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Abstract

The Community Structure Activity Resource (CSAR) conducted a benchmark exercise to evaluate 

the current computational methods for protein design, ligand docking, and scoring/ranking. The 

exercise consisted of three phases. The first phase required the participants to identify and rank 

order which designed sequences were able to bind the small molecule digoxigenin. The second 

phase challenged the community to select a near-native pose of digoxigenin from a set of decoy 

poses for two of the designed proteins. The third phase investigated the ability of current methods 

to rank/score the binding affinity of 10 related steroids to one of the designed proteins. We found 

that eleven of thirteen groups were able to correctly select the sequence that bound digoxigenin, 

with most groups providing the correct three-dimensional structure for the backbone of the protein 

as well as all atoms of the active-site residues. Eleven of the fourteen groups were able to select 

the appropriate pose from a set of plausible decoy poses. The ability to predict absolute binding 

affinities is still a difficult task, as 8 of 14 groups were able to correlate scores to affinity (Pearson-

r > 0.7) of the designed protein for congeneric steroids and only 5 of 14 groups were able to 

correlate the ranks of the 10 related ligands (Spearman-ρ > 0.7).
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Introduction:

The main goal of many drug-design projects is to create a small molecule that uses a 

protein’s innate ability for binding to achieve a desired physiological response.1–3 These 

small molecules must bind to the target protein with a low equilibrium dissociation constant 

(high affinity).4 Over the past few decades, many computational methods have been 

developed that attempt to predict how well a small molecule will bind to a particular protein, 

improving time and cost efficiency in biochemical research.3 These methods continue to be 

honed and perfected, as not all methods function well for all protein systems. A large 

amount of structural and affinity information is necessary for continuing development, 

testing, and validation of these methods. In 2008, The Community Structure-Activity 

Resource (CSAR) center was organized with the goal of gathering a vast array of data for 

developing methods. 5 This data is available to the community, both industry and academia, 

to help improve computational methods for drug-design purposes via the website 

www.csardock.org6.

The majority of drug-design projects have focused on new ligands based upon structural 

knowledge of a known protein target. A reverse objective, designing a protein to bind a 

particular small molecule, has also been of interest for creating protein-based biosensors, 

reagents, therapeutics, and diagnostics.7 Computational design of ligand-binding proteins is 

a challenging inverse test of docking and scoring methods, where experimental affinities can 

be fed back into the design process to refine the algorithms. Computational protein design 

and computational drug design share many similarities, and each requires a scoring function 

to rank-order a list of potential conformations to predict which is most biologically relevant 

and/or active.7 Over the past decade, the field of computational protein design has rapidly 

evolved, with successes ranging from the design of small hydrophobic cores to the creation 

of novel protein-protein interfaces to the construction of completely de novo proteins that 

perform specific functions.8 However, designing proteins to bind a small molecule has been 

a more challenging endeavor.9 Recently, three of the authors (C.E.T, S.D.K, and D.B.) 

developed a computational method in the framework of the Rosetta macromolecular 

modeling software10 to computationally design binding sites for the steroid digoxigenin.11 

Out of 17 designs that were tested experimentally, two proteins (DIG5 and DIG10) bound 

the target ligand digoxigenin with micromolar affinity. Affinity maturation by site-directed 

mutagenesis and screening using yeast surface display led to the identification of several 

variants (DIG10.1, DIG10.2, and DIG10.3) that were able to bind the ligand with affinities 

ranging down to sub-nanomolar levels. X-ray crystallography revealed the structures of the 
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two highest affinity binders, DIG10.2 (4J8T) and DIG10.3 (4J9A), bound to digoxigenin.11 

This work provided the unique datasets used for the 2013 CSAR Exercise.

Community-wide exercises have been utilized for a number of years to help the community 

develop and improve computational methods in areas such as protein-folding prediction (i.e. 

CASP12), prediction of protein interactions (CAPRI13), solubility prediction/solvation 

energies (i.e. SAMPL14), and structure-based drug design (i.e. the CSAR exercises15,16, an 

evaluation by Warren et al. from GlaxoSmithKline17, the Teach-Discover-Treat initiative18, 

and the Kaggle Merck Molecular Activity Challenge19). Here, we used the data from the 

design and experimental characterization of digoxigenin binders11, in conjunction with the 

CSAR blind-test framework, to run a community-wide exercise. This exercise was designed 

to challenge participants to predict which of the experimentally tested sequences would bind 

the small molecule digoxigenin (Phase 1), select a near-native pose of digoxigenin out of a 

set of docking decoys (Phase 2), and dock and rank-order/predict binding affinities for a set 

of ligands.

In this paper, the convention for labeling groups (A-V) is simply based on the order in which 

participants submitted answers. If a group submitted more than one set of results, usually 

from comparing multiple approaches, they were labeled as A-1, A-2, etc.

Methods and Materials:

Timeline:

The 2013 CSAR exercise was started March 25th, 2013 with the data available for download 

from www.csardock.org6. Participants were given approximately 1 month to complete this 

portion of the exercise, with submissions due by April 26, 2013 by uploading to the same 

website. Phase 2 of the exercise was started on May 13th, 2013 and submissions were due by 

May 31st, 2013. Phase 3 of the exercise started on June 21st, 2013 and ended August 30th 

2013. Phase2 and Phase 3 data were provided and submitted using the same website as in 

Phase 1. Answers to each phase were given to participants at the conclusion of each phase. 

The entire exercise was completed prior to publication of the designed proteins and binding 

affinities of digoxigenin online in Nature, September 4, 201311. The X-ray crystal structures 

of DIG10.2 and DIG10.3 were released by the PDB20 June 26, 2013, and DIG5.1 has been 

submitted, but has not yet been released at the time of this publication. The publication of 

the DIG10.2 structure was deposited during Phase 3 of the exercise; however, since the 

participants were given the coordinates of this structure as starting material for the phase, the 

release of the structure does not affect the results of this phase.

Phase 1:

Rules: Participants in the exercise were provided sixteen protein sequences that potentially 

bound the small molecule digoxigenin. The structure of digoxigenin is shown in Figure 1. 

They were asked to fold the protein sequence, dock digoxigenin, and predict which of the 

sixteen sequences had the ability to bind the ligand using methods of their choosing. 

Participants were also asked to send the resulting structure of the protein for comparison to 

the experimental structure.
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Dataset Generation: Sixteen protein sequences (Table 1) were designed, constructed, and 

synthesized by C.E.T, S.D.K, and D.B. at the University of Washington. The ability of each 

of these proteins to bind digoxigenin was determined experimentally. Of the 15 designed 

sequences that did not bind digoxigenin, only 12 were used in phase 1. The other sequences 

were not included, as two of the sequences (DIG11 and DIG16) could not be expressed in E. 
coli, and one of the sequences (DIG15) showed binding in some assays that was not 

confirmed. In the dataset, we also included two protein sequences that were experimentally 

optimized to bind digoxigenin by directed evolution: DIG5.1 (labeled DIG18 in phase 1), 

which derives from the DIG5 design (PDBID: 5BVB), and DIG10.3 (labeled DIG19 in 

phase 1), which derives from the DIG10 design (PDBID: 4J9A)11. Details regarding the 

crystallization and refinement of the DIG5.1 (DIG18) structure are provided in the 

Supplemental Information.

