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Abstract

A general method is presented to characterize the helical properties of potentially irregular helices, 

such as those found in protein secondary and tertiary structures, and nucleic acids. The method 

was validated using artificial helices with varying numbers of points, points per helical turn, pitch 

and radius. The sensitivity of the method was validated by applying increasing amounts of random 

perturbation to the coordinates of these helices; 399,360 helices in total were evaluated. In 

addition, the helical parameters of protein secondary structure elements and nucleic acid helices 

were analyzed. Generally, at least seven points were required to recapitulate the parameters of a 

helix using our method. The method can also be used to calculate the helical parameters of nucleic 

acid-binding proteins, like TALE, enabling direct analysis of their helix complementarity to 

sequence-dependent DNA distortions.

Introduction

The helix is a ubiquitous geometric form in structural biology. It is essential to characterize 

the geometric properties of helices traced by atoms in a biomolecule because function is 

driven by structure and dynamics. There are two major problems with characterizing the 

geometric parameters of biomolecular helices. Irregularities between the atoms that trace the 

helix make it difficult to fit the points directly to the parametric equations of a helix. Also, 
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biomolecular helices frequently trace less than one helical turn. Few methods exist that can 

derive accurate helical parameters from one-turn helices1, and irregularities make the 

problem even more difficult.

In structural biology, empirical methods are available that can characterize the geometric 

parameters of irregular helices, but are only applicable to the molecular fragments for which 

they were trained. For example, DSSP2 assumes a specific chemical connectivity associated 

with peptide secondary structures3-5 (e.g. integral H-bonding between amides). HELFIT6 

and HELANAL7 assume Cα-Cα chain connectivity in peptides to define an internal 

coordinate system (i.e. interlinked torsions along a chain of nine sequential Cα). For nucleic 

acids8-9, 3DNA10 and Curves+11 find a helical axis by RMSD-fitting a nucleobase pair to a 

reference base pair structure whose helical axis is pre-defined12.

A general method that does not require empirical constraints - such as a prior knowledge of 

the helical axis, helix radius or chemical topology - and is less affected by helical 

irregularities would enable the analysis of any biomolecular helical geometry. Such a 

method is needed to characterize the structures of superhelical nucleic acid binding proteins 

(NBPs) and modular superhelices13. The only such method known to us was developed by 

Nievergelt, a total least squares (TLS) approach that can characterize irregular helices 

consisting of points comprising a helix that traces just 90°14; for context, a single amino acid 

in a helical secondary structure element (SSE) traces ∼100°.

The method we introduce here is an extension of TLS into a 2D linear least squares form. 

The simplification from 3D to 2D leads to several advantages; mainly, requiring fewer points 

to achieve the same level of accuracy. Like TLS, our method provides the ability to 

accurately calculate, without constraints, the helical parameters of helices traced by 

irregularly spaced points. Our method can also be used to characterize the helices traced by 

superhelical NBPs along with the nucleic acids they bind. The resulting helical parameters 

for the protein and the nucleic acid are directly comparable, providing a novel tool to 

analyze complementarity of the helical geometries involved in protein-nucleic acid binding. 

Such a method is likely to prove useful as the need to design highly specific genome editing 

enzymes15 that recognize sequence-dependent DNA helix distortions continues to rise.

Theory

A cylindrical helix projects a circle on the x-y plane only if the ƶ-axis is parallel to the 

helical axis. We deconstruct the problem into four parts. In part 1, a general rotation matrix 

is derived. The algebra is simplified by assuming that the unit plane being rotated always 

passes through the origin of the coordinate systems (original and rotated). In part 2, the 

rotation matrix is cast in spherical coordinates. In part 3, the fitting problem is posed as a 

linear least squares problem and its solution described. In part 4, we describe how the helical 

parameters are obtained from the optimized helix frame. The derived parameters represent 

the best helical curve through which the user-supplied points pass; the more points per 

helical turn, the smoother the helix will appear.
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1. Rotate a helix in 3D, then project the helix on the x-y plane

The optimal helical axis must first be located in 3D space. The helical axis is defined as the 

normal vector to the plane onto which the helix projects a circle. To find this plane, a 

rotation matrix, R, is needed that relates the old coordinates of the points to rotated 

coordinates of the points. The original coordinates of the points are denoted (X,Y,Z) and the 

rotated coordinates are denoted (x,y,ƶ).

