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Abstract

Prediction of the three-dimensional (3D) structures of proteins by computational methods is 

acknowledged as an unsolved problem. Accurate prediction of important structural characteristics 

such as contact number is expected to accelerate the otherwise slow progress being made in the 

prediction of 3D structure of proteins. Here, we present a dropout neural network-based method, 

TMH-Expo, for predicting the contact number of transmembrane helix (TMH) residues from 

sequence. Neuronal dropout is a strategy where certain neurons of the network are excluded from 

back-propagation to prevent co-adaptation of hidden-layer neurons. By using neuronal dropout, 

overfitting was significantly reduced and performance was noticeably improved. For multi-

spanning helical membrane proteins, TMH-Expo achieved a remarkable Pearson correlation 

coefficient of 0.69 between predicted and experimental values and a mean absolute error of only 

1.68. In addition, among those membrane protein–membrane protein interface residues, 76.8% 

were correctly predicted. Mapping of predicted contact numbers onto structures indicates that 

contact numbers predicted by TMH-Expo reflect the exposure patterns of TMHs and reveal 

membrane protein–membrane protein interfaces, reinforcing the potential of predicted contact 

numbers to be used as restraints for 3D structure prediction and protein–protein docking. TMH-

Expo can be accessed via a Web server at www.meilerlab.org.
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Introduction

Helical membrane proteins (HMPs) play essential roles in various biological processes, 

including signal transduction, ionic and molecular transportation across the membrane, and 

energy generation. Due to their pharmacological relevance, about 50% of the drugs in the 

market target HMPs.1 It was estimated that HMPs constitute about 20% to 30% of the 

human genome.2 In spite of their prevalence in the genome, a very small portion of 

structures in the Protein Databank is HMPs due to the experimental difficulties in 

determining the structures of HMPs. Therefore, accurate and efficient computational 

methods would be valuable tools to complement existing experimental techniques. One of 

the challenges in computational prediction of the three-dimensional (3D) structure of HMPs 

is to predict helix-helix packing in which a transmembrane helix (TMH) either faces the 

lipids or is buried in the protein core. Knowing a priori whether an amino acid residue is 

exposed to the membrane lipid or buried inside the protein core provides valuable restraint 

information that can be incorporated to reduce the sampling space of helix–helix packing. 

As an intermediate step to the prediction of the 3D structure of HMPs, it is worthwhile to 

develop reliable methods for predicting residue exposure.

Solvent accessibility is the most commonly used structural feature for characterizing the 

exposure environment of a residue.3 However, the applicability of solvent accessibility in 

helix–helix packing, or de novo 3D structure prediction, where an astronomical 

conformational space needs to be sampled, is limited. Accurate computation of solvent 

accessibility is computationally demanding because it requires full-atom representation of 

amino acid side chains. Residue contact number, defined as the number of contacting 

residues of the residue of interest is another structural feature that reflects the exposure of a 

residue.4 Computation of the contact number does not require a full-atom representation of 

amino acid side chains and is numerically fast. Thus, contact number is more suitable for 

being incorporated into the 3D structure prediction either in the form of restraints or 

knowledge-based potential. In addition, as contact number is negatively correlated with 

solvent accessibility,5 it may provide insights into a spectrum of biological problems in 

which solvent accessibility has been applied, such as epitope mapping,6 hot spots 

detection,7,8 understanding of protein–protein interactions,9–11 quality assessment of 

structural models,12 and modeling of amino acid residue side chain conformation.13
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Traditionally, prediction of the contact numbers for soluble proteins is treated as a two-state 

(higher or lower than the average contact number) or three-state (much higher, much lower, 

or close to the average contact number) classification problem.14–16 However, the 

applicability of classification approach is limited as it is difficult to use discrete exposure 

status for scoring in 3D structure prediction. Furthermore, subdividing residues into different 

states requires an arbitrary selection of a specific contact number as a cutoff. Therefore, real-

value predictions should be preferred.17 The problem of predicting contact numbers for 

soluble proteins has been studied for more than a decade, and promising results have been 

achieved.18,19 Even though a few attempts have been made to predict the burial status or 

real-value solvent accessibility of TMH residues,20–23 given the fact that 3D structures of 

HMPs have long been desirably pursued, it is remarkable to notice that no work has been 

reported on predicting contact numbers for HMPs.

Here, we present a dropout neural network-based method, termed TMH-Expo, for predicting 

contact numbers for HMPs. We first curated a large nonredundant data set of HMPs with 

known structure based on which experimental contact numbers were computed. Thereafter, 

we examined a set of feature vectors containing local sequence or evolutionary information 

for contact number prediction. Subsequently, a detailed analysis of the performance of 

TMH-Expo was conducted. Finally, we showed that the predicted contact number reveals 

exposure patterns of TMHs and discussed the application of the predicted contact number to 

3D structure prediction and protein–protein docking.