Analysis: Receiver Operator Characteristic (ROC) curves were created for the ranking 

provided by each group. For each curve, each point indicates the fraction of binding 

sequences (true positives) versus the fraction of the non-binding sequences (false positives) 

ranked above each possible ranking threshold. ROC plots are evaluated by the area under the 

resulting curve (AUC). An AUC of 1 indicates all binding sequences were ranked higher 

than non-binding sequences, 0.5 indicates the binding sequences were evenly placed in the 

ranking and 0 indicates all the non-binding sequences were ranked above the binding 

sequences.

The 95% confidence interval (CI) of the AUC was computed by bootstrapping. For this, a 

sample set of sixteen sequences and scores was chosen with replacement from the sixteen 

submitted sequences by a group. The ROC curve was then computed for this sample and the 

AUC calculated. This was repeated 1000 times. The upper bound to the 95% CI is the 97.5% 

quantile and the lower bound to the 95% CI is the 2.5% quantile of the resulting distribution 

of AUCs. The curves and confidence intervals were calculated using code kindly provided 

by Ajay Jain from UCSF21,22.

The submitted three-dimensional structures for DIG5.1 (DIG18) and DIG10.3 (DIG19) were 

compared to the experimental crystal structures using the standard RMSD of the backbone 

Cα.23 The RMSD of all atoms of the active-site residues was also computed between each 

submitted structure and the respective experimental crystal structure using the ‘rms’ 

command in PyMol24. The active-site residues are defined to be any residue within 6 Å of 

the bound digoxigenin molecule in the respective experimental crystal structure.

Phase 2:

Rules: Participants were provided a set of 200 docking decoys each to score for two known 

structures, DIG5.1(DIG18, PDBID: 5BVB) and DIG10.2(DIG20, PDBID: 4J8T)11. The 

decoy set included one near-native pose that was within 0.3Å RMSD of the known crystal 

pose but no other pose was within 2 Å of the known pose. The task was to only rank/score 

the poses to determine the near-native pose out of the 200. Participants returned their ranked 

lists or scores for all poses.
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Dataset Generation: The ligand decoy set was prepared by performing native docking of 

the ligand using DOCK version 6.525. A diverse set of 200 poses for each compound was 

then selected using the ranking obtained from the “Diverse Subset” utility in MOE 

2011.1026 based on conformations, being careful to only include one near native pose for 

each set. No requirement is made for the RMSD between decoys, only that they provide a 

diverse subset using the utility in MOE. This greatly decreases the likelihood that the near 

native pose is the obvious answer based on only pairwise decoy RMSD. Each set of ligands 

was provided to the participants as a single ‘multi- .mol2’ file with each pose having a 

unique name.

The structures for DIG18 (DIG5.1) and DIG20 (DIG10.2) were provided as ‘.mol2’ files. 

The protein structure was set up for scoring using the following protocol. All histidines, 

asparagines, and glutamines within the active site were examined for the appropriate 

tautomer at pH 7. The small molecule, crystallographic waters and additives were removed. 

Residues with multiple orientations within 6 Å of the native ligand were examined, and the 

appropriate orientation was retained. The ‘A’ conformation, as designated by the alternate 

location field of the ‘.pdb’ file, was retained for residues outside of 6 Å of the ligand. The N- 

and C-terminal residues were capped using an acetyl group (ACE) and an N-methyl group 

(NME), respectively. Hydrogens were added using the default procedure in MOE2011.10. 

Missing side chains were added for 17 residues in DIG5.1 (DIG18) and 33 residues in 

DIG10.2 (DIG20). Partial charges were added with the MMFF94x forcefield. The added 

caps, hydrogens and sidechains were minimized using the MMFF94x forcefield with the 

default parameters in MOE2011.10 keeping all other atoms fixed. All setup procedures were 

performed using MOE2011.1026.

Analysis: We consider a successful ranking as one that ranks the correct pose in the top 3. 

We also analyze the results based solely on the top pose.

Phase 3:

Rules: Participants were given the structure of DIG10.2 and ten ligands to dock. The 

participants were then asked to rank/score the resulting poses. The binding affinities of these 

ten small molecules for DIG10.2 were determined experimentally by CSAR, using the 

Thermofluor27 technique (Methods and details of the Thermofluor assay are given in the 

Supplemental Information). Affinities were not provided with the structures to ensure a blind 

study. Although all molecules bound the protein, participants were not told if each small 

molecule was active. Participants were asked to return the top-3 poses and scores/ranks for 

each ligand. The structures were given prepared for docking, but participants were free to 

utilize/setup the structures as necessary for their particular protocol.

Dataset Generation: The protein structure was set up for docking using the same 

protocol as described in phase 2. The structure was provided as a ‘.mol2’ file. The 

compounds chosen for the binding affinity experiments were selected by first performing a 

substructure search of the online Sigma-Aldrich catalog using the four fused-ring, steroid 

core of digoxigenin. The list was then sorted by price and availability as time and funds were 

limited. From the pared down list, the ten compounds used in the exercise were chosen to 
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span chemical functionality at the 3 and 17 positions of the steroid skeleton (Table 2). The 

molecules chosen are extremely rigid with few rotatable bonds. This limits the amount of 

conformational space available for the ligand and may remove a potential challenge of 

docking and scoring. Removing the challenge of a flexible ligand provides the advantage of 

focusing on the performance of docking and scoring functions on an unknown, designed 

protein. The small molecules were provided in a ‘.mol2’ format with 3-dimensional 

coordinates generated using OMEGA28,29 to minimize and generate a single, low-energy 

conformation from the SMILES string. For CS331 and CS332, the hydrogen was removed 

from the carboxylate group. Participants were allowed to add charges and manipulate the 

ligand as necessary for their protocol. Binding affinity values used in this analysis were 

determined using a thermal shift assay (Thermofluor)27. Where possible, binding affinities 

were also measured using Isothermal titration calorimetry (ITC) (Table 2). The ITC affinities 

matched those from the thermofluor, but were not distributed to the participants, since only 

three compounds, CS334, CS335, and CS337, could be determined by this method. The 

other seven molecules were incompatible with ITC because of weak affinity and/or poor 

solubility. Details of the ITC experimental methods are provided in the Supplemental 

Information.

Analysis: To assess how well each method performed on predicting the affinity of the 

small molecules to DIG10.2, we calculated the Pearson correlation coefficient (r). To 

determine how well the methods ranked the compounds, the non-parametric correlation 

coefficients Spearman-ρ and Kendall-τ were calculated. The 95th percent confidence 

intervals were computed for the Pearson and Spearman correlations using the Fisher 

transform.30 The 95th percent confidence interval for the Kendall coefficient is approximated 

by τ + 95% = τ + σ*1.96 and τ - 95% = τ - σ*1.96, where σ = 1 − τ2 2 2n + 5
9n n − 1 .31 Linear 

regression was performed on the predicted score versus the experimental affinities, and R2 

values were reported. All correlations and linear regressions were performed using JMP32.

Programs used by participants:

Participating groups provided details on the programs used in generating their results with 

some groups utilizing modified or custom versions of the programs or scoring functions. 

Some groups also utilized visual inspection of models or poses to assist in ranking/scoring. 

Below is a list of the programs used, avoiding using the names of each group to preserve 

anonymity.