A unit normal vector, n̂, representing the plane (aX + bY + cZ = 0) containing the 

coordinates (X,Y,Z) is defined using direction cosines, n̂ = (a,b,c). The basis vectors 

(êX,êY,êZ) and (êx,êy,êƶ) represent the frame of the original coordinates (X,Y,Z) and the 

rotated coordinates (x,y,ƶ), respectively. The unit vector êƶ is chosen to be the unit normal 

vector of the plane (a, b, c):

(1)

We define a right-handed coordinate system:

(2)

The component of êX that is parallel to êƶ is

(3)

and the perpendicular component êX⊥ is the rest of êX:

(4)

Having defined êƶ. in equation (1), it can be substituted into equation (4):

(5)

Because êx is a unit vector equal to êX⊥/|êX⊥|, equation (5) can be written as

(6)
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The cross product of the vectors êƶ, and êx yields the vector êy, the result of which can be 

conveniently written as the symbolic determinant

(7)

where ζ is . The matrix R that rotates the frame housing the original coordinates 

(X,Y,Z) into a new frame housing coordinates (x,y,ƶ) is

(8)

We can now rotate (any) Cartesian coordinates (X,Y,Z) using the rotation matrix in equation 

(8) by changing the direction cosine angles of the unit plane n̂ = (a,b,c).

2. Spherical coordinates are used to rotate the helix frame

The unit plane described above passes through the origin. Thus, the two angle components 

of a spherical coordinate system are sufficient to rotate a set of coordinates over all 3D 

orientations using equation (8). The radial spherical component, ρ, can be obsoleted because 

the plane always passes through the origin. Therefore, the rotation of a helix in 3D Cartesian 

space using direction cosines with only two angles is

(9)

where a = sinϕcosθ, b = sinϕsinθ and c = cosϕ, ϕ and θ are the two polar spherical 

coordinates. As usual for spherical coordinates, ϕ is bounded by [0°,180°) and θ is bounded 

by [0°,360°).

3. A linear least squares problem is solved for the circle projected by the helix

For each rotation, the x and y coordinates of the rotated points are fit to a circle in the form 

of the linear least squares problem (AX = B)
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(10)

The A and B matrices in equation (10) are dimension 3 × N and 1 × N, respectively, where 

N is the number of points being fit. We use singular value decomposition (SVD) to calculate 

the best estimate of the parameters in the X matrix in equation (10). The k parameter in the 

X matrix contains the radius of the circle, r,

(11)

which is simply the radius of the helix. The point where the helical axis intercepts the plane 

(a,b,c) is the circle center, (x0,y0). The residual of the fitting, χ, is

(12)

A complete scan of spherical coordinate rotation angles ϕ and θ is performed, and the 

residual calculated for each discrete rotation. The rotation with the smallest residual (best fit) 

corresponds to the angles ϕ and θ of the optimal helix frame.

Figure 1 illustrates the rotation-projection method. The coordinates of the points tracing a 

suspected helix are projected onto the x-y plane. These points are then fit to a circle and the 

residual noted inside a program. The method continues to scan the range of (ϕ,θ) defined by 

the user, with spherical coordinate rotation scan-resolution also defined by the user. Once 

rotating and fitting across the full user-defined scan range is complete, the method 

determines which rotation yielded the projection that best fit a circle. Due to symmetry in 

the projections, a complete scan can be accomplished using ϕ in [0°,180°) and θ in [0°,

180°), rather than the usual bounds of ϕ in [0°,180°) and θ in [0°,360°).

4. Helix pitch, twist and rise are calculated from the optimal helix frame

A helical curve is defined by three properties: radius, pitch and helix axis (Figure 2). A 

discrete set of points that trace a helix curve can be used to derive these three properties. A 

helical step describes the geometry between successive points tracing a helix. Twist is the 

radial angle subtended by a helical step. Rise is the axial displacement spanned by a step. 

The height of a discrete helix is the displacement between the last and first point along the 

helical axis. Helical sweep is the sum of the twists. If the helical sweep, Φ, is 360°, then the 

height of the helix is the pitch because pitch is the axial displacement of the helix per turn 

(360°). In a unit helix, the radius and pitch have equal magnitude. A helix whose pitch is 

greater than its radius is shown in Figure 2a, and a helix whose pitch is smaller than its 

radius is shown in Figure 2b.
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Methods

Nievergelt's helix

The Cartesian coordinates of Nievergelt's helix were obtained directly from the publication14 

(Table S1). A spherical coordinates scan over ϕ (from 0° to 180°) and θ (0° to 180°) was 

performed with 0.5° spherical coordinate scan resolution.

