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Abstract

Molecular structure recognition is the task of translating a molecular image into its

graph structure. Significant variation in drawing styles and conventions exhibited in

chemical literature poses a significant challenge for automating this task. In this paper,

we propose MolScribe, a novel image-to-graph generation model that explicitly pre-

dicts atoms and bonds, along with their geometric layouts, to construct the molecular

structure. Our model flexibly incorporates symbolic chemistry constraints to recognize

chirality and expand abbreviated structures. We further develop data augmentation

strategies to enhance the model robustness against domain shifts. In experiments on

both synthetic and realistic molecular images, MolScribe significantly outperforms pre-

vious models, achieving 76–93% accuracy on public benchmarks. Chemists can also

easily verify MolScribe’s prediction, informed by its confidence estimation and atom-

level alignment with the input image. MolScribe is publicly available through Python

and web interfaces: https://github.com/thomas0809/MolScribe.

1

ar
X

iv
:2

20
5.

14
31

1v
2 

 [
cs

.C
V

] 
 2

0 
M

ar
 2

02
3

yujieq@csail.mit.edu
regina@csail.mit.edu
https://github.com/thomas0809/MolScribe


OH

OH
O

O OH

OH
OPh

O HO
OH

COOBn

(a) (b) (c)

OH

OH
O

O

Figure 1: Three images of the same molecule with different layouts and styles. (a) depicts the
full molecular structure and does not specify chirality. (b) and (c) use different abbreviations,
and (b) color-codes the phenyl groups.

Introduction

Molecules are commonly drawn as 2D images in chemistry literature. Such drawings exhibit

a wide variety of styles, which complicates the task of translating these images into machine-

readable molecular structures. For example, Figure 1 shows three different ways to draw the

same molecule. The plain image (a) can be recognized adequately by existing models, but

variants such as (b) and (c) are more difficult as they involve stereochemistry, functional

group abbreviations, and diverse drawing styles. While prior work has demonstrated that it

is possible to train models that perform well on one style assuming labeled data is available,

the diversity of possible styles is a standing challenge. We cannot assume access to train-

ing data that covers all possible styles and patterns in the chemistry literature due to the

high annotation cost. Therefore, we aim to enhance the robustness of molecular structure

recognition model to generalize to an arbitrary molecular image.

In this paper, we propose MolScribe, which takes as input a molecular image (e.g. a

PNG or JPG file), and generates its molecular graph structure. The model relies on three

complementary approaches to handle data variation robustly. First, MolScribe explicitly

predicts the atoms and bonds along with their geometric layouts in the image, which together

constitute a 2D molecular graph. Second, we incorporate chemistry knowledge as symbolic

constraints to the model, such that it can accurately recognize complex chemical patterns.

For example, we determine the chirality of asymmetric atoms based on the predicted graph
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and layout, and design an algorithm to parse abbreviated functional groups that commonly

appear in molecular images. Third, we propose data augmentation strategies to synthetically

generate images that cover diverse drawing styles during training. Specifically, MolScribe is

implemented as an image-to-graph generation model, which abstracts the input image into

hidden representations and generates the molecular graph with an autoregressive decoder.

MolScribe’s output can be aligned with the input image at the atom-level, allowing humans

to easily interpret its predictions.

MolScribe combines the strengths of previous rule-based and neural models. Rule-based

methods1,2 can easily enforce chemistry constraints and conduct symbolic reasoning over the

molecular graph, while neural models3–5 are more robust to image styles and perturbations.

MolScribe naturally extends a neural generation model to predict atoms and their coordinates

as a sequence, and then the bond between each pair of atoms. This design allows MolScribe

to robustly recognize local atoms and bonds and flexibly integrate chemistry rules when

constructing the molecular graph, such that it generalizes to different scenarios.

In our experiments, MolScribe outperforms an image-to-SMILES baseline on both in-

domain and out-of-domain images, and achieves strong recognition accuracy (76–93%) on five

public benchmarks. We also construct a new benchmark with molecular images from journal

publications, and MolScribe significantly outperforms the baseline and existing systems.

Moreover, MolScribe is robust against input perturbation and low-quality images, predicts

chirality more accurately, and provides confidence estimation. Finally, we conduct a human

evaluation to understand how our model can help chemists to parse molecular images in a

semi-automated workflow. The results show that our graph prediction significantly reduces

the time needed by chemists to extract the molecular structures from images. Our model,

code, and data are publicly available (https://github.com/thomas0809/MolScribe)

for future research in molecular structure recognition and chemistry information extraction.

