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Abstract

The molecular mechanism of many drug side-effects is unknown and difficult to predict. Previous 

methods for explaining side effects have focused on known drug targets and their pathways. 

However, low affinity binding to proteins that are not usually considered drug targets may also 

drive side-effects. In order to assess these alternative targets, we used the 3D structures of 563 

essential human proteins systematically to predict binding to 216 drugs. We first benchmarked our 

affinity predictions with available experimental data. We then combined singular value 

decomposition and canonical component analysis (SVD-CCA) to predict side-effects based on 

these novel target profiles. Our method predicts side-effects with good accuracy (average AUC: 

0.82 for side effects present in < 50% of drug labels). We also noted that side-effect frequency is 

the most important feature for prediction, and can confound efforts at elucidating mechanism; our 

method allows us to remove the contribution of frequency and isolate novel biological signals. In 

particular, our analysis produces 2768 triplet associations between 50 essential proteins, 99 drugs 

and 77 side-effects. Although experimental validation is difficult because many of our essential 

proteins do not have validated assays, we nevertheless attempted to validate a subset of these 

associations using experimental assay data. Our focus on essential proteins allows us to find 

potential associations that would likely be missed if we used recognized drug targets. Our 

associations provide novel insights about the molecular mechanisms of drug side-effects, and 

highlight the need for expanded experimental efforts to investigate drug binding to proteins more 

broadly.
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Graphical Abstract

INTRODUCTION

Drug discovery projects aim to develop highly selective compounds for a therapeutically 

relevant target while avoiding side-effects. The ability to predict side-effects is therefore 

valuable, especially if the underlying molecular pathways can be elucidated. Previous 

studies on side-effects have focused on using known drug targets and pathways as primary 

candidates to explain drug side-effects1234567–8. These studies implicitly assume a causal 

connection between the known targets and side-effects, while a drug’s other binding 

activities (to proteins not considered targets or known to participate in side effects) are often 

ignored. This focus stems from an understandable desire to focus on targets and pathways 

that are known to produce drug-response phenotypes. However, recent literature suggests 

that low affinity binding to proteins that are not known drug targets and are not normally 

associated with drug response may also contribute to side-effects9–10. The hypothesis is that 

decreased selectivity for the desired target correlates with an increase of side-effect 

frequency resulting from unwanted binding to other proteins. Binding of drugs to their 

targets and to other unintended proteins, or “off-targets” may together explain the spectrum 

of efficacies and side-effects observed for many drugs.

To understand drug side-effects in a systematic and unbiased manner, we would ideally like 

a complete matrix of small molecule drugs and their binding affinities to all proteins. Such a 

data set would allow us to correlate global protein binding patterns to side-effect profiles. 

However, such large-scale binding assays are not generally available1112. Indeed, available 

biochemical data are typically biased towards known targets13–14, and so we do not have 

complete information about the binding profile of small molecules to proteins that may be 

critical to cellular physiology, but which are not recognized drug targets. It is thus difficult to 

test ideas about unintended binding with experimental data because available datasets focus 

almost exclusively on known drug targets. We have surveyed the high confidence datasets 

from ChEMBL15 and BindingDB16 and found that there are on average 15 unique assays for 

each drug and two assays for each protein (unpublished data). The most influential research 

on revealing molecular mechanisms of side-effects are from Pfizer research 

(Biospectra)17–19 and Novartis research20, respectively. The original work of Biospectra by 

Fliri et al in 2005 is the first large-scale screening between 1045 drugs and 92 proteins. This 

works identified important molecular mechanisms of drug clinical effects and has been the 

foundation of many following research on drug side-effects21222324. The broad-scale in vitro 
pharmacology profiling by Novartis research analyzed drug promiscuity against 220 targets 

Liu and Altman Page 2

J Chem Inf Model. Author manuscript; available in PMC 2016 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(including 73 unintended targets)20. Unfortunately, most datasets do not sample the large set 

of proteins critical to cellular function but not considered drug targets, making it difficult to 

create an unbiased estimate of drug promiscuity. We thus turn to computational prediction of 

affinity to proteins not considered targets and estimation of drug promiscuity.

Computational prediction of drug-protein interactions offers an alternative to comprehensive 

experimental screens. These predictions usually employ methods in two categories. The first 

one estimates a drug’s binding to a protein by considering the chemical properties of a drug 

such as its fingerprint or chemical structure2526. The other category explores the protein’s 

small molecule binding profile and calculates similarity between two protein sites in order to 

predict new binding sites for existing drugs272829. Since most methods for predicting drug 

binding are structure-based, it is not possible to conduct a computational estimation over the 

entire human genome, because only 20% of human proteome is available as 3D structures 

(rough estimation, unpublished data).

Yu et al suggested that the number of essential genes that bind a drug, and not the number of 

known targets of the drug, is a primary determinant of side-effects30. Inspired by this 

observation, we assembled a representative set of 3D structures of “human essential 

proteins” identified by Silva et al3130 using a large scale of RNAi screen. They identified 

1830 essential genes important for the proliferation and survival of five cell lines derived 

from human mammary tissue. These genes target many important cellular metabolic and 

regulatory networks. We used the 3D structures for these essential genes to predict their 

binding to drugs, and subsequently used these predictions to estimate drug promiscuity and 

side-effect profiles.