Generating artificial helices

The shape of a helix can be defined by the ratio of its radius and its pitch, R/κ ratio. 

Fractional values of R/κ represent thread-like (long and narrow) helices while values of R/κ 
larger than 1 represent ring-like helices (short and wide). The degree to which the helix 

resembles a polygon16 (the tips of the translucent planes in Figure 2) or a smooth space 

curve (the blue curve in Figure 2) is determined by the number of points per helical turn, 

PPT. The number of turns in a helix with N total points is thus N/PPT.

For each helix shape R/κ, a matrix (represented as a shaded square in Figure 3) was 

generated by varying the number of points per helix, N, from 4 to 16, and varying points per 

turn, PPT, from 3 to 8. This generated 78 helices of the same shape, with varying length and 

granularity.

Helices were generated using the parametric equation:

(13)

where ω is the twist, which is 360°/PPT. The helical axis of these artificial helices coincide 

with the y-axis of the coordinate system. The spherical coordinates (ϕ,θ) of the helix frame 

(a,b,c) are (90°,0°). Helices were randomly oriented by rotating them using equation (9), 

with random values for ϕ bounded by [0, °180°) and θ bounded by [0°,360°).

Noisy helices generated by perturbing (x,y,ƶ)—Noisy helices were generated by 

perturbing the Cartesian coordinates of each point in the artificial helices described above. 

Each component of each point was perturbed separately to mimic random (thermal) 

deviations. Noise levels were based on a coefficient of variation (CV+),

(14)

where σ denotes standard deviation and μ denotes the mean. Here, μ is simply the original 

Cartesian component of a point from the ideal helices described in the previous section. To 

generate perturbed coordinates subject to a level of noise prescribed by equation (14), values 

for the perturbed coordinate components were drawn from a normal distribution whose 

mean was μ and whose standard deviation was σ.
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The superscript “+” in “CV+” is used to distinguish the variation applied to perturb the 

Cartesian coordinates (CV+) from the resulting variation in helical parameters (CVtwist and 

CVrise) calculated for the noisy helices. The following CV+ values were used: 0.01, 0.05, 

0.15 and 0.33. This random perturbation was carried out 256 times for each cell in the N vs. 
PPT matrix for each shape R/κ and for each value of CV+. Overall, 399,360 noisy helices 

were generated. Figure 3 summarizes the set of noisy helices used in this study.

The accuracy of our results were quanitifed using percent average absolute error (%AAE). 

The absolute value of the difference between a calculated value and a reference value was 

divided by the reference value then multiplied by 100%: The equation for %AAE is

(15)

where bcal represents the value of the calculated parameter and bref represents the value of 

the reference value.

Generating biomolecular helices

Generating helical peptide secondary structure elements—Three polypeptide α-

helix elements were generated using the LEaP module in Amber17. Three slightly different 

α-helical geometries were used to test the sensitivity of the method. Poly-alanine 32-mer 

peptides were generated by imposing backbone torsion angles of (-60°,-45°)18 for ϕ and ψ 
(henceforth referred to as, α-60,-45) backbone torsion angles of (-57°,-47°)19 for ϕ and ψ 
(henceforth referred to as, α-57,-47), and backbone torsion angles of (-60°,-40°) for ϕ and ψ 
(henceforth referred to as, α-60,-40).

One 310-helix peptide was generated using LEaP as above, except the backbone torsion 

angles for ϕ and ψ were (-49°,-27°)19. In addition, one π-helix was generated using LEaP as 

above, except the backbone torsion angles for ϕ and ψ were (-57°,-70°)19. Only the Cα 
atoms from the peptides were used in our fitting procedure.

The expected rise and twist between consecutive Cα atoms of each amino acid in the helical 

SSEs was calculated from the literature values20 for pitch and residues per turn. Rise is 

pitch/residues per turn and twist is 360°/residues per turn.