We have developed a demo that allows chemists to use MolScribe from a web interface

(https://huggingface.co/spaces/yujieq/MolScribe).
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Molecular Structure Recognition

Background

Research on molecular structure recognition dates back to at least the 1990s (see a recent

review by Rajan et al. 6). The task is also known as Optical Chemical Structure Recognition

(OCSR). Earlier rule-based systems7–14 relied on traditional image processing techniques (bi-

narization, line smoothing and thinning, vectorization) to segment the pixels into atoms and

bonds, and standalone optical character recognition (OCR) models to identify atom labels.

Then, heuristics based on line length, width, spacing, and direction were used to determine

bond types (single, double, triple, wedge, dashed) and connect all these elements into molec-

ular graphs. These systems were usually meticulously engineered by chemists, with specific

rules to handle different situations in molecular images. For example, they usually have an

expert-compiled dictionary to resolve the most common functional group abbreviations. A

few open-source tools have been developed,1,2,15 and developers are continuously improving

them by writing new rules to cover edge cases (e.g., bridge bonds).1 The rule-based systems

have achieved decent recognition accuracy on patent images, but there is still much room for

improvement on journal article images, which are more diverse. Researchers also identified

that small image perturbations can cause significant performance degradation.4

Neural models have been proposed to improve the robustness against image variations.

Staker et al. presented an image-to-SMILES generation model:3 a convolutional neural net-

work encodes the input molecular image into a hidden representation, and a recurrent neural

network decodes the SMILES string of the molecule. A few variants have been proposed since,

exploring multiple model architectures, such as Inception network,16 Transformer,17,18 Swin

Transformer,19 pre-trained decoder,4 graph decoder,5 and also the application to hand-drawn

molecules.20,21 Neural models enjoy the simplicity of end-to-end training and the strength

of handling different image styles, but operating on the SMILE strings instead of explicitly

recognizing atoms and bonds makes it difficult to incorporate chemistry constraints. For
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Figure 2: Chirality specification in SMILES. A chiral center may be indicated by “@” or
“@@”, meaning the neighbors are listed counterclockwise or clockwise, in this example when
looking down the H-C bond.

example, as we show in the experiments, predicting stereochemistry presents a challenge

for traditional neural networks due to the need for geometric reasoning over the molecular

graph. Figure 2 shows two equivalent SMILES strings for a chiral molecule. Whether the

chiral center should be written as “[C@H]” or “[C@@H]” depends on the relative order of

its connecting bonds, which cannot be easily determined from the local pattern. Due to the

lack of explicit notion of atoms and bonds, we cannot easily inject chemistry rules into these

models.

Besides the image-to-SMILES formulation that directly generates the SMILES string,

ChemGrapher22 and MolMiner23 train separate modules to detect atoms, bonds and texts,

based on image segmentation or object detection; and then construct the graph with heuris-

tics. Such systems can also incorporate chemistry constraints during their graph construction

process. Compared to these models, we simplify the method with a single end-to-end model

to generate the molecular graph, so that our model does not rely on heuristics to connect

the local predictions.

Task Formulation

Molecular structure recognition is the task of translating single-molecule images into corre-

sponding molecular structures. In this paper, we formulate it as image-to-graph generation.

Given an image I of molecule M , we translate it into a 2D molecular graph G = (A,B),
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Figure 3: MolScribe model architecture. The input image is encoded with an image encoder,
and the graph decoder predicts the atoms and bonds. A molecular graph is constructed from
the predictions, and is converted to a MOLfile or a SMILES string.

where A = {a1, a2, . . . , an} is the set of atoms, B ⊂ A × A × T is the set of bonds, and T

is the set of bond types (e.g. single, double, triple, solid wedge, dashed wedge). We define

each atom as ai = (li, xi, yi), where li is the atom’s corresponding SMILES (sub)string (e.g.

“C”, “N”, “[OH−]”, and “[235U]”), and xi and yi are the 2D coordinates of the atom in the

image. Finally, the molecular graph can be converted and stored in standard data formats,

such as a SMILES string24 or a MOLfile.25

Model

We propose MolScribe, an image-to-graph model that translates an input image into a 2D

molecular graph. The model follows an encoder-decoder architecture, as shown in Figure 3.

We first use an image encoder to encode the input image into a hidden representation, and

then use a graph decoder to generate the molecular structure. Unlike traditional image-to-

SMILES models, which output a sequence of tokens, our decoder predicts atoms, bonds, and

their geometric layouts jointly, such that the molecular structure can be reconstructed.