To systematically relate drug characteristics (known targets, pathways, or other molecular 

basis) to side-effects, existing methods use machine learning algorithms and network-

inference methods732333, 65. Given a set of drug characteristics, these algorithms can predict 

side-effects, but have not been shown to elucidate the molecular mechanisms for these side-

effects. We consider the problem of mapping side-effects to drugs and proteins as a linear 

algebra problem. Let X be a matrix relating drugs to protein binding and Y be a matrix 

relating drugs to side-effects; the fundamental challenge is to relate specific attributes of X 

to those of Y. The canonical components analysis (CCA) is a method of finding linear 

relationships between two multidimensional variables346, 35. It finds basis vectors for X and 

Y such that the correlations between the projections of these matrices onto the basis vectors 

are maximized. We use this method to obtain a lower dimensional subspace that jointly 

associates drug binding (X) and drug side-effects (Y)3536. Given these basis vectors, new 

drugs can be projected onto this subspace to predict likely associated side-effects. 

Importantly, this process is transparent and allows us to determine the specific protein 

bindings that are associated with specific side effects. In the CCA optimization process, we 

adopt singular value decomposition (SVD) to obtain projected subspaces, such that the 

highest ranked subspace represents the dominant data feature. Therefore, we are able to 

extract the dominant associations or correlations between side-effects and predicted protein 

binding for individual drugs, providing insight into the mechanism of the side effects. Our 

ability to experimentally validate our findings is limited (Only about ~5% the proteins we 

have used in this work have high confidence experimental assays available in ChEMBL and 
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BindingDB). Our main purpose of this work is to present a novel method for relating 

essential proteins to side-effects, with prospective validation not being considered at the 

current stage. Nonetheless, our investigation of the limited experimental data that is 

available suggests that promiscuous binding across the proteome should be investigated 

experimentally and considered in the evaluation of drug side-effect profiles.

RESULTS

1. Create key datasets for our analysis

We mapped the 1830 human genes reported as essential from a large-scale RNAi screen in 

human mammary cells31 to the PDB, resulting in 563 human essential proteins for which we 

have 3D structures, referred as the Essential Protein Dataset. They belong to 306 Pfam 

families and 198 superfamilies.

We assembled the Drug Binding Dataset by collecting 216 small molecule drugs, for which 

we have 3D structures co-crystallized with proteins (usually their targets) available in the 

PDB. We also retrieved their side-effect profiles from SIDER237, an online database 

containing information extracted from package inserts using text minding methods. The 978 

binding sites for the 216 drugs represent 459 unique proteins, 298 Pfam and 164 

superfamilies. There are only 39 superfamilies shared between the 164 superfamilies in the 

Drug Binding Dataset and the 198 superfamilies in the Essential Protein Dataset. Similarly, 

there are only 79 Pfam definitions shared between the 298 Pfam in the Drug Binding Dataset 

and the 306 Pfam in the Essential Protein Dataset, suggesting that the majority of proteins in 

the Essential Protein Dataset are not known to bind drugs—and thus are not typically 

considered targets.

We also constructed the IC50 Assay Dataset, which constitutes 234 high-confidences 

experimental assays (IC50) derived from ChEMBL and BindingDB between 47 unique 

drugs and the 94 unique human essential proteins.

2. Validate the use of PocketFEATURE to predict affinities

We employed our previously reported method, PocketFEATURE29, to predict affinity scores 

(PF-affinity) between the 216 drugs in Drug Binding Dataset and the 563 proteins in the 

Essential Protein Dataset, resulting in 121,608 scores between drugs and proteins. 

Conceptually, each drug is represented as a vector of 563 predicted affinities.

For aggregated analysis of PF affinity scores, the 234 drug-protein pairs were divided into 

three groups according to their predicted affinity scores. Figure 1 shows the IC50 values of 

each group in boxplots. For the group of drug-protein binding that has PF-affinity scores 

lower than −4.0, the average IC50 value is only 865nM. As the PF-affinity score increases, 

the average IC50 increases accordingly. The bottom panel shows the histogram of IC50 

values in different affinity score groups. In the group with affinity scores lower than −4.0, 

most assays have IC50 values lower than 10uM. This figure suggests that the 

PocketFEATURE affinity scores are a rough estimate of the potential binding of a drug to an 

essential protein. As an example, Figure S1 shows that the affinity scores between celecoxib 
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and six proteins correlate with the corresponding log (IC50) values that are available in the 

IC50 Assay Dataset.

For each of the 216 drugs, we estimated its potential for binding the 563 essential proteins 

by calculating the PF-affinity scores. Using a score cutoff of −2.0, we counted the predicted 

number of essential proteins bound for a given drug, as an estimate of the drug’s 

promiscuity. Figure 2A shows the histogram of the number of the predicted essential 

proteins bound (score cutoff −2.0) for each of the 216 drugs. The most promiscuous drugs 

(with number of binding to essential proteins >200) are: troglitazone, dasatinib, sorafeib, 

aliskiren, imatinib and nilotinib (Supporting Information Table S1). About 15% drugs (34 of 

216) bind to 20% or more of the 563 human essential proteins. More than 30% drugs bind to 

more than 10% of the essential proteins. This is consistent with the in house safety screen by 

Novartis research, which have reported that more than 20% drugs were found to bind to 10–

20% of the profiling targets with an IC50 lower than 5uM. Figure 2B shows the histogram of 

the predicted number of essential proteins bound (score cutoff −2.0) for each of the 563 

human essential proteins. About 70% of essential proteins are predicted to bind to less than 

30 drugs and are classified as low promiscuity. The most promiscuous proteins are: B-cell 

CLL/lymphoma 2 (BCL2), E1A binding protein p300(EP300), Janus kinase 2(JAK2), 

adenylate kinase 3-like 2 (AK4), coagulation factor II (thrombin) receptor (F2R), nuclear 

receptor subfamily 5 (NR5A2) (Table S2).