Methods

Generation of Data Set

The data set of HMPs with known structures used in the current study was retrieved from the 

OPM (Orientation of Proteins in the Membrane) database.24 Peripheral HMPs and peptides 

were removed to obtain a set of “true” HMPs. Further refinement was carried out by 

removing thylakoid HMPs as they have extreme topological complexity.25 The protein 

culling server PISCES26 was used to obtain a list of HMP chains that have a sequence length 

between 40 and 10,000 residues, and pairwise sequence identity of 25% or less. Non-X-ray 

structures and Cα-only structures, as well as X-ray structures with a resolution > 3.0 Å or an 

R-factor > 0.3, were excluded. This culminated the final data set that consisted of 90 chains 

from 71 proteins from 33 OPM superfamilies. The complete list of protein chains used in 

this study are listed in Table S1 of the Supporting Information. The transmembrane region 

for each protein chain was provided by OPM. The membrane normal aligns with the z-axis, 

and the membrane center is positioned at z = 0. A secondary structure type was assigned to 

each residue from the consensus identification of DSSP,27 Stride,28 and PALSSE.29 A 

residue is considered as a TMH residue if it sits inside the membrane, and the residue is part 

of a helical conformation.

Computation of Contact Number

The contact number of a residue i was originally defined as the number of Cα atoms of other 

residues inside the sphere of radius d centered at the Cα atom of residue i.30 While this 

definition is straightforward, it has the disadvantage that each residue inside the sphere is 
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assigned an equal contribution to the total contact number. This is rather unrealistic as both 

van der Waals and electrostatic interactions are distance dependent. To achieve a more 

physically realistic approximation, we used a refined algorithm developed for contact 

number computation. This algorithm is similar to that of Kinjo et al.,19 where Cβ atoms are 

used instead of Cα atoms and the boundary of the sphere is smoothed. Contribution to the 

total contact number is assigned to each residue inside the sphere in a distance-dependent 

way such that short-range contacting residues have higher contribution than long-range 

contacting ones. Residues whose Cβ atom is within 4.0 Å to the Cβ atom of the residue of 

interest are assigned a weight of 1.0; those with a distance longer than 11.4 Å are assigned a 

weight of 0. Any residue in between is assigned a weight between 0.0 and 1.0 according to a 

smooth transition function. This scheme can be summarized into the following function:

where wij is the contribution made by residue j to the total contact number of residue i, dij is 

the distance between the Cβ atoms of residue i and residue j, l is the lower bound of dij 

within which wij = 1.0, and u is the upper bound of dij beyond which wij = 0. For glycine, 

Hα2 is used in place of Cβ atom. The lower and upper bound are optimized values such that 

the correlation between the contact number and solvent accessible surface area (SASA) is 

maximized. Only residues separated by more than three residues along the sequence are 

considered in the calculation to reduce the bias due to sequence proximity. The total contact 

number of residue i was computed by summing wij over the entire protein:

where n is the length of the protein chain in the case of computing the monomeric contact 

number or the total number of residues in the protein for computing the oligomeric contact 

number. All nonprotein molecules were removed before computing the contact numbers. 

Nonprotein molecules such as coenzymes, ligands, and internal waters play important roles 

in the function of membrane proteins. However, the biochemical identity of the interface 

between these molecules and membrane proteins requires detailed analysis and is beyond the 

scope of this study.

Computation of Relative Solvent Accessibility

The relative solvent accessibility (RSA) of a residue was computed as the ratio between the 

absolute solvent accessibility (ASA) observed in the native structure and that in an extended 

tripeptide conformation (A-X-A). The ASA values were computed based on the oligomeric 

states provided by OPM using DSSP with a probe radius of 1.4 Å27 as with previous 

studies. 15,17,31,32 No further exploration on probe sizes was conducted because it has been 
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shown that probe size has little or no effect on the performance of RSA predictors.23 The 

ASA value of each amino acid type in an extended tripeptide conformation was adopted 

from a similar study.17

Computation of Feature Vectors

The multiple sequence alignment (MSA) for each protein sequence in the data set was 

obtained by searching the UniRef5033 nonredundant sequence database with PSI-BLAS or 

five iterations.34 The E-value inclusion threshold was set to 0.01. A floating point-valued 

position-specific scoring matrix (PSSM) was generated from PSI-BLAST checkpoint files 

using the source code (chkparse.c) adapted from PSIPRED.35 Floating point-valued PSSM 

was preferred over integer-valued PSSM as the former provides higher precision. PSSM is 

an L × 20 matrix, where L denotes sequence length. For each sequence position i, there are 

20 entries, each corresponding to the score of one of the 20 naturally occurring amino acids. 