MolScribe formulates image-to-graph translation as a conditional generation process:

P (G | I) = P (A | I) P (B | A, I) (1)

where P (A | I) and P (B | A, I) are parametrized as an atom predictor and a bond predictor,
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respectively.

As shown in the middle of Figure 3, the atom predictor is an autoregressive decoder that

generates the atoms in a sequence, i.e.,

P (A | I) =
n∏

i=1

P (ai | A<i, I) (2)

where A<i stands for the atoms before ai. Inspired by the object detection model Pix2Seq,26

our atom predictor simultaneously predicts atom labels and coordinates. Specifically, we

construct a sequence of discrete tokens as the output format of the atom predictor,

SA = [l1, x̂1, ŷ1, l2, x̂2, ŷ2, · · · , ln, x̂n, ŷn] (3)

where each atom ai corresponds to three tokens li, x̂i and ŷi. li is the atom’s SMILES

specification, including the element identity, isotope, formal charge, and implicit hydrogen

count. x̂i and ŷi are discrete values representing the atom’s coordinates defined by binning,

i.e.,

x̂i =
⌊ xi
W
× nbins

⌋
, ŷi =

⌊ yi
H
× nbins

⌋
(4)

where H and W are the height and width of the input image, respectively, and nbins is a

hyperparameter for the number of bins. This discretization is designed to simplify the model

architecture. As the sequence SA contains all the atom labels and coordinates, we implement

the atom predictor to generate it autoregressively,

P (A | I) = P (SA | I) =

|SA|∏
i=1

P (SA
i | SA

<i, I). (5)

In practice, we split the molecule’s SMILES string with an atom-wise tokenizer27 into atom

labels and append the coordinate tokens to them. The other tokens in the SMILES string,

such as parentheses, bond symbols and digits, indicate connections among the atoms and
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are helpful to the model, so we keep them in the output sequence SA. These tokens are not

associated with coordinates.

The bond predictor is a feedforward network that predicts the bond between each pair of

atoms (see Figure 3). Each atom ai is represented as a vector hai , the hidden state of its last

token in the decoder output. For each pair ai and aj, we concatenate their representations

to form the input to the bond predictor, which classifies the bond type. Formally,

P (B | A, I) =
n∏

i=1

n∏
j=1

P (bi,j | A, I) (6)

where bi,j indicates the bond between ai and aj. We use “None” to indicate no bond exists

between the atom pair, and other possible bond types include single, double, triple, aromatic,

solid wedge and dashed wedge. For single, double, triple, and aromatic bonds, it is expected

that bi,j = bj,i, but wedge bonds are not symmetric. To account for this, we predict both

directions bi,j and bj,i independently, and merge their predicted probabilities at inference

time. For symmetric bonds, bi,j and bj,i are expected to be the same, so the probabilities are

averaged, i.e.

P̂ (bi,j = t) =
1

2

(
P (bi,j = t) + P (bj,i = t)

)
, t ∈ {“single”, “double”, “triple”, “aromatic”}.

(7)

For asymmetric bonds (wedges), as a solid wedge is equivalent to a dashed wedge in the

opposite direction, we set bi,j = “solid-wedge” and bj,i = “dashed-wedge” if there is a solid

wedge from ai to aj, and vice versa. At inference time, we merge the probabilities by

P̂ (bi,j = “solid-wedge”) =
1

2

(
P (bi,j = “solid-wedge”) + P (bj,i = “dashed-wedge”)

)
,

P̂ (bi,j = “dashed-wedge”) =
1

2

(
P (bi,j = “dashed-wedge”) + P (bj,i = “solid-wedge”)

)
.

(8)

P̂ (bi,j) is the bond predictor’s final prediction during inference. (The conditional parts are

omitted.)
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Finally, a molecular graph is constructed from the predicted atoms and bonds. We

use the RDKit28 toolkit to save the molecular structure as a MOLfile (with 2D coordinate

information) or a SMILES string (without 2D coordinate information).