Generating nucleic acid helices—Three nucleic acid duplexes were generated using 

3DNA10. A-DNA was generated by imposing base pair (bp)-step twist and rise values of 

32.7° and 2.548 Å, respectively. B-DNA was generated by imposing bp-step twist and rise 

values of 36.0° and 3.375 Å, respectively. A-RNA was generated by imposing bp-step twist 

and rise values of 32.7° and 2.812 Å, respectively. Curves+11 was used to characterize the 

bp-step twist and rise using standard procedures21. The C1' atoms of these nucleic acids 

were used in the fitting. The method has the capability to utilize both helices in dsDNA and 

dsRNA to find the optimal common helical axis. Both strands were used in our analyses of 

double-stranded nucleic acids.
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Analyzing a superhelical protein-DNA complex—The atomic coordinates of a 

modular DNA-binding protein with a superhelical tertiary structure, BurrH22, was obtained 

from the Protein Data Bank23 (PDB ID: 4CJA22). Superhelical Cα atoms were selected 

using our previously described approach24. Briefly, amino acids tracking the DNA binding 

cleft were identified (Table S2), one from each module of the protein, and the points of the 

helix were represented by the Cα atoms of these amino acids. The C1' atoms of both strands 

of the bound DNA were used to find the optimal DNA helical axis.

Using the test helices to estimate accuracy of an analysis—The number of points 

required to accurately characterize a helix using our method can be estimated by consulting 

the results of the analysis of the test helices. In the validation performed here, the R/κ ratio 

and PPT of helical secondary structure elements (proteins) and the helices of nucleic acids 

(single and double-stranded DNA and RNA) were known from the literature. The unknown 

parameter was the minimum number of points needed to accurately characterize these 

helices. If in future use of this method the R/κ and PPT is not known but the number of 

points is known, then the test helix results can be consulted to project the expected range of 

accuracy.

Results

The method requires fewer points than TLS to achieve the same accuracy

First, the method was compared directly to Nievergelt's related TLS14 approach. The ten 

Cartesian coordinates published by Nievergelt trace an irregular helix whose pitch and radius 

were 600 and 195, respectively. We sought to determine the minimum number of points 

required by our method to reproduce the parameters obtained by Nievergelt's TLS approach. 

Figure S1 shows the results of the helix-fitting using our approach. With all ten points, our 

method achieves 0.5% and 0.4% relative error in pitch and radius respectively. Less than 1% 

relative error in pitch and radius was achieved with seven points and < 5% relative error in 

pitch and radius with only six points. For comparison, previous work showed that HELFIT 

requires all ten points to achieve 9% relative error in radius, and 0% relative error in pitch6.

Validation tests of ideal artificial helices

The search for a helical axis over a scan of spherical coordinate rotations (step-size in ϕ and 

θ) is the only component of the fitting that is under user control. Scan step-size determines 

how finely rotations of the helix frame are made, ostensibly increasing the accuracy by 

increasing the likelihood that the helix can be ideally projected. The user-defined fitting 

parameters ϕ-range and θ-range were not evaluated during this test because changing them 

would amount to applying fitting constraints. This would improve the accuracy of the 

method in an obvious manner; therefore there is no need to test situations in which the user 

already knows some bounds of the solution.

How does the scan resolution affect accuracy?—As the scan is made coarser, it 

becomes less likely that the helix can be properly aligned during the projection operation, 

resulting in potential inaccuracies in calculated helical parameters. As a control, an ideal 

helix with PPT = 6 points per turn, R/κ = 1 radius/pitch ratio and 12 points, N = 12, was 
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characterized using different spherical coordinate step size (scan resolution) for the spherical 

coordinate scan. This helix was placed in 64 different random orientations prior to the 

spherical coordinates scan, and helical parameters were calculated for each orientation. 

Ideally, the scan is fine enough that the same parameters are calculated for all 64 

orientations. The measured percent average absolute error (%AAE) indicates the inaccuracy 

expected solely from helical axis alignment errors due to the scan spacing (Figure 4a). As 

expected, the coarse scan resolutions (6° and 3°) did not recapitulate the input helix twist 

(60°) and rise (360°/6) as accurately as the finer scan resolutions because the structures 

could not be perfectly oriented. Scan resolutions of 1° grid steps or smaller resulted in good 

accuracy (AAE < 0.1%).

