the most active compounds included in the
410 training set can be discovered in matter of tens of minutes on
411 Linux workstations with the following specification: Intel Xeon
412 Silver 4214 2.20 GHz, 48 cores, 64 GB RAM, Ubuntu 18.04.6
413 LTS. However, the discovery of points with activities predicted
414 to be better than the one of the best training compounds was
415 never achieved despite of the total run times of the order of 48
416 h, resulting in >150 K visited ⟨D⃗⟩ values. On the one hand, it is
417 not clear whether such points may actually exist�SVR may
418 suffer (in particular when based on the Gaussian kernel) from
419 the “regression towards the mean” effect, consisting of
420 systematic underestimation of high and overestimation of
421 low property values. Moreover, it is even less likely that points
422 where the SVR model nevertheless predicts a value beyond the
423 largest observed pKi would actually be located within the
424 “fragment control bounding box” defining the applicability
425 domain54 (AD) of the model. Given the fact that herein visited
426 ⟨D⃗⟩ values are generated as means of descriptor vectors of
427 randomly selected subsets of compounds, these points are
428 guaranteed within the bonding box AD (each vector element
429 Di will be larger or equal than the minimal and, respectively,
430 smaller or equal than the maximal Di value ever encountered
431 within the training set). Third, the top affinities for all these
432 targets are already within the 0.1 nM range�discovery of
433 significantly more potent molecules is extremely unlikely in
434 this context. Therefore, the five visited ⟨D⃗⟩ values correspond-
435 ing to the highest predicted pKi scores (comparable but not
436 better than the affinity of the most active compound) were

f2 437 used to tackle the inverse QSAR problem (see Figure 2).
438 As a complementary study to the inverse-SVR descriptor
439 selection, the most active ChEMBL compound shown in Table
440 2 (compound A) was selected as a seed to show the difference
441 between the generation from optimized vectors and a real
442 active molecule.
443 For the GTM-based activity class predictors, two nodes that
444 were most highly enriched in “active” residents were selected,

f3 445 as represented in Figure 3. Candidate descriptor vectors were
446 obtained by augmenting the D space coordinates of these
447 nodes with Gaussian noise as described in the Methods section

448(see 2.3). Projection of these seed vectors on the landscapes
449below unsurprisingly assigns quasi-unitary responsibility values
450to their “source” nodes, implicitly qualifying them as “probable
451actives.”
4523.2. ACoVAE Calibration Results. Two distinct ACo-
453VAEs were trained�one for each relevant ISIDA descriptor
454space:40 IIRAB-1-3 for the inverse-SVR problem and IA-FF-2-
4553-FC for the inverse-GTM challenge. Each training set
456contained the same 1,540,615 compounds from ChEMBL-
45723, standardized using ChemAxon60 standardizer, following
458the procedure implemented on the VS server of the Laboratory
459of Chemoinformatics in the University of Strasbourg (http://
460infochim.u-strasbg.fr/webserv/VSEngine.html). The following
461standardization steps were applied: (i) dearomatization and
462final aromatization according to the “basic” setup of the

Figure 2. Distribution of pKi for the compounds used to train the
model. The dotted line renders the distribution of predicted pKi for
the vectors of the final population emerging from the evolutionary
sampling approach.

Figure 3. Selected nodes for target ChEMBL1862 on the fuzzy
activity class landscape where color encodes the relative populations
of actives (class 2, red when pure) vs inactives (class 1, blue when
pure). Intermediate color design nodes with residents of both classes
in various proportions. Numbers of the node are represented.
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463 ChemAxon procedure (heterocycles like pyridone are not
464 aromatized), (ii) dealkalization, (iii) conversion to canonical
465 SMILES, (iv) removal of salts and mixtures, (v) neutralization
466 of all species, except nitrogen(IV), and (vi) generation of the
467 major tautomer with ChemAxon. This resulted in 1,540,615
468 unique, stereochemistry-depleted SMILES strings used for
469 training (stereochemical information was removed because the
470 herein used molecular descriptors do not capture it).
471 Model training was done for 100 epochs and lasted for about
472 30 h on a QUADRO RTX 6000 graphic card. The loss
473 function tends to stabilize early during training as shown in