For homology modeling in Phase 1, MUSTER33 was used by two groups (Group B and 

Group L); Medusa34 (Group G), Prime35,36 (Group D), M4T37 (Group F), Modeller38 

(Group J), and GalaxyTBM39 (Group K) were each used by individual groups. Two groups 

used I-TASSER40 (Group E and Group M), which utilizes a consensus of several different 

threading methods and chooses the best structure. Three groups (Group A, H, and I) 

declined to provide information about their methods.

For the docking portion of Phase 1 and Phase 3, a wider range of programs were utilized: 

Glide41 (Groups A, S and T), Autodock Vina42 (Groups B, F, and M-3), MedusaDock43 
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(Group C), Fred44 (Group D), SMINA45 (Group E-2–3,14–15), GalaxyDock46 (Group K), 

MDock47 (Group J, M, M-3), Surflex-Dock21,48 (Group N), and Wilma49 (Group O, V).

Scoring was performed in all three phases of the experiments and these scoring functions 

were used: MM/GBSA50 (Group A, G), Autodock Vina42 (Group B, E-3,6,9,11–14, F, L, 

M-3), MedusaScore51 (Group C), Szybki52 (Group D), ConvexPL (Group I, unpublished), 

ITScore53 (Group J, and M-1–2), PatchSurfer54 (Group L), GalaxyDock46(Group K), ICM55 

(Group N), SIE49/SIE-FISH56 (Group O), Glide-SP41 (Group S-1, S-2), Glide-XP57 (Group 

S3, S-4), and a QM/MM linear-response method (Group V).

Results and Discussion:

No two groups submitted the same predictions, despite the use of the same forcefields, 

programs, or servers. This notable result shows how minor details can significantly alter 

outcomes. It also underscores the importance of blinded exercises and the subtle bias that is 

inherent to retrospective studies. When starting a project, there are many small details and 

parameters to choose. Surely, each participant thought they chose the best options. In a 

retrospective, exercise, it is too easy to justify changing these parameters if difficulties arise 

(e.g. “method A is known to have difficulties with this system”, “either option X or Y is a 

valid choice”, etc.). This can conceal negative outcomes that could be needed to advance our 

field. Unfortunately, participants did not provide exact details of their calculations with their 

methods with their submissions, so we cannot identify the causes for different submissions 

based on the same methods.

Phase 1:

The goal of phase 1 was to determine if computational methods could predict which 

designed protein sequences were able to bind digoxigenin. Participants had 16 sequences to 

rank, of which 4 sequences could bind digoxigenin. A total of 12 groups participated in 

phase 1 of the 2013 CSAR Exercise. One of the groups submitted four different methods, for 

a grand total of 16 methods. In general, groups utilized sequence-based homology modeling 

methods to choose a template from the PDB and generate a potential 3-dimensional fold of 

the protein. The groups would then identify potential pockets to dock and score with their 

method to determine which sequences bound digoxigenin. All but three of the methods had 

scores for all of the sequences, one submitted scores for 15 of the 16 sequences, another for 

12 of the sequences, and the other for 11 of the sequences. The summary of the performance 

for each group is displayed in Figure 2.

Almost all groups had active sequences ranked near the top, with a couple of exceptions. 

The average AUC of the ROC curves for all the submissions was 0.76 with a standard 

deviation of 0.25. Of the groups that ranked all of the structures, the average AUC is 0.83 

with a standard deviation of 0.15. This shows that most groups were able to rank the active 

sequences before ranking the inactive sequences. All but two of the methods ranked at least 

one active sequence in the top 3. If only the methods which submitted scores for all 

sequences are considered, the average rank of the highest scored active sequence is 1.77 

(median = 1), and the average rank of the lowest scored active sequence was 7.85 (median = 

7). Two methods (Group E-4 and Group H) showed perfect performance in that they were 
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able to rank the four active sequences as the top four. The rankings and AUC are shown in 

Figure 2.

The 12 inactive sequences chosen for this phase were designed to make appropriate contacts 

with digoxigenin11; however, the overall similarity to the active sequences is very low (Table 

1). It is possible that similarity between the active sequences was enough to select the 

appropriate sequences. The four binding sequences had a high degree of similarity to each 

other and were distinct from the other 12 sequences because the binding sequences all derive 

from the same scaffold protein. This may have contributed to success in this phase for 

participants with methods that evaluated sequence similarity. The minimum similarity 

between pairs of active sequences was 92%; no other pair of sequences had similarity 

greater than 40%, with the exception DIG6 and DIG17, which were 93% similar to each 

other. In fact, the best performing strategy (Group E-4) utilized multiple sequence 

alignments of the dataset followed by clustering of these alignments using a neighbor 

joining tree to rank the sequences.

Not every group was able to successfully rank the active sequences in the top-three. Groups I 

and M had poor AUCs (< 0.5). In addition to ranking the protein sequences, 10 of the 13 

groups (Groups B-F, H-J, L, and M) submitted the three-dimensional model of the protein 

used to rank. Group I ranked the active sequences last (AUC = 0), which appears to be due 

to using a poor model. The RMSD of the active-site residues for their submitted models of 

DIG5.1 (DIG18) and DIG10.2 (DIG20) were greater than 12 Å, whereas all other groups 

had active-site RMSDs less than 3 Å. Unfortunately, the group did not provide details on the 

homology modeling. In investigating their structure, the group did find the correct protein 

fold; however, the residues in the secondary structure were shifted six residues due to 

improper modeling of the N-terminus, which forced the binding site to be incorrect. The 

poor structure makes it difficult to assess the scoring function, since it should fail at 

determining binding if the protein model is wrong. It is unclear why Group M did not obtain 

a higher AUC. Group M utilized I-TASSER as did Group E-1–3 for homology modeling and 

obtained appropriate structures. The issue does not appear to be the scoring function either 

as they utilized ITScore, which was also used by Group J to score the docked digoxigenin.

Most groups were able to demonstrate success in ranking sequences (AUC >> 0.5), and the 

majority of computational methods are ranking binding sequences higher than non-binding 

sequences, at least for the designed protein/digoxigenin system. The confidence intervals 

around the AUC are large due to a small number of sequences, so comparisons between 

groups are not statistically significant. The large confidence intervals also make it difficult to 

assess how well these methods would perform on other protein/ligand complexes. More 

exercises should be performed in the future as a wide range of designed systems become 

available through research in the computational protein-design field. Decoy sequences must 

also have higher similarity to the active sequences.

Phase 2:

The goal of Phase 2 was to determine if a near-native pose could be selected out of a set of 

decoys. With 199 decoys and 1 near-native pose, it is unlikely that the near-native pose 

would be randomly selected at the top of a ranked list (½00 or 0.05 %). No actual docking is 
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performed, so this tests the computational methods ability to score poses. The design of this 

phase is to decouple the docking problem from the scoring problem, where several poses are 

generated by an algorithm and the best pose needs to be selected by ranking using a scoring 

function. The setup of the protein and poses were explained to participants. We emphasized 

to participants that the poses may not be local minima for all force fields, so short 

minimizations could be necessary for optimal performance of their method.