Next we tested whether the sensitivity for scan resolution was different for a typical non-

ideal helix, as expected in biomolecular structures. A representative noisy helix was 

generated by perturbing the coordinates of the above regular helix by applying noise to the 

x-, y-, ƶ-coordinates of each point in the helix. The reference pitch and radius for calculation 

of %AAE were obtained from the calculation using a fine scan with 0.25° scan resolution, 

which provided the best estimate of the otherwise unknown parameters. The helix was again 

placed in 64 random orientations. The results were comparable to those for the ideal helix, 

and increasing scan resolution displayed a sharp increase in accuracy (below 0.1% AAE) at 

3° scan resolution, remaining below 0.1% AAE from scan resolutions of 1° scan resolution 

and below (Figure 4b). Overall, these results indicate that the accuracy of the method does 

not depend on scan resolutions below 1°, and performs comparably with noisy and ideal 

helices.

How sensitive are calculated helix parameters to random perturbations of 
Cartesian coordinates?—The goal of the following analysis was to determine the 

sensitivity of our method to uncertainty in the positions of the points tracing a helix. A broad 

validation was performed, in which all 78 helix geometries depicted schematically in Figure 

3 were tested. The approach validates the method across a diverse range of helical 

parameters and coordinate perturbations. These perturbations were applied to the Cartesian 

coordinates of the helix points rather than the helical parameters themselves (twist, rise, 

radius), which were affected indirectly by the perturbations. We chose to perturb the helical 

parameters indirectly because our goal was to determine the dependence of the derived 

helical parameters on noise in the coordinates to represent the mix of distortions seen in 

structures of biomolecular helices, or uncertainties in selecting atoms to represent the helical 

superstructure. Noisy helices were generated by applying random perturbations to the x-, the 

y- and the ƶ-coordinates of each point in the ideal helix subject to one of four CV+'s (see 

Methods). Each helix-matrix (R/κ, CV+) contained 78 distinct helix geometries, and each 

geometry contained 256 independent (perturbed) samples. A spherical coordinate scan 

resolution of 1° was used in the analysis. In the analysis below, “CV” is used to denote the 

coefficient of variation that was measured after using the method, whereas “CV+” denotes 

the coefficient of variation that we applied to the data before using the method (see Methods 
for details).

We expected the test helices with the fewest points per helical turn (PPT) and the most 

points to be the least susceptible to noise because the helices would have more turns, and 
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more data to fit. Multiple turns help distinguish the points as a helix (a circle on the 

projection plane); conversely, if the points trace less than one turn and are noisy (e.g. N = 5, 

PPT = 8) they might appear to trace a 2D arc with ambiguous helix axis. In addition, we 

expected that increasing levels of applied coordinate perturbations (CV+) would introduce 

increasing uncertainties (CV measured) to the derived helical parameters.

Figure 5 reveals the dependence of derived helical twist (CVtwist) on the noisy helices with 

diverse geometries. Helices with R/κ > 1 are wide-short helices, R/κ = 1 are unit helices, 

and R/κ < 1 are narrow-tall helices (Figure 2). The points of the helices were perturbed by 

four increasing levels of noise applied to their Cartesian coordinates (CV+ = 0.01, CV+ = 

0.05, CV+ = 0.15, CV+ = 0.33, see equation (14)). As expected, the results show that the 

helices with the fewest total points (small N) and the fewest turns (larger PPT at each N) 

were the most susceptible to noise (large CVtwist), and as expected the effect grew with 

increasing applied CV+. The analysis also revealed the dependence of derived helical 

parameter sensitivity with R/κ. For short helices with wide radii (R/κ > 1), the derived 

helical twist was less susceptible to noise than narrow-tall helix geometries. Conversely, the 

helical twist derived by the method was more sensitive to noise for extended helices with 

narrow radii. The method was sensitive to coordinate perturbations when R/κ < 1 because 

even for small applied CV+ of 5%, helices with fewer than nine points were incorrectly 

rotated from the expected helical axis (Figure S2). It is important to note that the test helices 

in Figure 5 are very short – 4 to 16 points in total – representing the most challenging 

geometries expected in biomolecules. The %AAE for these the test helices also indicates 

that the shapes frequently observed in biomolecules (R/κ < 1) were also those that were 

most accurately calculated by our method (Figure S3).