Stereochemistry

As explained in Figure 2, it can be challenging for a neural model to recognize stereochem-

istry. In SMILES, chirality is indicated as an atomic property, i.e., @ or @@ after an atom

label specifies the relative spatial orientation of the bonds connected to this atom in the

order they are listed. There is no direct correspondence between the local image pattern and

whether the atom symbol is @ or @@. Understanding stereochemistry requires geometric

reasoning, which is not a strength of traditional neural networks29. In our model, we ap-

ply chemistry rules to explicitly determine the stereochemistry, including both chirality for

atoms and cis/trans isomerism for double bonds, based on the predicted molecular graph

and coordinates. For example, to predict chirality, we first find the bonds connected to each

chiral center, infer their relative order by the predicted atom coordinates and determine

the chiral type explicitly (with RDKit’s implementation). Since the atoms and bonds are

easier to predict from the image, this rule-based approach recognizes stereochemistry more

accurately than a vanilla neural model.

Abbreviated Structures

Another challenge in molecular structure recognition is the parsing of abbreviated structures.

Chemists often simplify their drawings of molecules by using abbreviations or condensed

formulas, such as “Me” for methyl, “Et” for ethyl, and “CHO” for formyl. The model

cannot understand their underlying structures without external knowledge. The abbreviated

structures can be treated as “superatoms” in the molecular graph, but additional processing

is required if we want to derive the complete molecular structure. Both rule-based and

machine learning models in previous works typically compile a list of common abbreviations
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and their functional group structures, and substitute the superatoms at inference time. Given

the combinatorial nature of abbreviations, this solution may not be sufficient. There is a

large amount of combinations of element symbols and functional group abbreviations, e.g.,

“OMe”, “CO2Et”, and “P(O)(OEt)2”. While they can all be considered as superatoms, it

is infeasible to enumerate all possible combinations in a list.

Algorithm 1 Expand Abbreviated Structures

Input: G — molecular graph;
Input: f — abbreviated structure formula
Input: as — the superatom.
L← expand subscripts(f) . e.g. CO2CH3 → COOCHHH
acur ← L[0] . current atom
Gs.add atom(acur)
for a in L[1:] do

if acur.implicit valence = 0 then
return FAILURE

end if
G.add atom(a)
if a.valence ≤ acur.implicit valence then

Gs.add bond(acur, a, order = a.valence)
else

Gs.add bond(acur, a, order = acur.implicit valence)
acur ← a

end if
end for
G.replace(as, Gs)

We propose a more flexible method to parse abbreviated structures. We first split the

superatom symbols into characters, such that our model is not limited to the prediction space

of patterns in the training data and can generalize to unseen patterns. During inference,

we design a greedy algorithm to expand the abbreviated structures. This task is non-trivial

because the abbreviations do not follow a rigorous grammar (for example, a carboxyl group

can be written as either “COOH” or “CO2H”), and there is no deterministic way to parse

them. In Algorithm 1, we derive the list of atoms and greedily connect them until their

valences are full, based on assumptions of how these abbreviations are typically written to

reflect the connections between atoms. We adopt this simple solution instead of using another

10



learned model, as our algorithm has already addressed most abbreviations we observe and

is extensible. More details are available in the supporting information.

Data

We train MolScribe on publicly available data, following previous works.3,5 Our training data

comes from two sources:

• Synthetic data. We collect 1 million molecules from the PubChem database30 and

automatically render their images using the Indigo toolkit.31 Atom labels and bond

types can be easily obtained from the toolkit, and we modify the source code to access

atom coordinates. Previous works have combined other toolkits to generate a diverse

set of training data,4,32 but many of them do not provide atom coordinates. In this

work, the molecules are randomly sampled from PubChem without special constraints.

More advanced sampling strategies33 could be used to ensure a diverse coverage of the

chemical space. We encourage future work to analyze this problem.

• Patent data. We collect 680K examples from patent grants released by the United

States Patent and Trademark Office (USPTO),34 which contain molecular images and

structure labels. As some of our benchmarks were collected from the same source, we

do not include the images from the same patents as those in the benchmarks. This

dataset is noisy and exact atom coordinates in the image are not available. We use the

relative coordinates that are available in the MOLfiles and normalize them according

to the image size. Details about data processing and examples of the noise in this data

can be found in the supporting information.

Data Augmentation

We design data augmentation strategies for both molecules and images, so that the training

data can cover diverse chemical patterns and drawing styles.
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Functional Groups and R-Groups Synthetic images generated by Indigo never contain

functional group abbreviations or R-groups. We dynamically augment the molecules to

cover such patterns. Figure 4 illustrates the augmentation process. For functional groups, we

construct a list of common abbreviations, where each item consists of a SMARTS pattern for

the functional group, an abbreviated label, and a substitution probability. During training,

if a functional group exists in a molecule, we randomly replace it with the abbreviation

according to the substitution probability. Specifically, the functional group branch is removed

from the molecular graph, and a superatom with the abbreviation label is added. For R-

groups, we also have a list of common R-group labels (R, R1, R2, R’, etc.), and randomly add

R-groups as superatoms to the molecule. Furthermore, in order to generalize to abbreviations

that are not covered in these lists, we add superatoms consisting of random characters.