3. Estimate side-effects using the predicted bindings

Figure 3 shows the histogram of the percentage of drugs (of a total 216) associated with each 

side-effect. There are 24 side-effects that are observed in more than 50% of the 216 drugs, 

including fatigue, heartburn, erythema, constipation, insomnia, anorexia, thrombocytopenia, 

fever, edema, anemia, hypersensitivity, dizziness, colic, diarrhea, rash, vomiting, nausea. We 

removed these 24 side-effects, creating a subset (SE-subset-50) that contains 1276 side-

effects. To study side-effects that are even less common, we further constructed a subset 

containing 1115 side-effects that are observed only in 20% or fewer of the 216 drugs (SE-

subset-20, see Method).

We grouped the 216 drugs according to the number of observed side-effects. The average 

number of side-effects in each group correlate with the average number of the predicted 

essential proteins bound, with a correlation coefficient of 0.88 (p-value < 0.02, Figure 4).

We used the SVD-CCA process to compute the linear relationship between the predicted 

affinity to human essential proteins (X) and the observed side-effects (Y) by projecting X 

and Y into multiple subspaces. Given a query drug with predicted affinities (X), we then 

estimated its side-effects (Y). The AUC values for side-effect predictions in the leave-one-

out cross validation is 0.82 and 0.73 for SE-subset-50 and SE-subset-20, respectively (Figure 

5 top panel and Supporting Information Figure S2). SVD-CCA achieves its best 

performance when using ten sets of subspaces (termed “canonical component”, or CC). For 

predicting side effects, SVD-CCA performs better when it characterizes each drug based on 

the predicted essential proteins bound (for the X matrix), compared to characterizing the 

drug based on its known binding to recognized drug targets (Figure 5 bottom panel). Unlike 

the SVD-CCA performance on predicted essential proteins bound, the binding to known 
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drug targets yields only one informative CC, and its performance is not improved by adding 

additional CCs to predict side-effects.

In addition, SVD-CCA outperforms the traditional CCA algorithm, in terms of predicting 

side-effects. The average AUC of SVD-CCA is 0.82 on subset-50 and that of traditional 

CCA is 0.7 (Method SVD-CCA process: two options for solving CCA).

4. Separate frequency contribution from biological influences

The performance of our side-effect prediction is improved as we increase the number of 

canonical components used (Figure 5 top panel). Figure 6A illustrates the most informative 

canonical component CC#1; the attribute weights assigned to each side-effect correlate very 

well with side-effect frequency. However, there is no clear correlation between side-effect 

frequency and the weights extracted in the other components (CC#2 through CC#10) (Figure 

6B). We conclude that these components must contain information about the biological 

association of side-effects with essential proteins. We thus sought to extract these 

relationships from the data.

5. Extract novel biological contributions within the data

In order to analyze the information contained in CC#2 through CC#10, we evaluated the 

attribute weights with extreme values. Figure 7 compares the weights in each canonical 

component extracted from SE-subset-20 to those from random permutation tests. Each CC 

contains two weight vectors: alpha provides weights for the human essential proteins and 

beta provides weights for side-effects. It shows that the extreme values in CC#2, CC#3, 

CC#4, CC#5 and CC#6 are unlikely to occur by chance and represent statistically significant 

signals (p <= 0.01, with 100 permutation tests). These signals relate particular essential 

proteins to particular side-effects, providing insight into the mechanism of these side-effects. 

We do not observe extreme weights in CC#7 and subsequent CCs, suggesting that the 

biological signal fades after CC#6.

6. Associate drug, protein and side-effect

Using the extreme associations observed in CC#2, CC#3, CC#4, CC#5 and CC#6, we 

identified 2768 triplets of [drug, essential protein, side-effect]. These sets involve 99 drugs, 

50 essential proteins and 77 side-effects, resulting in 826 unique pairs of essential proteins: 
side-effects (Supporting Information Table S3). A total of 23 pairs of drug: essential protein 
are found in IC50 Assay Dataset, for which experimental IC50s are available. The 23 pairs 

involve a total of 120 drug: essential protein: side-effect relationships (Supporting 

Information Table S4). We also sought experimental evidence supporting the predicted 

associations between essential proteins and side-effects. We provide two examples here.

The first is the side-effect observed in CC#4: menstrual irregularities/disorders. Figure 8A 

shows the seven predicted essential proteins associated with menstrual irregularities: 

glucocorticoid receptor (NR3C1), glucocorticoid Nuclear Receptor 2(NCOA2), 

progesterone-receptor (PGR), retinoic-acid-receptor (RARA), estrogen-receptor (ESR2), 

Janus kinase 2 (JAK2), and vascular endothelial growth factor 2(VEGFR2). Experimental 

assays in our IC50 Assay Dataset confirmed six pairs of bindings between essential proteins 
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and drugs (red edge): tamoxifen to NCOA2 and JAK2, dexamethasone to NCOA2 and JAK2 

and dasatinib to JAK2 and VEGFR2. We also inspected the newly discovered associations 

reported by Novartis20, which revealed ten proteins responsible for menstrual irregularities. 

Four of our seven predicted essential proteins overlap with these ten: estrogen-receptor 

(ESR2), progesterone-receptor (PGR), glucocorticoid receptor (NR3C1) and vascular 

endothelial growth factor 2 (VEGFR2). The other six include three hormone receptors or 

hormone binding proteins, and three kinases.