Sensitivity of helical rise for regular helices with positional noise—Next we 

characterized how sensitive the derivation of the rise parameter was to CV+ noise in the 

(x,y,ƶ) coordinates of the points tracing the test helices. Since rise and twist are orthogonal 

parameters (the former depends only on êƶ while twist depends on êx and êy), we expected 

that rise might depend on helix shape (R/κ) in an opposite way as twist. Helices tracing less 

than one turn and helices with N = 4 points were still expected to be the most susceptible to 

noise because the former becomes degenerate with a noisy 2D arc, and the latter offers too 

few data distinguish noise (CV+) from signal (the underlying helix). The sensitivity of helix 

rise for diverse geometries with increasing amounts of applied coordinate perturbations 

(CV+) is shown in Figure 6. With the smallest applied CV (CV+ = 0.01), the resulting helical 

rise matched our expectation of an R/κ-dependence opposite to that of twist. For the CV+ 

values larger than 0.01, the results indicate that helix rise is more sensitive to noise than 

twist. CVrise was at least 0.2 for all geometries, when CV+ values of 0.05 and greater were 

applied. Like the results of the analysis above for twist, the percent AAE of derived rise for 

these the test helices indicates that the helices with R/κ < 1 were also those that were most 

accurately calculated by our method (Figure S4).

Summary of the analysis of test helices—Overall, twist was more precisely 

recapitulated than rise when characterizing noisy helices. Twist is a parameter of the helix 

that is fully contained within cylindrical slices (i.e. a projection plane), thus twist is 
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optimized directly by the method (x-, y-components) while rise is optimized indirectly. It is 

possible that twist is calculated more precisely than rise because twist is regularized during 

the fitting procedure. It is also possible that twist is more precisely characterized because 

twist contains two dimensions of information (êx and êy) while rise contains only one (êƶ). 
The diverse test helices represent the limiting case because they possess the minimal 

geometric properties (number points and turns) required to unambiguously define a helix. 

The tests performed in this section represent the “worst case scenarios” potential users of the 

method might experience. The low R/κ ratio helices (1/2 and 1/4) led to the lowest %AAE 

for rise (Figure S2), twist (Figure S3) and most accurately derived helical axis orientations 

(Figure S4). These helix shapes are representative of protein secondary structure helices, 

nucleic acid helices and protein tertiary structure helices.

It is important to note the potential application of the method to augment the fitting of 

electron density maps in X-ray studies, or even more importantly, proton NMR or electron 

microscopy due to their inherent inferiorities. In structural NMR for instance, a helix is 

mainly characterized by NH/NH nuclear Overhauser effect volumes that are translated to 

distance restraints. It is believed that the NOE distances are accurate to 10%.25-26 The 

method could be useful in structural experiments such as NMR if it can accurately 

characterize the geometry of helical secondary structure elements of proteins.

Testing helical secondary structure elements

α-helix secondary structures—The radius, pitch and PPT of an α-helix are 2.3 Å, 5.5 

Å and 3.6,20 respectively, and its R/κ is 0.42. Here, the Cα atoms from the amino acids were 

used as the points to carry out the fitting. Referencing Figures 5 and 6 for results on ideal 

helices with comparable PPT and R/κ (consulting test helices with PPT=4 and R/κ=1/2), we 

expected ∼7 points would be required to accurately define the helical parameters of an α-

helix. Figure 7 shows the results of our analysis of the helical parameters for α-helical 

secondary structure elements. Three slightly different ϕ/ψ backbone torsion angles within 

the α-helix region of the Ramachandran map were tested. The residual of the fitting for 

these three helical shapes rises linearly with the number of Cα atoms included in the fit 

because each atom adds to the total residual (Figure S5). As expected, seven Cα atoms were 

required to accurately calculate the helical rise (1.5 Å, Figure 7a), twist (100°, Figure 7b) 

and radius (2.3 Å, Figure 7c) for these ideal structures. Two turns are likely required to 

characterize helical secondary structure elements because the points tracing these helices are 

highly polygonal (< 4 PPT).

π-helix and 310 secondary structures—The radius, pitch and PPT of a π-helix are 2.7 

Å, 4.1 Å and 4.2,20 respectively, and its R/κ is ∼0.66. From the results of Figures 5 and 6 

(consulting test helices with PPT=4 and R/κ=1/2), we expected ∼8 points would be required 

to accurately calculate the helical parameters of a π-helix. The radius, pitch and PPT of a 

310-helix is 1.9 Å, 5.8 Å20 and 3.0 respectively and its R/κ was 0.33; (consulting test helices 

with PPT=6 and R/κ=1/4), we expected ∼7 points would be required to calculate accurately 

the helical parameters of a 310-helix. Figure 8 shows the results of the analysis of the helical 

parameters for π- and 310-helical secondary structure elements. Seven and nine Cα atoms 

were required to accurately calculate the helical rise (Figure 8a), twist (Figure 8b) and radius 
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(Figure 8c) for π- and 310-helical elements, respectively. As with the a-helices, the residual 

of the fitting for these three helical shapes rises linearly with the number of Cα atoms 

included in the fit because each atom adds to the total residual (Figure S6). Overall, our 

method requires no more than nine atoms to achieve high-accuracy helix parameters for 

ideal protein secondary structure elements.