A total of 14 groups participated in the second phase of the exercise, with a total of 20 

methods. Nine (B-E, H-J, L and M) of the groups had participated in the Phase 1. A 

summary of where each group docked the near-native poses is found in Table 3. In general, 

groups/methods were able to rank the near-native pose for each structure as the top-ranking 

pose or within the top-3 of their rankings. Table 3 provides details of the rankings of the 

near-native pose. For DIG5.1 (DIG18), 18 of 25 methods were able to rank the near-native 

pose as the top pose, and 22 of 25 methods were able to rank it in the top-3. DIG10.2 proved 

to be a little more challenging as only 17 of the 25 methods were able to rank the near-native 

pose as the top pose, and the other 8 methods did not rank it in the top-3. There is no 

consensus as to the reason each of these programs did not rank the near-native pose in the 

top 3. Group P did not provide any computational details while Group D utilized the energy-

based scoring approach of Szybki52. For the two groups which only succeeded on one of the 

proteins, Group N used a consensus scoring of the energy-based function from ICM58 and 

the shape-based scoring function from Surflex-Dock21. Group R used an in-house generated 

support vector machine (SVM) with parameters obtained from either Autodock (R-1), Glide 

(R-4), Liaison (R-5), MMGBSA (R-6) or a combination of Autodock and Glide (R-3) or all 

four (R-2).

One reason this may have been a particularly easy task is that the protein had only one 

obvious pocket for the molecule to bind. If there had been other possible clefts in the 

protein, this would have been a more difficult selection process, testing the scoring functions 

more rigorously. In these two cases the correct pose is buried in the only possible pocket, 

whereas all other poses are significantly solvent exposed. This can be seen in Figure 3 which 

shows the distribution of the decoys in the binding site for both DIG5.1 (DIG18) and 

DIG10.2 (DIG20). Many force fields have favorable terms for burying hydrophobic atoms in 

the protein; hence, decoy poses with larger exposed surface area and fewer atomic contacts 

generally score poorly.

Additionally, a major requirement for exhibiting success with docking protocols such as 

Autodock59, DOCK60, FlexX61, Glide41, Gold62, as well as a host of others, was to 

reproduce the pose of the small molecule in an X-ray crystal structure to within 2 Å. Many 

evaluations of these programs on known systems have demonstrated their success on some, 

but not all, targets17,63–67. These two protein/ligand complexes appear amenable to success 

in docking programs as only three of the fourteen methods failed to select the near-native 

pose. With only two proteins and one ligand, it is difficult to discern if the methods would 

function on other designed protein/ligand complexes.
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Phase 3:

CSAR has utilized Thermofluor to obtain equilibrium dissociation constants for ten steroid 

ligands which were chosen for their potential ability to bind the designed DIG proteins 

(Table 2). Due to poor solubility of the steroid compounds, we were only able to determine 

the dissociation constants for three of the ligands using ITC. The two methods agree well for 

the three compounds with a root-mean square error of 0.23 log units. Phase 3 was designed 

to evaluate the ability to dock and rank/score a series of 10 steroid ligands towards a 

designed protein. Fourteen groups participated in phase 3 of the exercise, with six groups 

submitting multiple methods. The total number of methods submitted was 27. In this phase, 

the scoring was more difficult, but not impossible; 8 groups (12 total methods) were able to 

obtain a Pearson correlation coefficient (r) to the experimental affinity of greater than 0.7 

with a maximum of 0.9. Of these methods, only 5 of the groups (7 methods) were able to 

rank with a Spearman correlation (ρ) to the experimental affinity of ≥0.7. A correlation of 

0.7 is chosen as it corresponds to a R2 of ≥ 0.5. For a sample size of only 10 compounds, the 

95% confidence interval around these correlation coefficients is very large. The 95% 

confidence interval around a correlation coefficient of 0.7 with only 10 compounds is 0.13 – 

0.92 for Pearson and 0.04 – 0.93 for the Spearman correlation. In previous exercises, we 

have used molecular weight and SlogP as “null” cases where their correlation to affinity is 

considered. However, in this exercise, the ligands are all steroids with significant chemical 

similarity and too small a range in these properties. In general, ranking (Spearman) and 

correlating (Pearson) scores with binding affinity is a difficult task as has been shown in the 

previous evaluations of docking and scoring exercises17,67,68. This is also a difficult task due 

to the narrow range of affinities investigated (pKd 4.1 to 6.66), with some ligand having 

affinities within error of each other. All correlations can be seen in Table 4. Comparisons 

cannot be made between groups because the confidence intervals around the correlation 

coefficients are large, due to the small number of compounds to rank.

Conclusion:

The 2013 CSAR Benchmark Exercise has been completed. We had a total of 21 different 

participants using 50 methods across the three phases of the exercise. The results can be best 

rationalized by considering the energy gaps between correct and incorrect answers in each 

phase: In the first phase of the exercise, participants successfully determined the four 

sequences which were able to bind the small molecule digoxigenin, out of a pool of sixteen 

sequences. The sequences of designed proteins that bind digoxigenin are radically different 

from those of the proteins that do not bind the small molecule, so it is reasonable to 

conclude that the energy gaps between the modeled bound poses would be large, and the 

precision required for discrimination is likely to be low. Therefore, most groups succeeded 

in this challenge. In the second phase, participants were asked to identify the correct pose 

from a set of 200 decoy poses. Most decoy poses were considerably more exposed than the 

correct near-native pose, which suggests the number of 2-body contacts were notably 

different and the energy gap between the near-native and decoy poses may have been 

relatively high. Similar to Phase 1, it would be likely that low-precision methods could 

discriminate between the native and decoy poses. Of course, high-precision methods would 

do well.
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In contrast, the third phase challenge – docking and rank-ordering structurally similar 

congeneric steroids by affinity – involved much smaller energy gaps between various bound 

poses of structurally similar compounds. Finer precision of the scoring functions is critical 

for success. The results for the third phase demonstrate this difficulty, despite the ability of 

the scoring functions to determine appropriate structures in the first two phases. 

Nevertheless, qualitative trends are encouraging, and high correlation with experimentally 

determined affinity could be obtained by a few groups and methods (e.g., E-12). Many 

participants in this exercise have contributed papers to this special section of the Journal of 
Chemical Information and Modeling. Their detailed analysis of their methods should 

provide insight into what choices corresponded best with success. The results of the exercise 

provide a snapshot of the overall state of our ability as a community to model protein-ligand 

interfaces, and highlight pressing areas where methodological improvements are needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements:

The authors would like to thank the Chemical Computing Group and OpenEye for their generosity in providing 
MOE and Omega, respectively. Funding for CSAR and this work is from a U01 grant from NIGMS/NIH 
(GM086873). CET, SDK, and DB would like to acknowledge funding from DTRA. SDK acknowledges a grant 
from the NSF (MCB-1330760). We would like to acknowledge Barry Stoddard at the Fred Hutchinson Cancer 
Research Center for work on the crystallography of DIG5.1 (DIG18).

References

(1). Yuriev E; Holien J; Ramsland PA Improvements, Trends, and New Ideas in Molecular Docking: 
2012–2013 in Review. J. Mol. Recognit 2015

(2). Leach AR; Shoichet BK; Peishoff CE Prediction of Protein–Ligand Interactions. Docking and 
Scoring:  Successes and Gaps. J. Med. Chem 2006, 49, 5851–5855. [PubMed: 17004700] 

(3). Sousa SF; Ribeiro AJM; Coimbra JTS; Neves RPP; Martins SA; Moorthy NSHN; Fernandes PA; 
Ramos MJ Protein-Ligand Docking in the New Millennium – A Retrospective of 10 Years in the 
Field. Curr. Med. Chem 2013, 20, 2296–2314. [PubMed: 23531220] 

(4). Babine RE; Bender SL Molecular Recognition of Protein–Ligand Complexes:  Applications to 
Drug Design. Chem. Rev 1997, 97, 1359–1472. [PubMed: 11851455] 

(5). Dunbar JB; Smith RD; Yang C-Y; Ung PM-U; Lexa KW; Khazanov NA; Stuckey JA; Wang S; 
Carlson HA CSAR Benchmark Exercise of 2010: Selection of the Protein–Ligand Complexes. J. 
Chem. Inf. Model 2011, 51, 2036–2046. [PubMed: 21728306] 

(6). www.csardock.org.