The second example is observed in CC#3: hypocalcemia, abnormally low blood calcium 

levels. Figure 8B shows the seven predicted associations: apo-lipoprotein (APOD), DNA 

polymerase beta (POLB), histone deacetylase 8(HDAC8), hypoxia-inducible factor 1-alpha 

inhibitor (FIH1), glyoxalase I (GLO1), matrix metalloproteinase-3 (MMP3), matrix 

metalloproteinase-7 (MMP7), peroxisome proliferator-activated receptor alpha (PPARA), 

sex steroid-binding protein (SBP) and vitamin D3 receptor (VDR). We also found published 

evidence that two proteins are associated with hypocalcemia: calcium-sensing receptor 

(CASR) and VDR38. Naturally occurring mutations in CASR cause hypocalcaemia or 

hypercalcaemia. The 3D structure of CASR is not available so we were not able to estimate 

its probability of binding to hypocalcemia related drugs. In knockout mice, genetic 

inactivation of VDR leads to hypocalcemia38. We have predicted VDR as an important 

interaction that may interact with saquinavir (HIV drug) and three cancer drugs. In addition, 

ganciclovir is known to interact with POLB39 and saquinavir binds to PPARA40. Since 

hypocalcemia is associated with a variety of drugs, the predicted molecular networks 

provide insights to the mechanism of hypocalcemia.

7. Analyze novel predictions

From the associations observed in CC#2, CC#3, CC#4, CC#5 and CC#6, we identified 2768 

triplets of [drug, essential protein, side-effect]. Most of these associations are novel. They 

are made available at https://simtk.org/home/side-effect/. The 2768 associations involve 50 

essential proteins. These proteins have predicted binding to drugs ranging from 2 to 33 

(Supporting Information Figure S6), considered as low promiscuity proteins (Figure 2B). 

The molecular functions of these 50 essential proteins are shown in Figure 9. Essential 

proteins classified as nuclear receptors (NR))(GO:0004879), DNA-binding transcription 

factors (GO:0003700) and protein-binding transcription factors (GO:0000988) are enriched. 

The most frequently observed proteins in the 2768 joint sets are: glucocorticord receptor 

(complexed with nuclear receptor coactivator 2), progesterone receptor, transcriptional 

intermediary factor2 and retinonic acid receptor RXR-alpha (Supporting Information Table 

S3).

Another view of these novel predictions is to group them by drugs. Figure S7-A shows the 

associations for five non-steroidal anti-inflammatory (NSAID) drug: celecoxib, valdecoxib, 

fenoprofen, naproxen and ibuprofen. These drugs cause 38 significant side-effects (see 

definition in Method section 5). However, only eleven of these side-effects are shared by two 

or more NSAIDs. Twelve side-effects are unique to celecoxib; six to valdecoxib, five to 

naproxen, three to ibuprofen and one to fenoprofen. The identified significant essential 
proteins are often unique to one NSAID, with only PPARG shared by celecoxib and 
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fenoprofen, and HIF1AN (transcription factor) shared by fenoprofen and ibuprofen. Figure 

S7-B shows the relationships extracted for six antidepressants: imipramine, sertraline, 

desipramine, amitriptyline, clomipramine and fluoxetine. They cause 51 side-effects, of 

which 19 are unique to fluoxetine only. Another 24 side-effects are shared by two or more 

antidepressants. Of the twelve significant essential proteins, seven are shared by two or more 

drugs.

DISCUSSION

1. Essential protein interactions contribute to side-effects

Current experimental assay data are not sufficient for identifying novel molecular 

mechanisms underlying side-effects, because they focus on known targets and do not 

consider binding to non-target proteins may drive side-effects. Moreover, current estimates 

of drug promiscuity are often based on assays that target known receptor families: G-protein 

coupled receptors (GPCRs), nuclear receptors, transporters, enzymes, and ion channels with 

known side-effect associations41–4214. To identify novel protein interactions contributing to 

side-effects, we have employed computational methods that estimate a more comprehensive 

set of protein binding affinities, selecting proteins that are not generally targets but are 

involved in key biological processes.

Our computationally predicted affinities are no doubt imperfect, but seem to be sufficiently 

precise for the purposes of this preliminary investigation of drug promiscuity, and the role of 

proteins not typically associated with drug response. The computationally predicted 

affinities show good correlation with experimental assays, suggesting that our predicted 

affinities are reasonable proxies for these measurements. Based on the predicted binding 

affinity (Figure 1), we have quantified drug promiscuity and found that about 15–30% drugs 

bind to 10–20% of the 563 human essential proteins (Figure 2). This is consistent with 

Novartis in-house safety screen data414120: more than 20% of all ligands were found to bind 

to 10–20% of the profiling targets (7–14 in absolute numbers) with an IC50 lower than 5uM. 

These data provide some confidence in the reliability of our computational profiling.

We observe that the number of essential proteins bound by a drug correlates with its 

observed number of side-effects. We suggest that these novel protein-drug interactions 

provide information about the molecular mechanism of the side-effects. Our SVD-CCA 

protocol produces 2768 specific associations between drugs, essential proteins, and side-

effects, some of which are confirmed by existing experimental evidence. The predicted 

affinity scores are used in the SVD-CCA process for building associations between proteins 

and side-effects. Hence, drug protein interactions, or binding affinities play a key role in 

deciding such associations.