f4 474 Figure 4; however, the model continues to learn as character-

475 specific reconstruction rates and pure reconstruction rates
476 continue to grow. Arguably, the model could be trained for
477 somewhat longer since the reconstruction rate (val_rec_rate)
478 has seemingly not reached a plateau at 100 epochs. However,
479 we believed that the achieved accuracy�some 50%
480 reconstruction rate and 98% character-specific reconstruction
481 rate, was sufficient for the model acceptance. Notice that
482 variational autoencoders have a tendency for lower recon-
483 struction rates than their deterministic counterparts because of
484 the element of randomness introduced by sampling latent
485 vectors from a given distribution instead of having
486 deterministic latent vectors.
487 3.3. Inverse QSAR Results. 3.3.1. Inverse-SVR and

t1 488 Inverse-Lead Compounds. According to Table 1 displaying

489various quality criteria of inverse-SVR compounds, the low
490success rate in the sampling procedure can be mitigated if we
491consider the time factor. Sampling of 512.000 SMILES strings
492(using 5 conditional vectors corresponding to the 5 vectors of
493highest activity predicted by the SVR model) resulting in 6899
494valid, unique candidates takes only about 4 to 5 h on a
495QUADRO RTX 6000 GPU. Comparing lead molecule
496sampling to inverse-SVR sampling shows that both perform
497similarly in terms of unique valid compounds and activity
498prediction, although lead molecule sampling scores a bit lower
499on the latter metric.
500A descriptor vector marking a position in the chemical space
501may or may not translate to a chemically meaningful structure,
502knowing that the initial vector is typically not a slightly
503perturbed position vector of a real molecule but merely a
504chemical space point associated with high predicted activity
505according to a machine-learned, action mechanism-agnostic
506model. However, the ACoVAE decoder process injecting
507randomized latent vectors (see Section 2.1) may produce an
508arbitrary number of SMILES strings based on a given chemical
509space point. For each of the five considered chemical space
510points of high predicted affinity, chemically meaningful
511molecules were obtained (at a low success rate of 1.34%�
512but this is merely an order of magnitude of the likelihood to
513draw a random latent vector i.e., “compatible” with the current
514chemical space position). The complexity of the molecule that
515the model is trying to generate is implicitly affecting the chance
516to retrieve a valid structure. Since the model generates SMILES
517strings, it must conform to a very specific grammar which is
518intolerant to errors. Any misplaced character in the SMILES
519sequence can render it incorrect and bring up an error�a well-
520known problem in chemoinformatics. Without extensive
521understanding of the chemical meaning behind a SMILES
522string, it can be very difficult to correctly open and close
523multiple rings to recreate valid structures with correct
524aromaticity and stable behavior. This, in part, explains why
525the model may be very successful in some parts of chemical
526space and struggle more in other parts. A possible solution to
527that problem would be the use of DeepSMILES61,62 or
528SELFIES63 which use a simpler syntax eliminating the risks of
529incorrect ring closures and parenthesis errors.
530GTM landscapes identify zones enriched in actives,
531nevertheless containing some inactives. The sampling is
532performed using an ensemble of seeds generated from a
533given GTM node. These seeds can occasionally be located in
534the vicinity of inactives. In contrast, sampling from the most
535active compound generates structures similar to this seed. This
536explains the difference in the proportion active/inactive for
537different seeds in Table 1.
538Generated compounds were filtered to remove both
539chemically inconsistent species (by CGRtools) and duplicates
540and were compared to the initial training database (ChEMBL)
541to compute the “novelty” rate which corresponds to the
542percentage of valid unique generated compounds not
543appearing in the training set of the model. Table 1 shows
544that all generated compounds are novel. The trained SVR
545model was used to estimate the pKi values of the generated
546compounds, which were then classified as actives or inactives
547by using a threshold 7. As such, about half of the generated
548compounds were predicted to be active.
549Compounds predicted as inactives by the model were
550filtered out. Generated compounds were compared to the GA-
551 f5optimized vectors used as input to the model. Results in Figure

Figure 4. Training metrics for the ACoVAE transformer model based
on ISIDA descriptors. “Loss” is the loss function of the model.
“Masked accuracy” corresponds to the character-specific reconstruc-
tion rate. “Reconstruction rate” corresponds to the full SMILES string
reconstruction rate.