(7). Lippow SM; Tidor B Progress in Computational Protein Design. Curr. Opin. Biotechnol 2007, 18, 
305–311. [PubMed: 17644370] 

(8). Samish I; MacDermaid CM; Perez-Aguilar JM; Saven JG Theoretical and Computational Protein 
Design. Annu. Rev. Phys. Chem 2011, 62, 129–149. [PubMed: 21128762] 

(9). Schreier B; Stumpp C; Wiesner S; Höcker B Computational Design of Ligand Binding Is Not a 
Solved Problem. Proc. Natl. Acad. Sci 2009, 106, 18491–18496. [PubMed: 19833875] 

(10). Leaver-Fay A; Tyka M; Lewis SM; Lange OF; Thompson J; Jacak R; Kaufman K; Renfrew PD; 
Smith CA; Sheffler W; Davis IW; Cooper S; Treuille A; Mandell DJ; Richter F; Ban Y-EA; 
Fleishman SJ; Corn JE; Kim DE; Lyskov S; Berrondo M; Mentzer S; Popović Z; Havranek JJ; 
Karanicolas J; Das R; Meiler J; Kortemme T; Gray JJ; Kuhlman B; Baker D; Bradley P Rosetta3: 
An Object-Oriented Software Suite for the Simulation and Design of Macromolecules. Methods 
Enzymol 2011, 487, 545–574. [PubMed: 21187238] 

Smith et al. Page 11

J Chem Inf Model. Author manuscript; available in PMC 2019 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.csardock.org


(11). Tinberg CE; Khare SD; Dou J; Doyle L; Nelson JW; Schena A; Jankowski W; Kalodimos CG; 
Johnsson K; Stoddard BL; Baker D Computational Design of Ligand-Binding Proteins with High 
Affinity and Selectivity. Nature 2013, 501, 212–216. [PubMed: 24005320] 

(12). Moult J; Fidelis K; Kryshtafovych A; Schwede T; Tramontano A Critical Assessment of Methods 
of Protein Structure Prediction (CASP) — Round X. Proteins Struct. Funct. Bioinforma 2014, 82, 
1–6.

(13). Lensink MF; Wodak SJ Docking and Scoring Protein Interactions: CAPRI 2009. Proteins Struct. 
Funct. Bioinforma 2010, 78, 3073–3084.

(14). Guthrie JP SAMPL4, a Blind Challenge for Computational Solvation Free Energies: The 
Compounds Considered. J. Comput. Aided Mol. Des 2014, 28, 151–168. [PubMed: 24706106] 

(15). Dunbar JB Jr; Smith RD; Damm-Ganamet KL; Ahmed A; Esposito EX; Delproposto J; 
Chinnaswamy K; Kang Y-N; Kubish G; Gestwicki JE; others CSAR Data Set Release 2012: 
Ligands, Affinities, Complexes, and Docking Decoys. J. Chem. Inf. Model 2013, 53, 1842–1852. 
[PubMed: 23617227] 

(16). Dunbar JB Jr; Smith RD; Yang C-Y; Ung PM-U; Lexa KW; Khazanov NA; Stuckey JA; Wang S; 
Carlson HA CSAR Benchmark Exercise of 2010: Selection of the Protein–ligand Complexes. J. 
Chem. Inf. Model 2011, 51, 2036–2046. [PubMed: 21728306] 

(17). Warren GL; Andrews CW; Capelli A-M; Clarke B; LaLonde J; Lambert MH; Lindvall M; Nevins 
N; Semus SF; Senger S; Tedesco G; Wall ID; Woolven JM; Peishoff CE; Head MS A Critical 
Assessment of Docking Programs and Scoring Functions. J. Med. Chem 2006, 49, 5912–5931. 
[PubMed: 17004707] 

(18). Jansen JM; Cornell W; Tseng YJ; Amaro RE Teach–Discover–Treat (TDT): Collaborative 
Computational Drug Discovery for Neglected Diseases. J. Mol. Graph. Model 2012, 38, 360–
362. [PubMed: 23085175] 

(19). https://www.kaggle.com/c/MerckActivity.

(20). Berman HM; Westbrook J; Feng Z; Gilliland G; Bhat TN; Weissig H; Shindyalov IN; Bourne PE 
The Protein Data Bank. Nucleic Acids Res 2000, 28, 235–242. [PubMed: 10592235] 

(21). Jain AN Surflex-Dock 2.1: Robust Performance from Ligand Energetic Modeling, Ring 
Flexibility, and Knowledge-Based Search. J. Comput. Aided Mol. Des 2007, 21, 281–306. 
[PubMed: 17387436] 

(22). Lei S; Smith MR Evaluation of Several Nonparametric Bootstrap Methods to Estimate 
Confidence Intervals for Software Metrics. IEEE Trans. Softw. Eng 2003, 29, 996–1004.

(23). Damm KL; Carlson HA Gaussian-Weighted RMSD Superposition of Proteins: A Structural 
Comparison for Flexible Proteins and Predicted Protein Structures. Biophys. J 2006, 90, 4558–
4573. [PubMed: 16565070] 

(24). Schrodinger LLC. The PyMol Molecular Graphics System

(25). Lang PT; Brozell SR; Mukherjee S; Pettersen EF; Meng EC; Thomas V; Rizzo RC; Case DA; 
James TL; Kuntz ID DOCK 6: Combining Techniques to Model RNA–small Molecule 
Complexes. RNA 2009, 15, 1219–1230. [PubMed: 19369428] 

(26). Chemical Computing Group Inc. MOE2011.10; 1010 Sherbrooke St. West, Suite #910, Montreal, 
QC, Canada, H3A 2R7, 2011.

(27). Pantoliano MW; Petrella EC; Kwasnoski JD; Lobanov VS; Myslik J; Graf E; Carver T; Asel E; 
Springer BA; Lane P; Salemme FR High-Density Miniaturized Thermal Shift Assays as a 
General Strategy for Drug Discovery. J. Biomol. Screen 2001, 6, 429–440. [PubMed: 11788061] 

(28). Hawkins PCD; Skillman AG; Warren GL; Ellingson BA; Stahl MT OMEGA 2.5.1.4; OpenEye 
Scientific Software, Santa Fe, NM.

(29). Hawkins PCD; Skillman AG; Warren GL; Ellingson BA; Stahl MT Conformer Generation with 
OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank 
and Cambridge Structural Database. J. Chem. Inf. Model 2010, 50, 572–584. [PubMed: 
20235588] 

(30). Fisher RA On the “Probable Error” of a Coefficient of Correlation Deduced from a Small Sample 
1921.

(31). Bonett DG; Wright TA Sample Size Requirements for Estimating Pearson, Kendall and 
Spearman Correlations. Psychometrika 2000, 65, 23–28.

Smith et al. Page 12

J Chem Inf Model. Author manuscript; available in PMC 2019 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.kaggle.com/c/MerckActivity


(32). JMP Pro 10; SAS Institute, Inc.: Cary, N.C.