Previous research has understandably focused on known drug targets to explain molecular 

mechanisms of side-effects1, 4, 6, 20. According to1, GPCRs contributed most to observed 

side-effects, compared to the other four important families of drug targets (nuclear receptor, 

ion channel, enzyme and any targets)42. Our results suggest that previous target-focused 

studies may have missed other important interactions, as suggested by Figure 8. The 2768 

associations involve 520 unique pairs of drugs and essential proteins. Only four of these 
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pairs are known drug target pairs found in DrugBank43, suggesting that our study scope 

discovers novel interactions. For example, the non-redundant set of 3D structures of 

essential proteins only contain three GPCRs due to limitations of structure-based methods. 

In our prediction, one of the three GPCRs are significantly associated with side-effects.

Of the 50 essential proteins that involve in the 2768 specific associations, nuclear receptors 

and transcription factors are enriched. (Figure 9 and Supporting Information Table S3). The 

top three essential proteins associated with most side-effects are glucocorticoid receptor 

(NR3C1), glucocorticoid receptor 2 (NCOA2) and progesterone receptor (PGR), 

highlighting the importance of hormone regulation as a source of side-effects. The next 

group of frequently observed essential proteins are involved in DNA replication and 

transcription, including DNA polymerase beta (POLB), factor inhibiting HIF-1 (FIH1), 

hypoxia inducible factor-1 (HIF1A), and spindling-1 (SPIN1). These suggest a set of side-

effects that result from disruption of cell division and expression regulation. These proteins 

are not recognized drug targets, and illustrate the utility of analyzing essential proteins. The 

50 most significant essential proteins bind between 2 and 33 drugs and are central to critical 

cellular pathways, suggesting that many side-effects stem from disruption of these more 

fundamental pathways and not necessarily interaction with known drug targets. Our 

predictions suggest association between genes and side-effects. Drug binding to these genes 

could be the driving force of downstream pathways and cellular responses that lead to side-

effects. These pathways and cellular responses are not studies in this work. Other important 

aspects of drug activities (absorption, distribution, metabolism and elimination) should be 

investigated in our future work. In addition, we do not have the ability to distinguish the 

potential roles of protein homologs in the mechanism of side-effects. We have used 

predicted essential proteins, but their pockets are likely similar to the pockets of their close 

homologs (paralogs), and so some side-effects may be mediated through the homologs.

It is not surprising that there are relatively few available assays with which to compare our 

predictions--the Essential Protein Dataset generally has not been screened for drug 

interactions. Of the 121,608 pairs of drugs and essential proteins for which we predicted 

binding, only 234 pairs (0.2%) that have been tested experimentally. For our 520 pairs of 

high confidence interactions between drugs and essential proteins, there are 23 pairs (4.5%) 

that occur in the IC50 Assay Dataset.

2. SCD-CCA provides strategies that correlate high dimension variables and decouple 
biological mechanism from the frequency effects

We discovered novel associations between specific proteins and side-effects, and did not 

focus on predicting side-effects alone. We chose the CCA algorithm because it provides a 

method for uncovering the relationship between two variables by projecting them into a joint 

subspace3536. It computes a canonical component that provides weights for key attributes 

(Within one canonical component, high weighted attributes from two variables are 

associated.). In our work, the two variables represent the drugs’ side-effects and their 

binding to essential proteins. Our analysis is predicated on the assumption that these 

variables should be highly correlated in some projected subspaces, because they have a 

causal relationship. Intuitively, our objective is to find k sets of projection weights (canonical 
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components) that project input matrices onto subspaces in which the correlations between 

projected vectors (corresponding to a particular drug) are maximized. We then extract 

specific associations between side-effects and their binding to essential proteins in each 

subspace.

Our results highlight two critical issues relevant to predicting side-effects. First, they are 

often biased because they focus on the analysis of known drug targets. Second, they often 

confound side-effect frequency with biological mechanisms. The success at predicting side-

effects often depends on the dominant effect of frequency (Supporting Information Figure 

S4). When benchmarking the performance of SVD-CCA on the published dataset by 

Yamanishi342, we have found that using only the first canonical component alone can 

achieve excellent performance (AUC=0.92). Figure S4B further shows that the information 

extracted in the first canonical component reflects side-effect frequency. (Their dataset 
contains data of known targets for 674 drugs and their observed side-effects that includes 
high frequently observed side-effects. Predicting side-effects that includes frequently 
observed side-effects tend to result in high performances.) Other studies that predict side-

effects using models built based on side-effect data from SIDER using other machine 

learning methods also implicitly rely on side-effect frequencies6322. Unfortunately, these 

approaches generally do not decouple frequency from the other pertinent biological signals.

Our combined SVD-CCA algorithm is able to decouple the side-effect frequency from other 

biological factors. As shown in Figure 5 (top panel), when the inputs are the predicted 

essential proteins bound, the performance of predicting side-effects improves as the number 

of CCs increases. Importantly, other highly ranked canonical components contain biological 

information for understanding side-effects. Indeed, we used the SVD-CCA analysis to 

separate specific biological associations from the dominant side-effect frequency signal. In 

the contrast, when using binding to recognized drug targets as input, the performance is not 

improved as the number of CCs used in predicting side-effects increases (Figure 5 bottom 

panel). This suggests that components other than the first component extracted do not have 

useful information for predicting side-effects. It is not surprising given the low rank of the 

drug known target data (lack of information). This is also reflected in our benchmark on the 

published dataset by Yamanishi432, which also uses recognized drug targets as input for 

predicting side-effects. Figure S4A shows that the performance is not improved as the 

number of CCs increases. In summary, with the ability of decoupling frequency from 

biological factors, SVD-CCA has advantages of extracting useful biological factors when 

the input molecular data is informative.