The BLAST probability profile (BPP) for amino acid j at sequence position i was computed 

by transforming each PSSM entry mij using the following equation:

where j runs from 1 to 20. The variance-based conservation index CIi is one of the 

commonly used conservation indices and is defined by the following formula:

where the summation is carried out over 20 amino acids, pij is the BLAST probability of 

amino acid j at position i such that , and pj is the average BLAST probability of 

amino acidj and is defined as . The amino acid type at each sequence position is 

encoded by a vector with 20 binary entries (or 20 bits). When considering a window size of 

w centered at the residue whose contact number is to be predicted, the feature vector 

computed based on PSSM, BPP, or local sequence composition (LSC) has a total of w × 20 

components, whereas the feature vector computed based on CI has a total of w × 1 

components (Figure S1, Supporting Information).

Training of Dropout Neural Networks with Back-Propagation of Errors

The support vector machine (SVM)algorithm has been applied to various bioinformatics 

tasks,especially solvent accessibility and contact number prediction.18,21-23 It has the benefit 

of being less prone to overfitting than neural networks. Indeed, our preliminary test showed 

that neural networks trained without dropout (learning rate η = 0.1, momentum factor α = 

0.1, number of hidden layer neurons = 64, and number of epochs = 500) had a MAE (mean 

absolute error, see Performance Measures for details) of 2.70, whereas an optimized SVM 
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(radial basis function kernel, γ = 0.025, cost = 0.1) had a MAE of 1.76. However, neural 

networks trained with dropout (learning rate η = 0.1, momentum factor α = 0.1, number of 

hidden layer neurons = 64, number of epochs = 500, dropout rate in input layer = 0.05, and 

dropout rate in output layer = 0.5) had a MAE of 1.69. As dropout neural networks had a 

smaller MAE, we thus chose dropout neural networks as the learning algorithm in the 

current study.

The dropout neural networks trained in this study were fully connected three-layer feed-

forward networks with a sigmoid activation function (Figure 1a). The input layer contained 

one unit for each component in the feature vector. Inputs to the network are either local 

sequence information or evolutionary information derived from PSI-BLAST computed 

MSAs. The window size used for computing feature vectors was set to 15, an optimal value 

for contact number prediction found in our preliminary testing. The output layer was 

composed of a single node for the residue-specific contact number or RSA The hidden layer 

was composed of 64 neurons. A random of 5% of units in the input layer and 50% of 

neurons in the hidden layer were dropped during each presentation of each training case. 

The networks were trained with resilient back-propagation of errors36 with the learning rate 

η set to 0.1 and momentum factor α set to 0.1. Weights were updated after presentation of 

each residue to the network. A maximum of 2000 epochs were applied.

Jackknife Cross-Validation

A relatively low sequence identity (25%) was used in the current study; however, such low 

sequence identity alone might not be sufficient to exclude homology among protein chains. 

In fact, substantial remote homology could still exist at this level placing HMPs in the same 

structural superfamily.37 Such remote homology between proteins in the training set and 

proteins in the validation set for testing the model can lead to an overoptimiztic estimate of 

the performance of the network for new structural families. As a way of preventing such 

overoptimism, the data set was partitioned such that each OPM superfamily forms its own 

subset that contains all its members and no members from other OPM superfamilies. Cross-

validation of the networks was done in a jackknife manner with respect to a OPM 

superfamily. Of the 33 OPM superfamilies, one single OPM superfamily was withheld as the 

validation set for evaluating the neural networks. Then, a 5-fold cross-validation protocol 

adopted for our transmembrane span and secondary structure prediction algorithm38 was 

carried out on the remaining 32 superfamilies (Figure 1b). This process was then repeated 33 

times, with each of the 33 OPM superfamilies used exactly once as the validation set. 

Predictions for the 33 validation sets were combined to give the final estimate of the 

performance of the neural networks.

Performance Measures

A set of performance measures were adopted to evaluate the performance of the neural 

networks. The primary measure was the Pearson correlation coefficient (PCC) between 

experimental and predicted contact numbers and RSA For a set of n data points (xi,, yi), the 

PCC was computed as follows:
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For comparing our results to that from previous studies, we incorporated the following 

measures that are commonly used to evaluate classifiers:

where MCC is the Matthews correlation coefficient,39 FPR is the false positive rate, TP is 

the number of correctly predicted buried residues, TN is the number of correctly predicted 

exposed residues, FP is the number of incorrectly predicted buried residues, and FN is the 

number of incorrectly predicted exposed residues. The real-value contact number and RSA 

were transformed to binary states using the median as a cutoff such that the data set is 

equally partitioned. The mean absolute error (MAE), which is defined as the per-residue 

absolute difference between the experimental and predicted contact number and RSA, was 

used to evaluate prediction errors:

where v is either RSA or contact number, and n is the total number of residues to be 

predicted. The summation is carried out over all predicted residues.

Results and Discussion

Statistics of the Data Set

The repository of HMPs with known structures has expanded tremendously in recent years. 