Although they are not necessarily chemically meaningful, this augmentation helps the model

acquire the capability of optical character recognition (OCR), so that the model can recognize

unseen labels. It does not hurt the model, as the molecular images should be valid at

inference time. The functional group and R-group superatoms are associated with labels

and coordinates, so our model predicts them in the same way as the other atoms.

The data augmentation allows our model to handle basic Markush structures,35 e.g., an

R-group attached to a particular atom or within a ring. However, positional variation (a sub-

stituent that could be attached to any atom within a ring) and frequency variation (brackets

and variables indicating repetition of a substructure) are not covered. Such structures can

not be represented in SMILES strings or MOLfiles, thus we leave them as future work.
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Drawing styles We use image augmentation to improve the robustness of our model with

respect to drawing styles. Specifically, we vary the rendering options from Indigo when

generating the synthetic data, such as font, bond width, bond length, etc. Furthermore, we

apply random perturbations to the molecular images, such as rotation, padding, cropping,

and Gaussian noise. Details about the augmentation strategy are available in the supporting

information. The image augmentation strategy guarantees our model is trained with diverse

image styles and quality, such that it can generalize better in the real world.

Experiments

Experimental Setup

Model Implementation Our image encoder is a Swin Transformer,36 a state-of-the-art

model in many computer vision tasks. We use the Swin-B model,37 which has 88M parame-

ters in total and pre-trained on ImageNet-22K. A recent work, SwinOCSR,19 used the same

image encoder as MolScribe. We resize the input image to 384 × 384 resolution for both

training and inference. Our decoder is a 6-layer Transformer38 with 8 attention heads, a

hidden dimension of 256, and sinusoidal positional encoding. We apply dropout with prob-

ability 0.1. The bond predictor is a 2-layer feedforward network with ReLU activation on

top of the decoder and has the same hidden dimension.

The model is trained by teacher forcing, i.e., the decoder is fed with the ground truth

token at each step, and predicts the next step conditioned on the previous tokens. The bond

predictor takes the hidden states of the decoder as input and predicts the bond between

each pair of atoms. All modules of the model are fully differentiable and trained jointly.

(Note that during training, the input to the bond predictor does not depend on the atom

predictions.) We use a maximum learning rate of 4e-4 with a linear warmup for 5% steps

and a cosine function decay. We use a batch size of 128 and train the model for 30 epochs.

We use label smoothing with ε = 0.1. The atom coordinates are converted to discrete tokens

13



Table 1: Summary of the benchmarks for evaluation.

Dataset Source # images % chiral

Indigo synthetic 5,719 20.2%
ChemDraw synthetic 5,719 20.2%

CLEF patent (US) 992 32.7%
JPO patent (Japanese) 450 0%
UOB catalog 5,740 0%
USPTO patent (US) 5,719 20.2%
Staker patent (US) 50,000 17.3%
ACS journal article 331 19.3%

with nbin = 64 in both the x and y directions. During inference, we use greedy decoding

to generate the atoms and then predict the bonds. This procedure is a little different from

that during training time, as we have to first autoregressively decode the atoms, and then

run the bond predictor.

Benchmarks Table 1 lists the benchmarks in our evaluation. First, we construct two

synthetic test sets to evaluate MolScribe’s performance on in-domain and out-of-domain

images. The in-domain dataset is generated by Indigo (same as training data), and the

out-of-domain dataset is generated by ChemDraw. The two datasets share the same set of

5719 molecules. We also evaluate our model on five public benchmarks of realistic images:

CLEF, JPO, UOB, USPTO,6 and Staker.3

We create a new dataset with 331 molecular images collected from American Chemistry

Society (ACS) Publications and manually annotate their SMILES strings. This dataset is a

complement to existing benchmarks as they do not contain molecular images from journal

articles, which are more diverse in terms of drawing style and use of abbreviations.