Table 1. Performance of the ACoVAE Transformer Model
for the CHEMBL1862 Target When Sampling from Seed
Descriptor Vectors from Different Sources

seed
vector
source

number
(percentage) of

valid
compounds

number
(percentage) of

unique
compounds

novelty
compared to
ChEMBL

(%)

predicted
activea
(%)

SVR 12,432 (2.43%) 6,899 (55.49%) 100 48.6
GTM 70,684 (13.8%) 61,342

(86.78%)
99.98 6.9

lead
molecule

23,559 (4.60%) 7,600 (32.26%) 99.95 41.6

a“Predicted active” implies predicted pKi > 7 by the SVR model. This
latter is more stringent than GTM landscape-based predictions, which
positions a vast majority of inverse-GTM compounds close to their
“source” nodes and herewith classifies them as “actives.”
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f5 552 5A show that most compounds are very similar (Tc > 0.85/
553 0.90) to their “seed,” meaning the model was able to
554 understand the information contained in the descriptor vector
555 and translate it in terms of SMILES. Given that the value
556 contained in the vectors may not be integers or that some of
557 the descriptor values may be incompatible, an average of Tc =
558 0.9 is a sign that the model was able to extract hidden
559 knowledge from the ISIDA descriptor and adapt it to a
560 chemically feasible structure. Some generated compounds
561 approach the activity values of the GA-optimized vectors as
562 shown in Figure 5B, although all active compounds have lower
563 pKi. Figure 5C shows the difference in predicted pKi between
564 the generated compounds (based on their actual D⃗ vectors)

565 and the “source” GA-optimized vectors D
÷÷÷÷÷÷

, plotted against the

566 Tanimoto coefficient T D D( , )c . Unsurprisingly, the SVR
567 QSAR models are neighborhood-behavior compliant: the
568 closer the source vector ⟨D⃗⟩ remains to the actual compound
569 descriptor, the higher the likelihood to have the latter
570 predicted at high affinity levels�(virtual) activity cliffs
571 notwithstanding (pKi shifts of 2 orders of magnitude may
572 occasionally happen for 90% similar descriptor vector pairs).

573The three most active compounds from ChEMBL, the three
574inverse-SVR and three inverse-lead molecules predicted that
575the most active were extracted and compared in terms of
576structural similarity and pKi values. The most active inverse-
577SVR and inverse-lead compounds are structurally very similar
578in terms of substructure counts but not necessarily in terms of
579overall topology to the most active ChEMBL compounds, as
580 t2shown in Table 2. Similar substructures or features like
581quinoline, cyclopropane, peptide bonds, and fluoride atoms
582appear in both ChEMBL and generated compounds�but they
583may be interconnected in a different way. Sampling the
584neighborhood of a given compound is likely to witness the
585neural network return typical “building blocks” seen in those
586compounds, all while recombining them and placing them in
587original contexts.
5883.3.2. “Inverse-GTM” Compounds. Inverse-GTM sampling,
589in this case, gives better results in terms of validity and
590uniqueness than inverse-SVR compounds.
591Compounds generated from a GTM node vector consis-
592tently tend to be projected into the same area they were
593sampled from. This is not true of all compounds, a minority

Figure 5. (A) Distribution of Tanimoto similarity calculated between sampled compounds and the ISIDA descriptors used for their sampling
(obtained via SVR GA and lead molecule). (B) Distribution of predicted activities for inverse-SVR compounds, lead molecule sampled compounds,
training compounds, and vectors optimized by GA. (C) Scatter plot with the x-axis being the Tanimoto similarity between the sampled compound
and the GA vector and the y-axis, the difference in (calculated) pKi between the inverse-SVR compounds and the original GA vector. The different
colors correspond to the five different “seed” vectors used for the sampling procedure.
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f6 594 being projected in different areas of chemical space�in
f6 595 inactive-dominated zones (see Figure 6).