3. Canonical components representing specific characters in different subspaces

We obtained biological signals for side-effects by analyzing canonical components other 

than the first (which encodes frequency). We see strong signals for essential proteins that are 

involved in some side-effects, and we have shown novel associations between essential 

proteins, drugs for menstrual irregularities (observed in canonical component CC#4) and 

hypocalcemia (observed in canonical component CC#3). Direct evidence for protein and 

side-effect relationships is rare; hence predicted associations are useful to understand the 

molecular mechanisms and generating testable hypotheses.
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We have linked menstrual irregularities and hypocalcemia both to essential proteins that are 

predicted to bind saquinavir and dasatinib. However, these two side-effects are associated 

with non-overlapping sets of essential proteins. For menstrual irregularities, many of the 

essential proteins are related to hormone binding and hormone receptors (CC#4). For 

hypocalcemia, the essential proteins are for translation regulation (CC#3). Thus, the binding 

profiles of saquinavir and dasatanib can be dissected and associated with specific molecular 

pathways that cause different side effects. This observation highlights the ability of SVD-

CCA to decouple the associations of essential proteins and assign them to the side-effect 

information in different subspaces36. That is, given that a particular subset essential proteins 

are involved in a side-effect, SVD-CCA discovers this the projection in which this subset is 

correlated with the side-effect data.

METHODS

1. Datasets

Drug Binding Dataset collects 216 small molecule drugs that satisfy the following standards. 

(1) The 3D conformations of a drug’s binding sites are in PDB; (2) The side-effect records 

of the drug is in SIDER2, an online database containing drug side-effect associations 

extracted from package inserts using text minding methods37. Drug Binding Dataset 

contains 978 binding sites for the 216 drugs, representing 586 KEGG pathways, 298 Pfam 

and 164 superfamilies.

Essential Protein Dataset collects 563 proteins that satisfy the following standards. (1) A 

biological meaningful small molecule ligand16 is known to bind to the protein and the 3D 

conformations of the binding site are available in PDB; (2) The protein belongs to the 1830 

human proteins reported as essential from a large-scare RNAi screen in human mammary 

cells31. This dataset represents 205 unique KEGG pathways, 306 Pfam families and 198 

superfamilies.

IC50 Assay Dataset represents a total of 234 assays (IC50) between 47 unique drugs and 94 

unique human essential proteins (https://simtk.org/home/side-effect). These set of high 

confidence assays are derived from 2385 unique assays (IC50) between 166 small molecule 

drugs and 1060 proteins from BindingDB and ChEMBL that satisfy the following standards. 

(1) At least one IC50 value is recorded for the assay. (2) For duplicated assays between one 

pair of protein and drug, a best-reported IC50 is used. (3) For an assay from ChEMBL, its 

confidence level has to be nine or above. (4) The drug belongs to our Drug Binding Dataset. 

Of the 563 human essential proteins, only 94 unique proteins can be found and lead to the 

234 assays.

To derive side-effect subsets, we first construct a dataset that satisfy two conditions. (1) The 

drug belongs to our Drug Binding Dataset. (2) Side-effects are observed in three or more of 

the 216 drugs in Drug Binding Dataset. This leads to a dataset of 216 drugs and 1300 side-

effects. We then derive two subsets: SE-subset-50 contains side-effects that are observed in 

more than 50% of the 216 drugs; SE-subset-20 contains are side-effects that observed only 

in 20% or less of the 216 drugs.
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2. Predict affinities

We employ a previously developed method PocketFEATURE29, which compares similarities 

between two binding sites, to calculate the probability of binding for a given pair of a drug 

and a target protein.

In our study, a drug is actually represented by its binding site properties44, which are defined 

by protein residues within 6 Angstroms of the drug molecule. A target protein is represented 

by the binding site of the largest biological meaningful molecule co-crystalized with the 

protein.

A defined site (a set of residues) is then described with the physiochemical and structural 

environments surrounded around each residue. For each residue in a site, we choose a 

central functional atom and calculate the FEATURE microenvironment around the center. 

Specifically, FEATURE system calculates a set of 80 physicochemical properties collected 

over six concentric spherical shells (total 480 properties = 80 properties×6 shells) centered 

on the predefined functional center. FEATURE microenvironment refers to the local, 

spherical region in the protein structure that may encompass residues discontinuous in 

sequence and structure. PocketFEATURE calculates site similarities by matching 

microenvironments between two sites. A complete description of FEATURE and 

PocketFEATURE can be found in29, 44–45.

The similarity between a drug’s binding site and a potential site in a target protein estimated 

by PocketFEATURE is referred as “PF-affinity score” in this study. A more negative score 

suggests a higher probability of the drug’s binding to the target protein. A cutoff of −2.0 is 

usually used to define if a drug binds to a protein.

3. SVD-CCA process

We construct two matrices: X is the affinity scores between the 216 drugs and p proteins; Y 

is the observation of q side-effects in the 216 drugs (from either SE-subset-50, SE-subset-20, 

or control subsets). Traditional canonical correlation analysis is able to correlate linear 

relationship between X and Y. The event is that drugs’ binding to essential proteins (X) 

causes side-effects (Y) and this event (X=>Y). CCA seeks for the weights for X and Y (α 

and β, respectively), such that X and Y are transformed back to the mostly likely causal 

relationship, where  is maximized. Here α = (α1, … 

αp)T and β = (β1, … βq)T.

Step 1. Estimate α β—We discuss two options for estimating α β.