Evaluation Metric We evaluate the model’s recognition performance with exact matching

accuracy as the evaluation metric, i.e., the prediction is considered correct only if the entire

molecular graph structure matches the ground truth. This metric has been used by previous

works3–5 but with small differences. Specifically, we use RDKit to convert both prediction
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and ground truth into canonical SMILES, a unique molecular representation, and then com-

pute the string exact match. Regarding stereochemistry, we require the prediction to match

the tetrahedral chirality of the ground truth, but ignore other forms of stereoisomerism (such

as cis–trans) because such information is often not available in the ground truth. Regarding

R-groups, as the their symbols are not allowed in SMILES, we replace them with wildcards

(*) during evaluation. For numbered R-group “Rd” where d is a integer, we replace them

with “[d∗]”. We make our evaluation script publicly available, and encourage future work to

follow the same metric for fair comparison. In the supporting information, we present other

evaluation metrics, such as accuracy without considering chirality, and Tanimoto similarity.

Compared Methods We compare MolScribe with state-of-the-art molecular structure

recognition methods. For direct comparison, we train an image-to-SMILES baseline model

with the same data and the same encoder-decoder architecture. We also run existing sys-

tems for comparison, including rule-based MolVec2 and OSRA,1 and machine learning-based

models Img2Mol,4 DECIMER (version 2.1.0),39 and SwinOCSR.19 For systems that are not

publicly available, such as MSE-DUDL,3 ChemGrapher,22 and Image2Graph,5 we use the

reported results in their papers.

Results

Recognition Accuarcy Table 2 shows the recognition accuracy of different models. Our

model MolScribe achieves consistently higher scores than existing systems on most bench-

marks, demonstrating its robust performance in molecular structure recognition. MolScribe

outperforms the baseline image-to-SMILES model, validating the benefits of our graph gen-

eration formulation and the integration of symbolic chemistry knowledge. The JPO dataset

involves Japanese characters, which are sometimes recognized by MolScribe as extra frag-

ments. We apply a post-processing step to keep the largest molecule if there are multiple

fragments in the prediction. The rule-based systems, MolVec and OSRA, achieve decent per-
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Table 2: Molecule structure recognition accuracy on synthetic, realistic, and perturbed
benchmarks (scores are exact matching accuracy in %).

Synthetic Realistic Perturbed

Indigo ChemDraw CLEF JPO UOB USPTO Staker ACS CLEFp UOBp USPTOp Stakerp

MolVec 95.4 87.9 82.8 67.8 80.6 88.4 0.8 47.4 43.7 74.5 29.7 5.0
OSRA 95.0 87.3 84.6 55.3 78.5 87.4 0.0 55.3 11.5 68.3 4.0 4.6
Img2Mol∗ 58.9 46.4 18.3 16.4 68.7 26.3 17.0 23.0 21.1 74.9 29.7 51.7
DECIMER 69.6 86.1 62.7 55.2 88.2 41.1 40.8 46.5 70.6 87.3 46.4 47.9
SwinOCSR∗∗ 74.0 79.6 30.0 13.8 44.9 27.9 – 27.5 32.2 – – –
MSE-DUDL† – – – – – – 77.0 – – – – –
ChemGrapher† – – – – 70.6 – – – – – – –
Image2Graph† – – 51.7 50.3 82.9 55.1 – – – – – –

Baseline 94.1 92.2 87.4 74.8 88.2 91.5 86.1 59.8 88.0 87.1 91.4 65.9
MolScribe 97.5 93.8 88.9 76.2 87.9 92.6 86.9 71.9 90.4 86.7 92.5 65.0

† Results from the original papers; – means not available.
∗ Img2Mol does not predict chirality. Additional evaluation results with chirality ignored can be found in the
supporting information.
∗∗ We omit the results of SwimOCSR on the large datasets that take it more than one day to complete.

formance on CLEF, JPO, UOB, and USPTO but degrade severely on Staker, in which the

images are blurry and low-resolution. Compared with previous neural models such as MSE-

DUDL,3 ChemGrapher,22 Img2Mol,4 DECIMER39, and Image2Graph,5 MolScribe achieves

stronger performance despite being trained on less data. (We use 1.68M examples in total,

while MSE-DUDL uses 68M, ChemGrapher uses 1.5M, DECIMER uses 400 million, Im-

age2Graph uses 7.1M, and Img2Mol uses 11M.) DECIMER performs slightly better than

MolScribe on UOB. The images in this dataset are close to DECIMER’s training distribu-

tion and relatively simple (no abbreviations, R-groups, or chirality), and thus a neural model

trained with more data works well.