596 In inverse-GTM, random noise is also used to perturb the
597 input descriptor (GTM node vector), whereas inverse-SVR
598 compounds were strictly sampled on hand of the five
599 optimized descriptor vectors. Accordingly, the resulting
600 compounds are more diverse but less prone to score very
601 high predicted pKi values as shown in Table 2. Rather than
602 focusing on recombination of fragments maximally contribu-
603 ting to SVR-predicted pKi values, the model incorporates
604 fragments of all training compounds occupying the vicinity of
605 the chosen “seed” vector.

6063.3.3. “Inverse-SVR” and “Inverse-Lead” Versus “Inverse-
607GTM”. Sampling with inverse-SVR and inverse-lead has a
608chance to return molecules predicted highly active, which is
609not the case for compounds generated with inverse-GTM. This
610can be explained by the fact that inverse-SVR (inverse-lead)
611vectors served as the generation seed correspond to high
612activity values, which is not the case for the GTM node
613vectors. Inverse-GTM molecules have lower SVR-predicted
614pKi values comparatively because “active” GTM landscape
615areas were defined to harbor “actives” of pKi ≥ 7, and the
616categorical nature of the landscape makes no further
617distinction between submicromolars and subnanomolars. The
618two methods produce active compounds, but molecules

Table 2. Most Active ChEMBL-Reported Compounds (A, B, C) against the ChEMBL1862 Target as Well as the Most Potent
Structures Generated from the Different Seed Vectorsa

aThe numbers correspond to experimentally measured (for ChEMBL compounds) or predicted with SVR models pKi values.
bCompounds

generated for the descriptor vector generated for molecule A, which is the highest affinity molecule (inverse-LEAD) with pKi = 10.73.
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619 generated from inverse-SVR tend to be more focused on
620 specific chemical space zones predicted to stand for very high
621 affinity. Therefore, they reproduce structural features typical to
622 the few top actives�the “originality” mostly consisting in the
623 way in which these features (scaffolds, linkers) are reorganized
624 in the final structures. Inverse-GTM seeds tend by contrast to
625 stem from structurally less specific neighborhoods, generating a
626 more diverse set.

f7 627 Figure 7 confirms this trend as we see that the distribution of
628 activities of inverse-SVR and inverse-lead compounds has a tail

629in the very active regions, while the distribution of pKi for
630GTM-based compounds has a lower mean and is centered.
631Interestingly, most of inverse-SVR compounds are projected
632in the large active zone where inverse-GTM compounds were
633sampled�even though the GTM-driven categorical QSAR is
634based on other descriptors than the SVR approach. This is
635additional proof that SVR-based and GTM-based models are
636not fundamentally divergent in terms of prediction but merely
637conflicting in terms of the specific definition of “actives” as
638continuous versus categorical magnitudes.
639 f8As it follows from Figure 8, synthetic accessibility score for
640the generated compounds (inverse-SVR, inverse-lead, and
641inverse-GTM) have on average a higher SA score than
642ChEMBL compounds. According to this score, generated
643structures are more difficult to synthetize than real ChEMBL
644molecules. On the other hand, they are still in the range of
645ChEMBL distribution (which goes up to 4.5−5) meaning that
646generated structures are not synthetically unreachable and
647therefore viable. The quantitative estimate druglikeness index
648shows that on average, inverse-SVR and inverse-lead
649compounds are of more interest for medicinal chemists than
650inverse-GTM compounds.
6513.3.4. Validation of Inverse-SVR and Inverse-Lead
652Compounds Using Pharmacophore Modeling. Pharmaco-
653phore models were trained using LigandScout41 (4.4) to check
654whether the generated compounds would also comply to the
655ligand- and structure-based hypothetic binding patterns that
656can be inferred on hand of current structure−activity data.
657Both structure-based and ligand-based approaches were
658applied in an effort to be as comprehensive as possible. The
659compounds present in the training set of the SVR model (821
660compounds) were used for ligand-based model training.