(33). Wu S; Zhang Y MUSTER: Improving Protein Sequence Profile–profile Alignments by Using 
Multiple Sources of Structure Information. Proteins Struct. Funct. Bioinforma 2008, 72, 547–
556.

(34). Ding F; Dokholyan NV Emergence of Protein Fold Families through Rational Design. PLoS 
Comput Biol 2006, 2, e85. [PubMed: 16839198] 

(35). Jacobson MP; Pincus DL; Rapp CS; Day TJF; Honig B; Shaw DE; Friesner RA A Hierarchical 
Approach to All-Atom Protein Loop Prediction. Proteins Struct. Funct. Bioinforma 2004, 55, 
351–367.

(36). Jacobson MP; Friesner RA; Xiang Z; Honig B On the Role of the Crystal Environment in 
Determining Protein Side-Chain Conformations. J. Mol. Biol 2002, 320, 597–608. [PubMed: 
12096912] 

(37). Fernandez-Fuentes N; Madrid-Aliste CJ; Rai BK; Fajardo JE; Fiser A M4T: A Comparative 
Protein Structure Modeling Server. Nucleic Acids Res 2007, 35 (suppl 2), W363–W368. 
[PubMed: 17517764] 

(38). Fiser A; Šali A Modeller: Generation and Refinement of Homology-Based Protein Structure 
Models. In Methods in Enzymology; Charles W. Carter J and R. M. S, Ed.; Macromolecular 
Crystallography, Part D; Academic Press, 2003; Vol. 374, pp 461–491. [PubMed: 14696385] 

(39). Ko J; Park H; Seok C GalaxyTBM: Template-Based Modeling by Building a Reliable Core and 
Refining Unreliable Local Regions. BMC Bioinformatics 2012, 13, 198. [PubMed: 22883815] 

(40). Roy A; Kucukural A; Zhang Y I-TASSER: A Unified Platform for Automated Protein Structure 
and Function Prediction. Nat. Protoc 2010, 5, 725–738. [PubMed: 20360767] 

(41). Friesner RA; Banks JL; Murphy RB; Halgren TA; Klicic JJ; Mainz DT; Repasky MP; Knoll EH; 
Shelley M; Perry JK; Shaw DE; Francis P; Shenkin PS Glide:  A New Approach for Rapid, 
Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem 
2004, 47, 1739–1749. [PubMed: 15027865] 

(42). Trott O; Olson AJ AutoDock Vina: Improving the Speed and Accuracy of Docking with a New 
Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem 2010, 31, 455–
461. [PubMed: 19499576] 

(43). Ding F; Yin S; Dokholyan NV Rapid Flexible Docking Using a Stochastic Rotamer Library of 
Ligands. J. Chem. Inf. Model 2010, 50, 1623–1632. [PubMed: 20712341] 

(44). McGann MR; Almond HR; Nicholls A; Grant JA; Brown FK Gaussian Docking Functions. 
Biopolymers 2003, 68, 76–90. [PubMed: 12579581] 

(45). Koes DR; Baumgartner MP; Camacho CJ Lessons Learned in Empirical Scoring with Smina 
from the CSAR 2011 Benchmarking Exercise. J. Chem. Inf. Model 2013, 53, 1893–1904. 
[PubMed: 23379370] 

(46). Shin W-H; Seok C GalaxyDock: Protein–Ligand Docking with Flexible Protein Side-Chains. J. 
Chem. Inf. Model 2012, 52, 3225–3232. [PubMed: 23198780] 

(47). Huang S-Y; Zou X Ensemble Docking of Multiple Protein Structures: Considering Protein 
Structural Variations in Molecular Docking. Proteins Struct. Funct. Bioinforma 2007, 66, 399–
421.

(48). Spitzer R; Jain AN Surflex-Dock: Docking Benchmarks and Real-World Application. J. Comput. 
Aided Mol. Des 2012, 26, 687–699. [PubMed: 22569590] 

(49). Sulea T; Hogues H; Purisima EO Exhaustive Search and Solvated Interaction Energy (SIE) for 
Virtual Screening and Affinity Prediction. J. Comput. Aided Mol. Des 2011, 26, 617–633. 
[PubMed: 22198519] 

(50). Massova I; Kollman PA Combined Molecular Mechanical and Continuum Solvent Approach 
(MM-PBSA/GBSA) to Predict Ligand Binding. Perspect. Drug Discov. Des 2000, 18, 113–135.

(51). Yin S; Biedermannova L; Vondrasek J; Dokholyan NV MedusaScore: An Accurate Force Field-
Based Scoring Function for Virtual Drug Screening. J. Chem. Inf. Model 2008, 48, 1656–1662. 
[PubMed: 18672869] 

(52). SZYBKI 1.8.0.2; OpenEye Scientific Software, Santa Fe, NM.

Smith et al. Page 13

J Chem Inf Model. Author manuscript; available in PMC 2019 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(53). Huang S-Y; Zou X An Iterative Knowledge-Based Scoring Function to Predict Protein–ligand 
Interactions: II. Validation of the Scoring Function. J. Comput. Chem 2006, 27, 1876–1882. 
[PubMed: 16983671] 

(54). Hu B; Zhu X; Monroe L; Bures MG; Kihara D PL-PatchSurfer: A Novel Molecular Local 
Surface-Based Method for Exploring Protein-Ligand Interactions. Int. J. Mol. Sci 2014, 15, 
15122–15145. [PubMed: 25167137] 

(55). Abagyan R; Totrov M; Kuznetsov D ICM—A New Method for Protein Modeling and Design: 
Applications to Docking and Structure Prediction from the Distorted Native Conformation. J. 
Comput. Chem 1994, 15, 488–506.

(56). Corbeil CR; Sulea T; Purisima EO Rapid Prediction of Solvation Free Energy. 2. The First-Shell 
Hydration (FiSH) Continuum Model. J. Chem. Theory Comput 2010, 6, 1622–1637. [PubMed: 
26615695] 

(57). Friesner RA; Murphy RB; Repasky MP; Frye LL; Greenwood JR; Halgren TA; Sanschagrin PC; 
Mainz DT Extra Precision Glide:  Docking and Scoring Incorporating a Model of Hydrophobic 
Enclosure for Protein–Ligand Complexes. J. Med. Chem 2006, 49, 6177–6196. [PubMed: 
17034125] 

(58). Abagyan R; Totrov M; Kuznetsov D ICM—A New Method for Protein Modeling and Design: 
Applications to Docking and Structure Prediction from the Distorted Native Conformation. J. 
Comput. Chem 1994, 15, 488–506.

(59). Park H; Lee J; Lee S Critical Assessment of the Automated AutoDock as a New Docking Tool 
for Virtual Screening. Proteins Struct. Funct. Bioinforma 2006, 65, 549–554.

(60). Brozell SR; Mukherjee S; Balius TE; Roe DR; Case DA; Rizzo RC Evaluation of DOCK 6 as a 
Pose Generation and Database Enrichment Tool. J. Comput. Aided Mol. Des 2012, 26, 749–773. 
[PubMed: 22569593] 

(61). Kramer B; Rarey M; Lengauer T Evaluation of the FLEXX Incremental Construction Algorithm 
for Protein–ligand Docking. Proteins Struct. Funct. Bioinforma 1999, 37, 228–241.