Following the setup of Clevert et al., we further evaluate the model on perturbed datasets

with slight image rotation and shearing. MolScribe continues to exhibit robust performance

on these datasets, outperforming other methods by large margins. MolVec and OSRA’s

performance drops significantly as compared to the performance on original images, showing

that rule-based systems are sensitive to input perturbations. We note that our baseline

model performs slightly better than MolScribe on UOBp and Stakerp. It is because these

two datasets do not contain chiral molecules and the strength of MolScribe is concealed. The
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Table 1

Indigo ChemDraw CLEF USPTO Staker ACS

Baseline 94.1 92.2 87.4 91.5 86.1 59.8

Overall 97.5 93.8 88.9 92.6 86.9 71.9

MolScribe 3.4 1.6 1.5 1.1 0.8 12.1

Baseline 83.9 79.4 83.9 75.1 44.6 25

Overall 93.3 87.4 85.8 83 50.4 40.6

MolScribe 9.4 8 1.9 7.9 5.8 15.6

20
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Indigo ChemDraw CLEF USPTO Staker ACS

(a) Overall accuracy

20

40

60

80

100

Indigo ChemDraw CLEF USPTO Staker ACS

Baseline MolScribe

(b) Accuracy on chiral molecules

1

Figure 5: MolScribe explicitly determines chirality from the predicted graph and coordinates,
thus improving recognition accuracy on chiral molecules.

Table 3: Ablation study of MolScribe. We train model variants with 200K synthetic images
generated by Indigo, and evaluate their in-domain and out-of-domain performance.

Indigo
(in-domain)

ChemDraw
(out-of-domain)

Baseline 88.7 82.5
- without data augmentation 86.0 57.2

MolScribe 95.9 89.7
- without data augmentation 91.4 72.1
- continuous coordinates 89.3 79.5
- remove non-atom tokens 95.3 89.4

evaluation in Table 2 requires the chirality in the predicted molecules to be correct. It can

be unfair for Img2Mol, which does not predict chirality. In the supporting information, we

present additional evaluation results when chirality is ignored.

Chirality Figure 5 compares the performance of our baseline image-to-SMILES model

and MolScribe on chiral molecules. MolScribe predicts chirality more accurately than the

baseline. As discussed in the Stereochemistry section, end-to-end neural models make mis-

takes more frequently on chiral molecules, as it requires geometric reasoning over the graph

structure to determine the chirality. MolScribe, on the other hand, predicts all the atom

coordinates and bond types and explicitly determines the chiral types. This design leads to

significant improvement on chiral molecules.
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Table 1

Indigo ChemDraw CLEF JPO UOB USPTO Staker ACS

Synthetic + Patent 96.1 94.35 86.59 69.11 87.32 90.42 85.35 69.49

Synthetic 95.38 90.94 73.7 52.67 84.4 68 55 61

Patent 20 5.1 76.2 10 1.93 86.34 81.5 11.5

A
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25
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Indigo ChemDraw CLEF JPO UOB USPTO Staker ACS

Synthetic + Patent Synthetic Patent

1

Figure 6: MolScribe is trained with both synthetic (PubChem) and patent (USPTO) data,
and achieves better performance than training on each of them alone.

Ablation Study Table 3 shows the ablation study of our model design. In this experi-

ment, we use a subset of our synthetic training data (200K images) and train three model

variants to validate the effects of several components of MolScribe. First, the model trained

without data augmentation achieves much worse performance on the out-of-domain Chem-

Draw dataset, which consists of images generated by a different software than the one used

to generate training data (Indigo). This demonstrates that our data augmentation strategy

is the key for the model to generalize to different styles. Second, we train a model that

predicts continuous atom coordinates with an additional layer on top of the decoder as a

regression task.5 MolScribe performs better by converting the coordinates to discrete tokens

and generating the atoms and coordinates in a sequence. Third, we remove the non-atom

tokens (parentheses, digits, equal signs, etc.) from the decoder output, and the performance

drops slightly. The non-atom tokens in SMILES indicate branching and connections, thus

helping the decoder to better model the graph structure.

Figure 6 shows the contributions of the two datasets used to train MolScribe. The model

trained with patent data alone performs well on CLEF, USPTO, and Staker, which are also

collected from patent images, but performs unsatisfactorily in other domains. Our synthetic

data and data augmentation strategies contribute to MolScribe’s robust performance across

different domains.
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Figure 7: Examples of incorrectly predicted atoms/bonds and their confidence. Atom/bond
confidence is represented by shade (darker means more confident), and mistakes are indicated
with dashed boxes.