Figure 6. Projection of the 100 most active compounds predicted by the SVR models, generated in different fashions. See caption of Figure 3 for
landscape color coding. (A) Compounds were generated from “node” vectors obtained from node 1623. (B) Compounds were generated from
“node” vectors obtained from node 1542. (C) Inverse-SVR compounds. (D) Inverse-lead compounds.

Figure 7. Comparison between the distribution of (SVR-predicted)
activities between inverse-SVR, inverse-lead, and inverse-GTM
compounds.
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661 Ligand-based pharmacophores should reflect consensus
662 features in highly active binders. Therefore, a threshold of
663 pKi ≥ 9 was considered here to define “actives,” in contrast to
664 the default pKi ≥ 7 defining “actives” in other contexts of this
665 work (GTM landscape, docking studies�vide inf ra). In
666 addition, only the inverse-SVR and inverse-lead compounds
667 with predicted pKi ≥ 9 were screened. This subset of the initial
668 generated compounds contains 39 inverse-SVR molecules and
669 8 inverse-lead compounds which makes 47 generated
670 compounds in total.
671 For ligand-based pharmacophores, conformations for the
672 training set compounds were calculated using the pre-loaded
673 FAST parameters of the software. These settings returned a

674maximum of 25 conformations by compound. Ligand-based
675pharmacophores were built and clustered by LigandScout.41

676Pharmacophore models were calculated for two clusters
677containing 78 and 5% (163 and 9 molecules, respectively) of
678all training set actives (model 1 and model 2, respectively).
679Different pharmacophore models were generated for each
680cluster using sets of 5 to 10 molecules.
681Structure-based pharmacophores were built based on PDB
682crystal structures of human proto-oncogene tyrosine-protein
683kinase ABL1. 2HZI and 2CQG crystal structures were used to
684generate the shared pharmacophore model which was screened
685against the 47 generated compounds for which pKi > 9 was
686predicted.

Figure 8. (A) Synthetic accessibility score for the four datasets calculated. (B) Quantitative estimate druglikeness index distribution for the three
different datasets.

Table 3. Hits Found with Pharmacophore Models and Their Validation with Docking for Inverse-SVM (I−III) and Inverse-
Lead (IV) Compounds
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687 3.3.4.1. Ligand-Based Pharmacophore. The screening of
688 47 inverse-SVR and inverse-lead molecules “hidden” in a set of
689 328 inactive decoys selected from the training set inactives
690 allowed to understand if the two ligand-based pharmacophore
691 models were selective enough to primarily focus on putative
692 actives. If the considered pharmacophore models were
693 observed to be as likely to match inactive decoys, it may be
694 inferred that “matching” the pharmacophore model is no
695 reliable indicator of putative activity against CHEMBL1862
696 but merely that the ligand-based pharmacophore models are
697 too generic (easily matched by random compounds).
698 Model 1 and model 2 returned, respectively, three and one
699 hits. The hits align well with the pharmacophore model, and
700 most features match as shown in40 Figures S4 and S5 in the
701 Supporting Information. Table 3 shows that the four hits have
702 relatively high ranking among the most actives, one of them
703 being the third predicted most active inverse-SVR compound
704 and another the second most active inverse-lead compound.
705 3.3.4.2. Structure-Based Pharmacophore Screening. The
706 shared pharmacophore model computed for two PDB
707 structures (2HZI and 2GQG) is mostly based on hydrophobic
708 interactions with one hydrogen bond donor and one hydrogen