The goal of the traditional CCA is to find weight α and β that maximize the following 

canonical correlations coefficient: . This can be 

solved by Lagrangian35 that maximizes αTXTYβ with the constraints |αTXT| = 1 and |βTYT| 

= 1. This leads to the subspace with the maximized αTXTYβ. Then we can also obtain other 

subspaces by rankings of αTXTYβ. Here each pair of αTXT and Yβ in the corresponding 
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subspace is called a canonical component. That is, we are able to obtain multiple canonical 

components (subspaces), with multiple sets of α and β.

According to36, the covariance matrix (XTX and YTY) can be treated as a diagonal matrix. 

Therefore we maximize αTXTYβ with the constraints |α| = 1 and |β| = 1.

To find α β, we have singular value decomposition (SVD) of XTY

where the orthogonal matrix U is defined by U = [u1, ‥, u10, … u100, …]; UTU = I and I is 

an identity matrix where Σ is a diagonal matrix defined by  where the 

orthogonal matrix V is defined by V = [v1, ‥, v10, … v100, …]; VTV = I; Then we have 

 The maximum value 

of αTXTYβ is S1 (the largest singular value) when α = u1 and β = v1 (See Expanded View). 

Each pair of αTXT and Yβ is called a canonical component. Multiple components can be 

obtained by rankings of singular values.

We compare the two options by assessing their performance in predicting side-effects (Y) 

given a query drug (X).

Step 2. Calculate side-effect (y) of a given drug’s binding profile (x)—In this 

step, we can select weights from multiple canonical components to calculate y6. We have 

tested the number of sets to achieve best performance in cross-validation. Ten sets of 

canonical components are used in this study to achieve optimal performance. This can be 

considered “dimension reduction”. Note that the inverse below is pseudo-inverse.

We conduct a leave-one-out cross validation on the 216 drugs for benchmarking the 

performance.

4. Permutation tests

The permutation function in MatLab rearranges the dimensions of X, so that they are in the 

order specified by the vector order. The output X’ has the same values of X but the order of 
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the subscripts needed to access any particular element is rearranged as specified by order. 

All the elements of order must be unique. For each X’ and Y, we applied SVD-CCA and 

calculate AUC values from cross-validations.

From SVD-CCA calculation, we are able to extract multiple sets of weights (α and β). We 

plot α and β against to those extracted from permutation tests to exam the significance of 

extreme values of α and β.

5. Extract relationships between drug, essential protein and side-effect

We compare the CCs extracted from SE-subset-20 with those from the permutation tests. 

Each CC contains two vectors: alpha as weights of human essential proteins and beta as 

weights of side-effects. We use a weight absolute value cutoff 0.075 to collect essential 

protein and side-effects with extreme weights, named as “significant essential protein” and 

“significant side-effect”, respectively. From CC#2, CC#3, CC#4, CC#5, CC#6, we extract 

118 significant essential proteins and 86 significant side-effects. We track down the affinity 

scores of these proteins to the 216 drugs. Using a score cutoff of −2.5 (a more strict cutoff), 

pairs of drug: significant essential proteins are identified. When a drug is observed with a 

significant side-effect, the pair of drug: significant side-effect is also listed for further 

analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Predicted PocketFEATURE affinity scores and experimental IC50 values

We calculated the predicted PocketFEATURE affinity scores (PF-affinity) between 216 

drugs and 563 proteins, resulting in 121,608 scores between drugs and proteins. We found 

reliable experimental data from IC50 Assay Dataset for a total of 234 pairs of drug and 

protein. These 234 pairs are divided into three groups according to the predicted PF-

affinities. The corresponding IC50 are shown in boxplots (top panel). On each box, the 

central mark (red line) is the median (at 95% confidence interval), the edges of the box are 

the 25th and 75th percentiles, the whiskers extend to the most extreme data points not 

considered outliers, and outliers are plotted individually. The bottom panel shows the 

histogram of IC50 values in different score groups. This figure suggests that the predicted 

PF-affinity can be used to estimate the potential of binding.
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Figure 2. 
A. Histogram of the predicted drug promiscuity

For each of the 216 drugs, we estimated its potential for binding each of 563 proteins by 

calculating the PF-affinity scores. Using an affinity score cutoff of −2.0, we counted the 

number of predicted essential proteins bound of a given drug. About 15% drugs (34 of 216) 

bind to 20% or more of the 563 human essential proteins. More than 30% of drugs bind to 

more than 10% of the essential proteins.

B. Histogram of the predicted target promiscuity
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For each of the 563 proteins, we estimated its potential for binding each of the 216 drugs by 

calculating the PF-affinity scores. Using a score cutoff of −2.0, we counted the number of 

drugs of a given protein. The most promiscuous proteins are: B-cell CLL/lymphoma 2 

(BCL2), E1A binding protein p300(EP300), Janus kinase 2(JAK2), adenylate kinase 3-like 2 

(AK4), coagulation factor II (thrombin) receptor (F2R), nuclear receptor subfamily 5 

(NR5A2).
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Figure 3. 
Histogram of percentage of drugs associated with each of the 1300 side-effects

We have constructed the Drug Binding Dataset that collects 216 small molecule drugs for 

which 3D conformations of their binding sites are available in PDB and their side-effect are 

available in SIDER2. After removing side-effects that are observed in two or fewer drugs, 

the dataset spans 216 drugs and 1300 side-effects.
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Figure 4. 
Relationship between the predicted drug promiscuity and side-effect

For each of the 216 drugs, we estimated its potential for binding each of 563 proteins by 

calculating the PF-affinity scores. Using an affinity score cutoff of −2.0, we counted the 

number of predicted essential proteins bound of a given drug. We grouped the 216 drugs 

according to the number of their observed side-effects. The average number of side-effects 

in each group correlates with the average number of predicted essential proteins bound.
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Figure 5. 
Performance of SVD-CCA