It was reported that the latest number of unique membrane protein structures deposited in 

the Protein Databank is 535 (http://blanco.biomol.uci.edu/mpstruc/) compared to about 150 

in 2005.40 Curation of a data set that is representative of the population is an essential step in 

producing a model with high predictive accuracy. We compared the data set used to train 

TMH-Expo to those used in two related works, namely, ASAPmem
21 and MPRAP.23 In 

terms of the size of data sets, the TMH-Expo data set consists of 71 HMPs (90 unique 
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chains), significantly larger than the ASAPmem data set (also known as the Beuming—

Weinstein or BW data set20), which has 28 HMPs (59 unique chains). The MPRAP data set 

has 52 HMPs (80 unique chains). Interestingly, PISCES returned only 34 HMPs (60 unique 

chains) from the MPRAP data set using the same criteria applied to cull the TMH-Expo data 

set.

Table 1 lists the frequency and mean contact number, as well as standard deviation of 

contact number, for each amino acid residue type. Similar to observations made by 

Ulmschneider and co-workers,41 residues with nonpolar side chain such as Ala, Phe, Ile, 

Leu, and Val are dominantly abundant. In addition, except in the case of Ala, their mean 

contact numbers are not significantly higher than that of other amino acid residues. In fact, 

the mean contact numbers for Phe, Ile, Leu, and Val are among the lowest, an expected 

observation given the fact that the membrane provides an environment that is more 

hydrophobic than the protein interior. On the other end, the mean contact numbers for Ala, 

Cys, Gly, and Ser are among the highest, suggesting that on average helices enriched with 

these residues are more densely packed. In fact, Ala, Gly, and Ser are known to form the 

sequence motifs of the type AxxxA, GxxxG, and SxxxS that are believed to promote close 

helical packing.42

Relevance of Input Features

The performance of a data-trained machine learning method depends crucially on the 

judicious choice of the feature vector. For solvent accessibility prediction, feature vectors 

containing primary sequence information or evolutionary information have been 

tested.17,18,22,32 Four feature vectors, CI, LSC, BPP, and PSSM, were investigated in this 

study. CI, BPP, and PSSM can be considered as evolutionary information-containing feature 

vectors as they are derived based on MSA, whereas LSC contains purely primary sequence 

information. We initially examined the correlation coefficient of all features computed 

considering a window size of 41 (residues from i − 20 to i + 20, where i is the position of the 

residue of interest, inclusive) with contact numbers. This resulted in 41 × 1, 41 × 20, 41 × 

20, and 41 × 20 entries for feature vectors of CI, LSC, BPP, and PSSM, respectively (Figure 

S1, Supporting Information). Figure 2 plots the correlation coefficients of entries in each 

feature vector with contact numbers. For sequence-based prediction, it is well known that the 

use of evolutionary information derived from MSA improves prediction performance. In 

fact, on average, CI, BPP, and PSSM show stronger correlation with contact numbers than 

local sequence composition does (compare Figure 2a, c, and d with b). It is also interesting 

to note that PSSM generally has more strongly correlated entries than either of the other two 

evolutionary information-containing feature vectors do (compare Figure 2d with a and c).

Choosing the Optimal Window Size

One further observation made from Figure 2 is that features computed from neighboring 

residues are substantially correlated with the contact number of the central residue, and the 

correlation is dependent on sequence separation. Correlation coefficient decays gradually 

from very strong at the central residue to very weak at a separation of 15 or more residues. 

This suggests that there should be an optimal window size such that the signal-to-noise ratio 

is maximized. For solvent accessibility or contact number prediction, window sizes of 7,17 
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9,23 11,43 15,18,22 17,44 and 2119 have been used in previous studies. These window sizes 

are either arbitrarily chosen or obtained by optimization over a relatively short-range. We 

tested a wide spectrum of window sizes ranging from 1 to 41 with a step size of 2. In this 

preliminary testing, the feature vector was PSSM, and the architecture of the networks was 

kept the same across all window sizes.

Figure 3a shows the effect of windows sizes on the performance of neural networks. As 

window size increases from 1 to 9, MAE decreases drastically from above 2.0 to below 1.8, 

a trend similar to the observation made by Park et al.22 As the window size increases from 9 

to 15, MAE follows a decreasing trend that is slight but noticeable. MAE rises gradually as 

the window size is further extended to beyond 21. Interestingly, MAEs for window sizes 

from 15 to 21 remain essentially identical. It was previously proposed that the identities of 

the residues lying just above (i + 4) and below (i − 4) the target residue on the same helix 

face are most indicative of the burial status of the central residue.22 However, our 

observation suggests that including up to seven neighboring residues on either side of the 

central residue consistently improves the performance of the neural network (Figure 3b). 

The fact that MAE reaches its lowest value when the window size is 15 is especially 

intriguing given that heptad repeat is one of the signature patterns in helix–helix 

interactions.45 In fact, Adamian et al. developed a highly accurate method for predicting 

helix–lipid interfaces using heptad motifs as a structural template to assign helical faces of 

each helical residue.46 However, whether the optimal window size arises from heptad repeat 

needs further investigation.