(62). Verdonk ML; Cole JC; Hartshorn MJ; Murray CW; Taylor RD Improved Protein–ligand Docking 
Using GOLD. Proteins Struct. Funct. Bioinforma 2003, 52, 609–623.

(63). Wang R; Lu Y; Wang S Comparative Evaluation of 11 Scoring Functions for Molecular Docking. 
J. Med. Chem 2003, 46, 2287–2303. [PubMed: 12773034] 

(64). Kellenberger E; Rodrigo J; Muller P; Rognan D Comparative Evaluation of Eight Docking Tools 
for Docking and Virtual Screening Accuracy. Proteins Struct. Funct. Bioinforma 2004, 57, 225–
242.

(65). Kontoyianni M; McClellan LM; Sokol GS Evaluation of Docking Performance:  Comparative 
Data on Docking Algorithms. J. Med. Chem 2004, 47, 558–565. [PubMed: 14736237] 

(66). Li X; Li Y; Cheng T; Liu Z; Wang R Evaluation of the Performance of Four Molecular Docking 
Programs on a Diverse Set of Protein-Ligand Complexes. J. Comput. Chem 2010, 31, 2109–
2125. [PubMed: 20127741] 

(67). Damm-Ganamet KL; Smith RD; Dunbar JB; Stuckey JA; Carlson HA CSAR Benchmark 
Exercise 2011–2012: Evaluation of Results from Docking and Relative Ranking of Blinded 
Congeneric Series. J. Chem. Inf. Model 2013, 53, 1853–1870. [PubMed: 23548044] 

(68). Smith RD; Dunbar JB; Ung PM-U; Esposito EX; Yang C-Y; Wang S; Carlson HA CSAR 
Benchmark Exercise of 2010: Combined Evaluation Across All Submitted Scoring Functions. J. 
Chem. Inf. Model 2011, 51, 2115–2131. [PubMed: 21809884] 

Smith et al. Page 14

J Chem Inf Model. Author manuscript; available in PMC 2019 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Structure of digoxigenin (CS337).
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Figure 2. 
The rankings are given for each group’s predictions of the binding of digoxigenin to 16 

sequences. The entries in bold indicate the protein sequences which bound digoxigenin. 

Boxes in blue were predicted in the top-4, since there are 4 active sequences. Boxes in grey 

were predicted inactive (outside of top-4). Entries with no color were not ranked by the 

group. The AUC of the ROC curve is given with the 95% and 1σ confidence intervals based 

on 1000 bootstrap samples. The groups are sorted by the AUC. The numbers indicate each 

group’s rank of each sequence.
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Figure 3. 
One near-native pose and 199 decoy poses were given for both DIG5.1 (DIG18) (A) and 

DIG 10.2 (DIG20) (B). The near-native digoxigenin pose is colored with carbon as magenta. 

The protein surface was computed in PyMol24 and displayed white. The non-native 

digoxigenin decoys are colored with gray carbons.
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Table 1.

Sequences used for Phase 1 of the exercise. Bolded entries indicate sequences which were able to bind 

digoxigenin.

ID Sequence

DIG1 MSLDFNTLAQNFTQFWYNQFDTDRSQLGNLYRNESMTTHETSQLQGAKDIVEGLVSLPFQKYQARI
TTLDAQPASPYGDVLVMVTGDGLTDEEQNPWRYSAVYHLIPDGNSYYVFNAIWRYNYSAGS

DIG2 MVSAKDFSGANLYTLEEVQYGKFEARMKMAAASGTVSSMYLHQNGSWIADGRPFVAVYIIVLGKNP
GSFQSNIVTGKAGAYKTSAKHHAVSPAADQAFHTYGLEWTPNYVRWTVDGQEVRKTEGGQVSNLT
GTQGLRFSLYSSESAAWVGQFDESKLPLFQFINWVKVYKYTPGQGEGGSDFTLDWTDNFDTFDGS
RWGKGDYTFDGNRVDFTDKNIYSRDGMLILALTRKGQESFNGQVPRDDEPAPQSSSSAPASSGS

DIG3 MGTTPNSTGWHDGYYYHWWSDGGGDSTYTNNSGGTYEITWGNGGILIGGKGWNPGLNARAIHFT
GVYQPNGTSFLSVYGWTRNPLVSYYIVENFGSSNPSSGSTDLGTVSCDGSTYTLGQSTWYNYPSID
GTQTFNAYWSVRQDKRSSGTVQTGCHFDAWASAGLNVTGDHYYQIVATFGWYSSGYARITVADVG
GS

DIG4 MSDVESLENTSENRAQVAARQHNRKIVEQYMHTRGEAELKMHLLFTEDGVGGSWTTSSGQPIAIRG
REKLGEHDVFLLQVFPDWVWTDIQIFETQDPNWFWVECRGEGAIVFPGYPRGQYRAHYLASFRFEN
GLIKETRWFWNPCEAFRALGIEGS

DIG5 MNAKEILVHSLRLLENGDARGWCDLFHPEGVLEFPYAPPGWKTRFEGRETIWAHMRLHPEHVTVR
FTDVQFYETADPDLAIGEYHGDGVVTVSGGKYAADFITVLRTRDGQILLYRVFWNPLRALEAAGGV
EAAAKIVQGAGS

DIG6 MNLQTDQTTTTADESAIRAFTRQMIDAWNRGSGEGFAAPFSETADYITFDGTHLKGRKEIAAFAQQA
FDTVAKGTRHEGEVDFVRFVNSQLALMLTVWRVILPGQTETSASMDALPLYVVTKGDEGWQIEGLLA
TYKLTLERGSFLDDFDSLSAEAQRQVTDLVASLKQSHGS

DIG7 MSEPVFPTPEAAEDAFYAALEAGSLDDYMAVWARDDHVAFIHPLAAPLNGRAAVAAGWRSHLGAA
GRFRLQVKAVHEIRQADHVIRITDIFFTGGDETAPRPAALATAVYRREADGWRMVLYHASPLQVGAK
AGADTPPVVFHGS

DIG8 MTIAEIAKDYTELNKQGDQAGAYEKYAADDIAYYQAMEGPMAVSHGKEAWRQALQWYQENAEFHG
GSVEGPYVNGDQFALRFKWDVTPKATGERVTVDGVHLYTVKNGKITEVRWYYGS

DIG9 MKLCFNEFTTLENSNLKLDLELCEKHGYDYIQIRTMDKLPEYLKDHSLDDLAEYFQTHHIKPLALLHLL
FFNNRDEKGHNEIITEFKGMMETCKTLGVKYVLAWPLRTEQKIVKEEIKKSSVDVLTELSDIAEPYGVK
IALNFGGLPQCTVNTFEQAYEIVNTVNRDNVGLYLNSFHFHAMGSNIESLKQADGKKIFIYGIGDTEDF
PIGFLTSEDMVWPGQGAIDLDAHLSALKEIGFSDVVSVALLRPEYYKLTAEEAIQTAKKTTVDVVSKYF
SMGS

DIG10 MNAKEIVVHSLRLLENGDARGWCDLFHPEGVLEYPYAPPGHKTRFEGRETIWAHMRLFPEYVTVR
FTDVQFYETADPDLAIGEFHGDGVHTVSGGKLAADYISVLRTRDGQILLYRVFFNPLRVLEALGGVE
AAAKIVQGAGS