We have created two subsets of the side-effect data from SIDER: SE-subset-50 includes 

side-effects that are only observed in fewer than 108 (50%) of the 216 drugs. SE-subset-20 

includes side-effects that are only observed in fewer than 43 (20%) of the 216 drugs. We 

used two different sets of molecular descriptors for drugs: (1) the predicted essential proteins 

bound (top panel), and (2) the recognized drug targets (bottom panel) in order to compare 

their performance when predicting side-effects. We evaluated performance by using the 

AUC scores for side-effect predictions in a leave-one-out cross validation. SVD-CCA has 

better performance on SE-subset-50, compared to SE-subset-20. Using predicted essential 

proteins bound leads to higher performance. We further compared the performance of SVD-

CCA when using different sets of CCs. When the molecular drug descriptors are predicted 

essential proteins bound, the average performance is improved as we use more CCs. The 

best performance is achieved when using the first ten sets of CC (CC#1–10), with the best 

median AUC of 0.82 for SE-subset-50 and 0.73 for SE-subset-20. However, when using 

recognized drug targets as the molecular drug descriptor, the performance is best with the 

first CC and does not improve with additional CCs.
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Figure 6. 
A. Characters of weight of side-effect assigned in CC#1

We calculated side-effect frequency (the number of drugs associated with each side effect) 

observed in SE-subset-50 and SE-subset-20. The weights assigned to each of side-effect in 

the first canonical components are plotted against side-effect frequency. When using 

essential proteins bound in SVD-CCA, the weight of side-effect in CC#1 correlates with 

side-effect frequency very well. When using known drug targets in SVD-CCA, the weight of 

side-effect in CC#1 also shows a reasonable correlation with side-effect frequency.

B. Characters of weight of side-effect assigned in CC#1–10
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We calculated correlation coefficient between side-effect frequency observed in SE-

subset-20 and the weights assigned to side-effect in each of the first ten canonical 

components. The weight assigned to side-effect in CC#1 correlates with the side-effect 

frequency (correlation coefficient 0.99). There is no clear correlation between side-effect 

frequency and the weight assigned to side-effect in CC#2 to CC#10.
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Figure 7. 
Significantly weighted attributes

For each canonical component, we extracted weight of each essential protein and side-effect 

(red circles). We then compared the values to those extracted from the permutation tests of 

100 iterations. The probability distributions (pdf) of weight values are shown below. The 

blue clusters represent the weights derived from 100 permutation tests. In SVD-CCA 

process, extreme values are assigned to essential proteins and side-effects. The plot suggests 
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that the extreme values observed in CC#2, CC#3, CC#4, CC#5 and CC#6 are significant, but 

not in CC#7.
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Figure 8. 
A. Seven essential proteins are associated with menstrual irregularities/disorders in SVD-

CCA analysis. They are: glucocorticoid receptor (NR3C1); glucocorticoid Nuclear Receptor 

2(NCOA2), progesterone-receptor (PGR), retinoic-acid-receptor (RARA), estrogen-receptor 

(ESR2), Janus kinase 2 (JAK2), vascular endothelial growth factor 2 (VEGFR2). 

Experimental assays in our IC50 Assay Dataset confirmed binding between six pairs of 

essential proteins and drugs (red edge): tamoxifen to NCOA2 and JAK2, dexamethasone to 

NCOA2 and JAK2 and dasatinib to JAK2 and VEGFR2. Experiments conducted by Novartis 

reveal ten proteins associated with menstrual irregularities. Four of them are the same with 

our predicted ones (orange highlight): estrogen-receptor (ESR2), progesterone-receptor 

(PGR), glucocorticoid receptor (NR3C1) and vascular endothelial growth factor 2 

(VEGFR2).
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B. Proteins associated with hypocalcemia in SVD-CCA analysis

They are: apolipoprotein (APOD), DNA polymerase beta (POLB), histone deacetylase 8 

(HDAC8), hypoxia-inducible factor 1-alpha inhibitor (FIH1), glyoxalase I (GLO1), matrix 

metalloproteinase-3 (MMP3), matrix metalloproteinase-7 (MMP7), peroxisome proliferator-

activated receptor alpha (PPARA), sex steroid-binding protein (SBP) and vitamin D3 

receptor (VDR). One survey reported two proteins to be associated with hypocalcemia: 

calcium-sensing receptor (CASR) and vitamin D3 receptor(VDR). Naturally occurring 

mutations in the calcium-sensing receptor gene (CASR) cause hypocalcaemia or 

hypercalcemia. In knockout mice, genetic inactivation of VDR leads to hypocalcemia. We 

have predicted VDR as an important protein that may interact with saquinavir (HIV drug) 

and three cancer drugs. In addition, ganciclovir is known to interact with POLB and 

saquinavir binds to PPARA. Since hypocalcemia is a side effect for many drugs, the 

predicted essential proteins bound may provide insights into diverse mechanisms of 

hypocalcemia.
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Figure 9. 
Molecular functions of essential proteins

Using the Gene Ontology (GO), we grouped the 563 human essential proteins into GPCR 

(GO:0004930), nuclear receptors (NR)(GO:0004879), DNA-binding transcription factors 

(GO:0003700), protein-binding transcription factors (GO:0000988), kinases (GO:0016301), 

or enzymes (GO:003824, excluding kinases) and others. The distributions of the 563 human 

essential proteins are shown in the top panel and that of the essential proteins significantly 

associated with drug side-effects are shown in the bottom panel.
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