Dropout Prevents Overfitting and Improves Performance

Neuronal dropout is a technique developed for addressing the overfitting problem in neural 

networks where a large number of parameters are optimized. The key idea is to randomly 

drop neurons along with their connections from the neural network during each presentation 

of each training case (Figure 1a).47 With this training feature, hidden neurons are prevented 

from co-adapting too much and forced to build a relatively independent mapping from 

feature space onto output space. It has been demonstrated that dropout reduces overfitting 

and improves performance of neural networks on classification tasks in speech recognition 

and handwritten digit classification.47–49

In order to confirm that dropout reduces overfitting and improves the performance of neural 

networks for contact number prediction, we compared performances of networks trained 

with and without dropout. As shown in Figure 4, compared to the performance of networks 

trained with dropout, the performance of networks trained without dropout is drastically 

worse. MAE for networks trained with dropout converges to a value below 1.8 after about 

500 epochs of training, whereas MAE for networks trained without dropout reaches its 

lowest value at slightly above 1.8 after only a few epochs of training before it increases 

almost logarithmically. This observation mirrors the result obtained from applying dropout 

to speech and image recognition,47 confirming that overfitting of the networks for contact 

number prediction was prevented and performance was improved by using dropout.
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Performances of Networks on Polytopic HMPs

In light of the investigation on the effects of window sizes, we first examined the 

performance of the networks for polytopic HMPs using each of the feature vectors 

separately considering a window size of 15. The performance measures of the networks 

were averaged over the validation sets. Table 2 summarizes our findings. When using CI as 

the feature vector, only a moderate PCC of 0.23 was achieved. Switching from CI to LSC 

increased the performance from PCC = 0.30 to PCC = 0.41. Consistent with the previous 

conclusion that entries in PSSM generally show stronger correlation with contact numbers, 

the networks achieved a significantly higher PCC (0.69) with PSSM. It is interesting to note 

that BP gave a worse performance (PCC = 0.65) than PSSM despite the fact that it is derived 

from PSSM. The result of MAE mirrors the observation made on PCC with lower MAE 

corresponding to higher PCC.

Traditionally, prediction of the contact number is treated as a classification problem in which 

a residue is categorized as either exposed or buried. It is also interesting to see the 

performance of the current method regarding classification of residue burial status. For 

computing accuracy and MCC for polytopic HMPs, the median contact number of 11.44 in 

the subset of polytopic HMPs was used as the cutoff. The cutoff was set in this way so that 

the data set is class-balanced (number of exposed residues equals that of buried residues), 

and the accuracy of a classifier that assigns all residues to one particular class is at most 

50%. As shown in Table 2, both accuracy and MCC follow the trend found in the previous 

section in the sense that PSSM gives the highest accuracy (75.8%) and MCC (0.52), whereas 

CI gives the lowest. The final networks were trained with dropout, using PSSM with a 

window size of 15 as the input feature vector. All results and discussions in the rest of the 

paper refer to the final networks, which was termed TMH-Expo.

Contact Numbers for Bitopic HMPs Are Difficult To Predict

By comparing the performance of the networks on polytopic HMPs to that on bitopic HMPs, 

we observed that the performance on bitopic HMPs are substantially worse (Table 2 and 

Figure S2, Supporting Information). MAEs on bitopic HMPs are considerable higher than 

those on polytopic HMPs (2.51 versus 1.68). PCC, accuracy, and MCC (using a cutoff of 

8.50, which is the median contact number for bitopic HMPs) on bitopic HMPs are 

significantly lower than those on polytopic HMPs. In fact, 11 out of 12 protein chains with 

MAE greater than 2.5 are bitopic (Table S2, Supporting Information). The reason why 

contact numbers for bitopic HMPs are more difficult to predict is still unclear. One potential 

explanation could be that the distribution of contact numbers for bitopic HPMs is 

significantly different from that for polytopic HMPs (Figure 5). Using relative conservation 

analysis, Zviling et al. recently proposed that bitopic HPMs have various interaction 

modes.50 If this is the case, the interaction modes for bitopic HMPs observed in the data set 

might only represent one of multiple possible modes (e.g., buried face of the helix of a 

bitopic HMP in one complex might be instead the exposed face when being part of another 

complex). Therefore, contact numbers for bitopic HMPs computed based on complex 

structures observed in the current data set might be biased.
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Contact Numbers for Very Exposed or Very Buried TMHs Are Difficult To Predict

One reason why the distribution of contact numbers for bitopic HMPs is drastically different 

from that for polytopic HMPs is that most bitopic HMPs are docked to the surface of large 

HMP complexes, leading to fewer interacting TMHs then a TMH at the center of a large 

HMP. In fact, out of the 20 bitopic HMPs in the data set, 17 are localized on the surface of a 

HMP complex. The fact that the contact number for bitopic HMPs are difficult to predict 

poses an interesting question: Is it a general feature that contact numbers for TMHs with 

fewer interacting TMHs are difficult to predict? In order to answer this question, we 

computed the MAE for each TMH. We also binned TMHs into groups according their 

average contact number, assuming that the average contact number is a scaled indicator of 

the number of interacting TMHs. Figure 6 shows that TMHs with very few interacting 

partners have an increased group-averaged MAE. Interestingly, Figure 6 also shows that 

completely buried TMHs have the highest group-averaged MAE.