Model Confidence MolScribe can provide the confidence of its atom and bond predic-

tions. Figure 7 shows a qualitative analysis of the model-assigned probabilities of atoms

and bonds and their correctness. Usually, lower probabilities are assigned to incorrect

atoms/bonds, indicating the model is uncertain about certain parts of the image.

MolScribe also estimates how likely the entire molecular graph is correct by aggregat-

ing atom and bond confidence. We compute the molecule confidence with the average log

probabilities of its atoms and bonds. Figure 8 shows the molecule-level confidence-accuracy

and precision-recall curves. The precision-recall curve slopes downward and model accuracy

increases with the confidence. By setting thresholds on confidence scores, we can obtain

more confident and accurate predictions.
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Figure 8: MolScribe’s confidence estimation on synthetic and realistic benchmarks. We
show the correlation between model accuracy and confidence, and the precision-recall curve
by setting thresholds on confidence.

Human Evaluation MolScribe also has the advantage of being more interpretable due

to the atom-level alignment between the predicted graph and the molecular image. Given

the molecular graph predicted by our model, chemists can easily determine whether it is

the same molecule as depicted in the image and make corrections if there are mistakes. To

validate this function, we asked three students with a chemistry background to conduct an

experiment of converting molecular images to SMILES strings. We compare three setups:

(1) Image-only: the students are given only the image and reconstruct the molecule;

(2) Predicted SMILES: the students are given the image and the predicted SMILES;

(3) Predicted graph: the students are given the image and the predicted molecular graph.
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Figure 9: Human evaluation. (a) shows an example image with its predicted SMILES and
molecular graph (imported into ChemDraw). (b) shows the average time taken by a student
to convert a molecular image into SMILES, with or without the model prediction.

As it is difficult to manually write the SMILES, the students use ChemDraw to edit the

molecule’s structure. In (2) and (3), the students import the prediction into ChemDraw,

judge whether the prediction is correct, and edit it if there are any mistakes. Setup (2)

(predicted SMILES) does not preserve the molecular layout, making it harder to compare.

Each setup contains 20 images of similarly-sized molecules (34–36 atoms on average). We

record the time taken by the students to make the judgment and edit.

Figure 9 shows the experimental results. In the image-only setup, it took these students

137 seconds on average to draw the depicted molecule in ChemDraw. (Note that these

students are not power users of ChemDraw who can take advantage of the large number of

keyboard shortcuts.) When the predicted SMILES is provided, the average time reduces to

39 seconds. When the predicted graph is provided, it further reduces to 20 seconds. The

results clearly demonstrate the benefits of our graph generation method in visually inspecting

the correctness of the model-generated structure.

Conclusion

In this paper, we propose MolScribe, an image-to-graph generation model for molecular

structure recognition. MolScribe is built on an encoder-decoder architecture and jointly

predicts atoms and bonds, along with their geometric layout. We design data augmentation

strategies such that the model is robust to the domain shift and diverse patterns in real-
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world molecular images. Our model’s flexibility allows us to incorporate symbolic chemistry

constraints such as chirality verification and abbreviated structure expansion. Evaluations

on both synthetic and realistic benchmarks show strong performance, surpassing existing

rule-based and learned systems. Finally, our model produces more interpretable output,

allowing chemists to easily examine the prediction and correct the mistakes. We release our

code, data, and model for reproducibility, and provide interfaces so that chemists can easily

use MolScribe in their research.

The scope of this work is limited to the recognition of single-molecule images. MolScribe

achieves strong and robust performance on this task, which is an essential component in

building a chemistry information extraction system.40–42 An important future direction is to

extend MolScribe to handle hand-drawn molecules. MolScribe can recognize basic Markush

structures with R-groups, but more complicated cases, such as the R-group that could be

attached to any atom of a ring or a variable number of repetitions of a substructure, are not

covered. Such cases cannot be represented as SMILES strings or MOLfiles, and future work

may need to design a specialized format to handle Markush structures.

Data and Software Availability

Our code, data, and model checkpoints are publicly available at https://github.com/t

homas0809/MolScribe. We have also developed a web interface for MolScribe: https:

//huggingface.co/spaces/yujieq/MolScribe. More details about the data sources can

be found in the supporting information.

Supporting Information Available

Data processing details, example molecular images in the benchmarks, implementation de-

tails of data augmentation, the algorithm for expanding abbreviations, additional evaluation

results, and example predictions on hand-drawn molecules are available in the supporting
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