f 709 bond acceptor as shown in Figure 9B. The ligands contained in
710 the PDB crystal structures are typically larger than inverse-SVR
711 molecules. However, Figure 9A shows that crystalized ligands
712 may include specific moieties not directly involved in binding.
713 VS with the shared pharmacophore returned eight hits (see
714 Table S2 in Supporting Information), four of which
715 correspond to those found with ligand-based pharmacophores
716 (Table 3). Notice that inverse-SVR compounds nicely match
717 the pharmacophore, all while being smaller than the PDB
718 ligands (see Figure 9C). These results show that the generated
719 compounds are not only predicted active by the SVR models
720 because they were optimized to do so but also fit the activity
721 criteria of external validation methods like pharmacophore
722 models. The fact that these three compounds were found by
723 both methods and predicted highly active by the SVR model
724 indicates that these compounds may be good candidates for
725 further testing.
726 3.3.5. Validation of Inverse-SVR Compounds Using
727 Ligand-To-Protein Docking. In the docking challenge, both
728 LeadIT and S4MPLE were able to predict the correct binding
729 geometry of the native ligand of 2E2B (in protein-rigid
730 redocking mode), and both were seen to significantly prioritize
731 “actives” (pKi > 7), for LeadIT, the area under the ROC curve
732 obtained after redocking the 821 training set compounds (out
733 of which only 816 could be docked) was of 0.77. S4MPLE also

734performed reasonably well (ROC AUC = 0.69 after the
735docking of 550 of the training set compounds, in random
736order). At that point, a quantitative correlation of R2 = 0.51
737between LeadIT and S4MPLE scores could be observed.
738Unfortunately, neither the LeadIT score (R2 = 0.21, over 816
739redocked compounds) nor S4MPLE (R2 = 0.16 over the 550
740ligands) can return docking scores that quantitatively correlate
741with the experimental pKi values. We refer the reader to the
742Supporting Information section for a detailed analysis of the
743relationships between docking scores and actual, respective
744predicted pKi values. It was observed that 76% of the
745experimentally confirmed training set actives (pKi > 7) dock
746with LeadIT scores below or equal to −30, whereas LeadIT
747score ≤−25 would retrieve 92% of them. Therefore, the
748percentage of a library achieving LeadIT scores better (more
749negative) than this order of magnitude is a first rough estimate
750of how strongly CHEMBL-1862-focused that library is. Indeed,
751these percentages are significantly higher within the mixed
752collection of inverse-GTM and inverse-SVR leads (blue in
753 f10Figure 10) than within the random subset of ZINC random
754decoys (orange bars). It should be noticed that only two out of
755three hits selected by pharmacophore models (molecules I, II,
756and IV, Table 2) were validated in docking calculations as
757actives: the LeadIT score for molecule III was larger than the
758threshold of −25. The fact that the molecules I, II, and IV were

Figure 9. (A) Pharmacophore aligned with both PDB crystal structure ligands. (B) Shared pharmacophore model. (C) Selected inverse-SVR hits
aligned with the pharmacophore model.

Figure 10. Percentages within the collection of inverse-GTM and
inverse-SVR leads (blue) and the set or random ZINC decoys
(orange) achieving LeadIt docking scores typical of experimentally
validated actives of pKi > 7.
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759 found by both pharmacophore and docking methods as well as
760 predicted highly active by the SVR model indicates that these
761 compounds may be good candidates for further testing. We do
762 not exclude that application of a docking score correlating with
763 studied activity (e.g., that reported by Ahmed et al.64) may
764 better validate generated molecules.