Contact Numbers of Extremely Exposed or Buried Residues Are Difficult To Predict

In addition to the overall performance, the distribution of MAE was analyzed. The positive 

skewness of the unimodal density curve for the distribution MAE (Figure 7a) indicates that 

the model was able to accurately predict the contact number for most residues. In fact, 

53.5% of the residues were predicted with an absolute error of less than 1.5, and 66.6% of 

the residues were predicted with an absolute error of less than 2. Knowing whether the 

performance of the networks differs for different ranges of contact number is helpful as it 

indicates how reliable the result is when interpreting a prediction. We grouped residues 

using the same grouping scheme applied in the previous section and computed the group-

averaged MAEs. Similar to the situation with TMHs, Figure 7b shows that MAE is higher 

toward either end of the residue groups than in the middle. This relationship implies that 

contact numbers for residues in the most buried groups (highest contact number) or the most 

exposed groups (lowest contact number) are the most difficult to predict.

Amino Acid Bias in Prediction Error

In order to examine whether there are amino acid types for which the contact number is 

more difficult to predict, we computed amino acid residue-specific MAEs. Figure 8a shows 

the MAE for each amino acid type. In general, amino acids with charged side chains (Lys, 

Glu, His, Asp, and Arg) have lower MAEs than those with uncharged side chains. This is 

likely because of the fact that these charged residues are functionally important and are often 

employed by membrane proteins to bind ligands,51 thus having similar burial status. In fact, 

the standard deviations of contact numbers of these charged residues are among the lowest 

(Table 1 and ref 52). MAEs for Pro, Ala, and Gly are among the highest and are significantly 

higher than those of the other residues. Prolines introduce kinks or π-bulges to TMHs.53 

Alanines and glycines form the sequence motifs of type AxxxA and GxxxG that are believed 

to promote close helical packing.42 These residues have a highly variable exposure 

environment as indicated by the high standard deviations of the contact numbers (Table 1 

and ref 52). The correlation between MAEs and the standard deviation of contact numbers 

of amino acid types is 0.84 (Figure 8b), suggesting that increased variability of exposure is 

an important determining factor for reduced prediction quality.
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Predicted Contact Numbers Reveal Exposure Pattern

An important application of contact number predictors is that they can be incorporated into 

scoring functions for evaluating de novo predicted or homology-modeled 3D protein 

structures. However, the possibility of this application depends on whether predicted contact 

numbers are accurate enough to reflect the exposure pattern of TMHs. For illustrative 

purposes, we mapped the experimental and predicted contact numbers onto the native 

structure for two protein chains (3tlwA, 4buoA). 3tlwA is one of the five subunits of the 

GLIC homopentameric ligand-gated ion channel54 and is among the cases for which the 

networks achieved the lowest MAE and highest PCC (Figure 9a). Protein chain 4buoA is a 

structure of the thermostable agonist-bound G-protein-coupled receptor neurotensin receptor 

155 for which the networks also achieved good prediction (Figure 9d). Comparing Figure 9b 

with c and e with f shows that contact numbers predicted by the networks correctly reflect 

exposure patterns for membrane-facing as well as buried TMHs. The two-phases of 

membrane-facing TMHs are differentiated by the alternating nature of predicted contact 

numbers. Thus, predicted contact numbers can be used to eliminate incorrectly predicted 3D 

structure models where buried TMHs are placed facing the membrane or vice versa.

Predicting Membrane Protein–Membrane Protein Interface

Oligomerization is an essential mechanism by which many membrane proteins function.56 

In fact, 49 out of 71 HMPs in the TMH-Expo data set are oligomers. Interaction between 

membrane protein and membrane protein is a research area that has gained increasing 

attention from the biochemical community.57,58 Given a monomer HMP with a known 

structure, it is desirable to identify interface-forming residues with a reasonable accuracy. As 

experimental contact numbers were calculated from structures where all trans-membrane 

subunits are included, we hypothesized that predicted contact numbers will be generally 

higher for interface residues than for non-interface lipid-exposed residues. If our hypothesis 

proved correct, then interface-forming TMHs can be identified. For evaluating the 

performance of TMH-Expo on identifying interface residues, we defined a residue as an 

interface residue if CNO − CNm ≥ 1, where CNO is the contact number in oligomeric state 

and CNm is that in monomeric state. A residue is predicted as an interface residue if CNp − 