DIG12 MGMEVNQPDIVAQVQAAFVEYERALVENDIEAMNALFWHTPETVFYGATTVQHGGEAWRAHVERS
QPHPKSRKLHRTVVTTFGTDFATVSTEFTSDGTPLLGRQMQTWARLSPADGWKIVAAHFSLIAMPG
S

DIG13 MKLVAGLSSPEELELAEKADVVTLHIDLFDFSGARVDKEKGLTCMRVSDGGKFEGDERERIEKMKRA
FDSLNPDYVYLESDLPDSAFDFNCRIAEFYGNVIRTPDYSELKGIVEGRRGDLVVIATMGKSKRDVETI
VRILTNYDDVLAHLMG ERFSFTMVLAAYLGSPWIWCYVGSPKFPGAISLDDAREIISRLGGS

DIG14 MTLRAARPEFLDLFPAGAEARRLADGFTWTSGPVYVPARSAVIFSDSAQNRTWAWSDDGQLSPEM
HPSHHQGGHCLNKQGHLIACSHGLRRLERQREPGGEWESIADSFEGKKLNSPSAVCLAPDGSLWF
SDPTWGIDLPEFGYGGEMELPGRWVFRLAPDGTLSAPIRDRVKPTGLAFLPSGNLLVSDAGDNATH
RYCLNARGETEYQGVHFTVEPGATYYLRVDAGGLIWASAGDGVHVLTPDGDELGRVLTPQTTTGLC
FGGPEGRTLYMTVSTEFWSIETNVRGGS

DIG17 MNLQTDQTTTTADESAIRAFHRQLIDAFNRGSGEGFAAPFSETADFITAEGTHLKGRKEIAAYHQQAF
DTVVKGTRLEGEVDFVRFVNSQLALMLVVSRIILPGQTETSASRDYLPLYVVTKGDEGWQIEGLLATR
KLTLERQFFLDDFDSLSAEAQRQVTDLVASLKQSHGS

DIG5.1
(DIG18)

MNAKEILVHSLRLLENGDARGWCDLFHPEGVLEYPYAPPGWKTRFEGRETIWAHMRLHPEHVTW
RFTDVQFYETADPDLAIGEYHGDGVVTVSGGKYAADYITVLRTRDGQILLLRVFWNPLRILEAAGGV
EAAAKIVQGAGS

DIG10.3
(DIG19)

MNAKEIVVHALRLLENGDARGWSDLFHPEGVLEYPYPPPGYKTRFEGRETIWAHMRLFPEYMTIRF
TDVQFYETADPDLAIGEFHGDGVLTASGGKLAYDYIAVWRTRDGQILLYRLFFNPLRVLEPLGGVE
AAAKIVQGAGS
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ID Sequence

DIG10.2
(DIG20)

MNAKEIVVHALRLLENGDARGWCDLFHPEGVLEYPYPPPGYKTRFEGRETIWAHMRLFPEYMTIRF
TDVQFYETADPDLAIGEFHGDGVHTVSGGKLAADYISVLRTRDGQILLYRLFFNPLRVLEPLGLE
(Phase 2 only)
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Table 2.

Binding affinities of ligands used in Phase 3.

CSAR ID
Structure Thermofluor (Kd (error) 

μM)
ITC (Kd (error) 

μM)
Thermoluor (pKd) ITC (pKd)

CS331

44.5 (5.9) 4.35

CS332

46.2 (4.4) 4.34

CS333

30.6 (7.8) 4.51

CS334

3.25 (0.34) 2.30 (0.27) 5.49 5.64

CS335

3.12 (0.25) 5.51

CS336

19.0 (3.4) 7.43 (2.74) 4.72 5.13

CS337 (digoxigenin)

0.474 (0.068) 0.498 (0.027) 6.32 6.30

CS338

0.220 (0.085) 6.66
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CSAR ID
Structure Thermofluor (Kd (error) 

μM)
ITC (Kd (error) 

μM)
Thermoluor (pKd) ITC (pKd)

CS339

79.1 (7.5) 4.10

CS340

53.7 (3.6) 4.27
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Table 3.

Rankings of the near-native poses from Phase 2.

Group DIG5.1 (DIG18) rank DIG10.2 (DIG20) rank

B 1 1

C 1 1

E-5 1 1

E-6 1 1

E-8 1 1

E-9 1 1

E-10 1 1

H 1 1

I 1 1

J 1 1

K 1 1

L 1 1

M 1 1

O-1 1 1

O-2 1 1

E-7 2 1

R-2 2 6

R-5 2 13

R-6 2 13

R-3 1 20

R-1 1 23

N 24 1

R-4 1 27

P 86 12

D 93 36

Ranked near-native best 18 of 25 17 of 25

Ranked near-native Top-3 22 of 25 17 of 25

J Chem Inf Model. Author manuscript; available in PMC 2019 June 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Smith et al. Page 23

Table 4.

Correlation coefficients for Phase 3 of the exercise.

Group-Method R2 Pearson (r) r 95% CI Spearman (ρ) ρ 95% CI

E-12 0.814 0.902 0.631 – 0.977 0.855 0.386 – 0.973

D 0.766 0.875 0.548 – 0.970 0.709 0.057 – 0.937

S-2 0.751 0.867 0.522 – 0.968 0.746 0.125 – 0.947

T 0.732 0.855 0.489 – 0.965 0.673 −0.005 – 0.927

E-14 0.723 0.850 0.475 – 0.964 0.758 0.149 – 0.950

B 0.671 0.819 0.391 – 0.956 0.554 −0.170 – 0.890

O-1 0.655 0.809 0.366 – 0.953 0.649 −0.042 – 0.920

C-3 0.644 0.802 0.349 – 0.951 0.770 0.174 – 0.953

M-3 0.630 0.794 0.328 – 0.949 0.509 −0.222 – 0.874

O-3 0.609 0.780 0.296 – 0.945 0.576 −0.143 – 0.897

M-2 0.580 0.762 0.254 – 0.940 0.576 −0.143 – 0.897

E-11 0.534 0.731 0.187 – 0.932 0.685 0.015 – 0.930

S-1 0.464 0.681 0.090 – 0.917 0.636 −0.060 – 0.916

M-1 0.459 0.677 0.083 – 0.916 0.406 −0.327 – 0.834

O-4 0.444 0.666 0.063 – 0.913 0.673 −0.005 – 0.927

S-3 0.444 0.666 0.063 – 0.913 0.515 −0.215 – 0.876

U 0.343 0.586 −0.069 – 0.888 0.782 0.201 – 0.956

S-4 0.312 0.559 −0.110 – 0.879 0.479 −0.255 – 0.863

J 0.301 0.548 −0.124 – 0.876 0.612 −0.095 – 0.908

H 0.233 0.483 −0.211 – 0.853 0.273 −0.442 – 0.776

I 0.215 0.464 −0.235 – 0.846 0.600 −0.111 – 0.905

C-2 0.186 0.432 −0.272 – 0.835 0.321 −0.402 – 0.798

L 0.119 0.345 −0.364 – 0.801 0.382 −0.350 – 0.824

V 0.059 0.242 −0.457 – 0.757 0.103 −0.564 – 0.689

E-13 0.043 0.208 −0.486 – 0.74 −0.006 −0.633 – 0.626

C-1 0.017 0.130 −0.544 – 0.702 −0.224 −0.752 – 0.479

E-15 0.004 0.060 −0.592 – 0.664 −0.224 −0.752 – 0.479
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