4. CONCLUSIONS AND PERSPECTIVES
765 This article introduced a new type of architecture based on
766 state-of-the-art deep learning method which is capable, given a
767 descriptor type and successful training, to generate compounds
768 possessing wanted activity and structural features from “seed”
769 descriptor vectors�where the descriptor vectors are not
770 “latent” vectors themselves produced by some encoder
771 architecture but standard, state-of-the-art descriptors typically
772 used in QSAR (here, ISIDA fragment counts). This provides
773 an elegant solution for the inverse QSAR problem�the
774 inference of novel molecular structures matching model-
775 predicted high activity zones of the descriptor space. Finding
776 descriptor “seeds” corresponding to aforementioned interest-
777 ing zones has been herein addressed in two model-specific
778 ways: evolutionary search for D vectors corresponding to high
779 predicted affinity values (pKi) according to SVR models or D
780 vectors within the immediate neighborhood of GTM nodes
781 preferentially populated by active compounds. Additionally,
782 the descriptor vector generated for the highest affinity ligand
783 from the training set was also used as a seed. Selecting only
784 descriptor vectors associated with very high predicted affinity
785 values (pKi) equal or close to the best ever values reported in
786 ChEMBL lead to inverse-SVR and inverse-lead molecules
787 being structurally related to already existing top-active
788 ChEMBL compounds�in the sense that they share significant
789 common substructures, all while preserving their global
790 originality. An external pharmacophore study performed on
791 inverse-SVR compounds shows that several molecules with
792 high predicted activity show good matches with existing active
793 molecules in terms of pharmacophores. Selecting the vectors
794 based on generative topographic mapping is focused on a
795 binary, class-based definition of activity, and inverse-GTM
796 molecules appear more diverse, all while predicted to have
797 remarkable pKi values by the SVR models (better than 100
798 nM, but not yet close to the top-active ChEMBL compounds).
799 Original compounds of acceptable synthetic feasibility index
800 could be readily obtained. Therefore, the inverse QSAR
801 problem�fast discovery of original feasible compounds
802 specifically selected for being predicted active by a given
803 QSAR model�can be considered as conveniently solved, at
804 least for the (rather widely used) class of fragment-based
805 molecular descriptor-based QSAR models. Of course, the
806 ultimate promise of prospective discovery of experimentally
807 validated actives may only be kept if the “inversed” model lives
808 up to its promises in terms of prediction�but this is an
809 altogether different problem, which is not covered by the
810 present, purely methodological work. It is clearly not expected
811 to necessarily see inverse-QSAR de novo compounds automati-
812 cally score well in docking if docking scores are decorrelated
813 from the QSAR-predicted affinity estimator. In particular,
814 fragment-count-based QSARs may overrate the importance of
815 given molecular fragments if the latter happen to appear by
816 chance only within the structures of actives, thus establishing
817 the mechanistically wrong shortcut “presence of key fragments
818 → activity” simply because inactive counterexamples contain-
819 ing the same fragments in a different mutual configuration

820were not found at the training stage. ACoVAE-based
821approaches may, as seen in this work, readily suggest structures
822issued by recombining such key fragments�guaranteed to
823achieve high ratings by the parent QSAR model but not sure to
824still feature a global pharmacophore compatible with the target.
825The goal of this work was to present genuine solutions for the
826QSAR inversion problem based on “classical” fragment
827descriptors rather than on DNN-specific latent space vectors.
828Technically, this was a success, but it also clearly reveals that
829QSAR inversion alone is too risky a path to take in drug design:
830the actual pursuit of the synthesis efforts of sometimes
831challenging (but�granted�novel) structures may or may not
832pay, given the intrinsically incomplete and error-prone nature
833of QSAR models. However, if inverse QSAR is coupled with
834orthogonal activity prediction techniques, as done here, it can
835be observed that many of compounds alleged to be active by
836the initial QSAR models fail to pass the additional,
837independent activity assessment tests (pharmacophore match-
838ing, docking). This is no surprise because the consensus rate of
839chemoinformatics predictors based on premises as radically
840different as 2D-QSAR, pharmacophore screening and docking
841are typically very low. Nevertheless, we were successful in
842discovering some de novo structures which did pass the latter
843tests. This shows that the exploration of the initial inverse-
844QSAR-relevant chemical space is sufficient to visit areas in
845which not only the original QSAR model but also the
846alternative approaches indicate that biological activity is likely,
847pending experimental validation.
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