CNm ≥ 1, where CNp is the predicted contact number. The cutoff value of 1 was chosen to 

reduce the chance of including residues on the protein core-buried face of a TMH as 

interface residues. A total of 16.3% residues in the data set satisfied this definition. For 

classifying interface residues (Table S3, Supporting Information), TMH-Expo achieved an 

overall accuracy of 68.6% and a sensitivity of 76.8%, significantly better than the 

performance reported in a similar study.23 One should be aware of the high FPR of TMH-

Expo (33.0%), a complication that could be accounted for by the fact that the oligomeric 

state of many HMPs is not unambiguously defined.59

As an example of predicting membrane protein–membrane protein interface residues, we 

investigated the performance of TMH-Expo for the subunit (4al0A) of the homotrimeric 

microsomal prostaglandin E2 synthase;60 4al0A has a similar FPR (32.1%) to the overall 

FPR of TMH-Expo. As shown in Table 3, out of the 85 TMH residues, 66 were correctly 

classified, giving an overall accuracy of 77.6%. Among these 32 interface residues, 30 were 

identified, giving a sensitivity of 93.8%. To visualize the prediction, we highlighted interface 
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residues identified with experimental contact numbers (Figure 10a) and those identified with 

predicted contact numbers (Figure 10b) on the native structure. Despite the high FPR, most 

false positives can be reasonably eliminated if we only consider residues on the exposed face 

of a TMH.

Comparison with Other Contact Number Predictors. To the best of our knowledge, TMH-

Expo is the first attempt that has been made to predict contact numbers for membrane 

proteins. Therefore, a direct comparison of TMH-Expo with any of the other existing 

methods is not possible. To give an approximate sense of the performance of TMH-Expo, 

we compared TMH-Expo with two notable contact number predictors developed for soluble 

proteins. Using linear regression analysis, Kinjo et al. developed a real-valued contact 

number predictor with a PCC of 0.6319 that was outperformed by TMH-Expo. Yuan 

developed a support vector regression-based predictor with a PCC of 0.70,18 slightly better 

than TMH-Expo. However, it should be noted that the performance of Yuan’s method might 

be favorably biased since the data set was not split in a way such that proteins in the same 

superfamily stay within the same subset. In addition, the structural repository of soluble 

proteins is significantly bigger than that of HMPs, making the training set for soluble 

proteins more informative.

We also trained neural network models for RSA prediction using PSSM as feature vector 

and the same training parameters as with training networks for contact number prediction. 

For RSA prediction, TMH-Expo achieved a PCC of 0.58 for polytopic HMPs. Since both 

accuracy and MCC are dependent on the cutoff value applied, it is rather arbitrary to make 

comparisons based on these two performance measures. We therefore approximately (since 

the data set employed in different study varies) compared our method to predictors for which 

PCC was reported. Yuan et al. developed a support vector regression-based predictor termed 

ASAPmem with a PCC of 0.66 for TM helical residues.21 A random forest-based method 

recently reported by Wang et al. achieved a PCC of 0.68.61 Although these two methods 

reportedly have better performance than TMH-Expo on RSA prediction, it should be pointed 

out that the cross-validation scheme employed in these studies might have favorably biased 

the performance. In fact, using the same cross-validation scheme, Illergård et al. trained a 

RSA predictor MPRAP which achieved the same PCC as TMH-Expo.23

Limitations

In the current implementation of the algorithm, total contact number is computed by 

summing over contributions made by residues inside a sphere centered at the Cβ atom of the 

residue of interest. The contribution is assigned to each residue in a distance-dependent way 

such that close neighbors have an increased weight when compared to distant neighbors. 

This approach mirrors the distance-dependence of van der Waals and electrostatic 

interactions and is superior to the use of a single cutoff distance. However, it should be 

pointed out that one of the shortcomings of the current implementation is that the spatial 

distribution of neighboring residues is not taken into account.5 Another limitation comes 

from the coarse-grained Cβ representation of the side chains in which size and bulkiness of 

side chains is ignored. While representing side chain atoms as a single “superatom” 

improves computational efficiency and is necessary in early stages of de novo 3D structure 
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prediction, it could result in loss of important structural information and leads to biased 

estimate of contact numbers. For instance, residues with a bulky side chain have longer Cβ-

Cβ distances than small residues. Thus, the average contact numbers for bulky residues 

might be underestimated.62 When the information about the spatial distribution of 

neighboring residues is needed, a computationally slightly more demanding quantity called 

“neighbor vector” could be employed.5 The neighbor vector is a vector associated with each 

residue whose direction and magnitude not only depend on the number of neighboring 

residues but also on the spatial distribution.

Conclusion

We have developed a dropout neural network-based contact number and RSA predictor, 

TMH-Expo, for HMPs. TMH-Expo is the first work that reports contact number prediction 

for HMPs. Trained on an expanded nonredundant data set of HMPs with 5-fold cross-

validation, TMH-Expo achieved an unprecedented PCC of 0.69 between experimental and 

predicted contact numbers. We have also shown that the training was benefitted from using 

neuronal dropout. With neuronal dropout, overfitting was significantly reduced, and the 

performance was improved. Detailed examination of MAEs and PCCs indicated that it is 

generally easier to predict contact numbers for polytopic HMPs than for bitopic HMPs. 

Mapping of predicted contact numbers onto structures demonstrated that contact numbers 

predicted by TMH-Expo reflect exposure patterns of TMHs and reveal interface-forming 

TMHs. This reinforces the idea of incorporating predicted contact numbers for predicting 

helix–helix packing and protein–protein docking. De novo protein folding and protein-

protein docking studies leveraging contact numbers predicted by TMH-Expo are currently 

ongoing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

HMP helical membrane protein

TMH transmembrane helix

BCL biochemical library

PSSM position-specific scoring matrix

PCC Pearson’s correlation coefficient

MCC Matthew’s correlation coefficient
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MAE mean absolute error

MSA multiple sequence alignment

RSA relative solvent accessibility

ASA absolute solvent accessibility
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Figure 1. 
Training of dropout neural networks with 5-fold cross-validation: (a) neural network 

architectures before and after applying dropout (neurons randomly dropped out are crossed), 

(b) 5-fold cross-validation training protocol (T, training set; V, validation set).
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Figure 2. 
Correlation of features with contact numbers: (a) correlation of entries in CI feature vector 

with contact numbers, (b) correlation of entries in LSC feature vector with contact numbers, 

(c) correlation of entries in BPP feature vector with contact numbers, and (d) correlation of 

entries in PSSM feature vector with contact numbers. Each entry in the feature vector is 

assigned a feature index sequentially such that it starts with 0 for the leftmost residue and 

ends with 40 (CI) or 820 (other feature vectors) for the rightmost residue (double-headed 

arrow bar). The red arrow from the arrow bar points to the central residue.
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Figure 3. 
Effect of window size on the performance of the neural networks: (a) final MAE on 

validation sets averaged over cross-validated neural networks and (b) MAEs averaged over 

cross-validated neural networks as the neural networks were being iteratively trained.
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Figure 4. 
MAE on validation sets for neural networks trained with or without dropout as learning 

progresses.
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Figure 5. 
Distribution of contact numbers of bitopic and polytopic HMPs.
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Figure 6. 
Group-averaged MAEs for TMHs grouped according to their average contact numbers. The 

x-axis denotes average contact number of a TMH group. For instance, 10 means the group of 

TMHs that have average contact numbers between 9 and 10.
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Figure 7. 
Groupe-averaged MAEs for residues grouped according to their contact numbers. The x-axis 

denotes the contact number of a residue group. For instance, 10 means the group of residues 

that have contact numbers between 9 and 10.
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Figure 8. 
Amino acid type-specific MAEs and dependence of MAE on standard deviation of contact 

numbers: (a) amino acid type-specific MAEs and (b) dependence of MAE on standard 

deviation of contact numbers.
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Figure 9. 
Predicted contact numbers reveal exposure pattern of TMHs: (a) correlation between 

experimental and predicted contact numbers for 3tlwA, (b) mapping of experimental contact 

numbers onto the crystal structure of 3tlwA, ( c) mapping of predicted contact number to the 

crystal structure of 3tlwA, (d) correlation between experimental and predicted contact 

numbers for 4buoA, (e) mapping of experimental contact numbers onto the crystal structure 

of 4buoA, and (f) mapping of predicted contact number to the crystal structure of 4buoA. 

Color scheme: as contact number increases, color changes gradually from blue to red. Only 

TMHs are shown.
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Figure 10. 
Predicted contact numbers reveal interface-forming residues of 4al0A: (a) mapping of 

interface residues (colored in red) identified with experimental contact numbers onto the 

crystal structure of 4al0A and (b) mapping of predicted interface residues (colored in red) 

onto the crystal structure of 4al0A.
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Table 1
Summary of TMH-Expo Data Set

amino acid residue frequency mean contact number standard deviation of contact number

A 1282 12.09 3.12

C 131 12.46 2.72

D 93 11.34 2.62

E 151 11.10 2.51

F 953 10.58 2.67

G 1008 12.76 3.15

H 134 11.31 2.36

I 1242 10.46 2.68

K 156 9.22 2.53

L 1938 10.59 2.63

M 437 11.65 2.54

N 204 11.84 2.88

P 329 10.79 3.23

Q 161 11.02 2.69

R 184 9.94 2.57

S 598 12.20 2.80

T 604 11.83 2.85

V 1256 10.91 2.88

W 323 10.08 2.62

Y 381 11.02 2.61
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Table 3
Performance of TMH-Expo on 4al0A

predicted

interface non-interface total

experimental interface 30 2 32

non-interface 17 36 53

total 47 38 85
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