It stands to reason that our method could be used to determine the vector associated with a 

helix dipole because of its ability to determine the helical axis. “In an α-helix the peptide 
dipole moments are aligned nearly parallel to the helix axis, the axial component being 97% 
of the dipole moment.” (Direct quote from reference27) The method could therefore be used 

to characterize the direction of the dipole moment in helical secondary structure elements.

Validation of nucleic acid helices: single- and double-stranded DNA and RNA

The method can calculate the helical parameters of single-stranded (ss) and double-stranded 

(ds) nucleic acids. However, 3DNA10 and Curves+11 can only define a helix if base pairs are 

present; the nucleic acid must be double stranded, precluding these methods from 

comparison with ours in the assessment of single-stranded nucleic acid helices. It is also 

important to note that 3DNA and Curves+ require multiple atoms per nucleotide to define a 

helix frame, whereas our method requires at minimum only one. Here, we used C1' atoms. 

Table S3 compares dsA-DNA, dsB-DNA and dsA-RNA rise and twist parameters obtained 

using our approach, Curves+11 and 3DNA10, which was used to generate the DNA 

structures. The overall agreement is excellent between the three methods, < 1% AAE for 

both parameters of all three nucleic acids, indicating that the method can be used to 

characterize helix parameters of nucleic acids.

How does the accuracy of the method depend on the number of bp (in dsDNA and dsRNA) 

or nucleotides (in ssDNA and ssRNA) used in the fitting? The accuracy of helix rise, radius 

and twist were expected to depend on the total number of C1' atoms used in the fitting. The 

radius, pitch and PPT of B-DNA are 10 Å, 34 Å and 10,28 respectively, and its R/κ is ∼0.29. 

The radius, pitch and PPT of A-DNA are ∼11 Å, 28 Å and 11,28 respectively, and its R/κ is 

0.39; the radius, pitch and PPT of A-RNA are ∼11 Å, 30 Å and 11,28 respectively, and its 

R/κ is ∼0.37. One turn of a B-DNA double helix has ten base pairs (bp), with ten atoms per 

strand. Based on our analysis of the test helices (consulting test helices with PPT=11 and R/
κ=1/4), we expected to obtain accurate parameters when ∼8 atoms in total were used, i.e. 

four bp of dsB-DNA. Figure 9 shows the results of the analysis of dsA-DNA, dsB-DNA and 

dsA-RNA. Four bp (eight atoms) were needed to accurately calculate the helical rise (Figure 

9a) and twist (Figure 9b) of all three double-stranded nucleic acids.

The helical properties of single-stranded nucleic acids were characterized next. As with dsB-

DNA, eight atoms were required to accurately calculate the helical parameters for ssB-DNA 

(Figure 10a,b). However, only seven atoms were required to accurately calculate helical rise 

(Figure 10a) and helical twist (Figure 10b) for ssA-DNA and ssA-RNA. Eight atoms trace 

significantly less the one helical turn - 288° for ssB-DNA and 229° for ssA-DNA and ssA-

RNA. Considering the peptide results in the previous section, it is possible that seven atoms 

represents the lower-limit required by the method to obtain reliable and accurate helix 

parameters of biomolecular helices. Seven points may represent a critical value, which can 
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be used to either trace more turns of a coarse helix, or better define the curvature but using 

fewer turns.

Characterizing superhelix protein tertiary-structure

Unlike other helix analysis approaches, our method can characterize the helical parameters 

of superhelical protein tertiary structures without empirical constraints. Based on a simpler 

version of the method presented here, we previously calculated24 the helical parameters of a 

modular human transcription factor MTERF129, which is structurally homologous to TALE 

proteins30. Thus, we were motivated to determine the generality of the method and 

characterize an alternate modular superhelical protein, the TALE protein BurrH22, along 

with the helical parameters of the nucleic acid to which the protein was bound. We expected 

that the helical parameters of the protein and the DNA would be similar because of the high 

degree of apparent structural complementarity (Figure 11). Points tracing the BurrH 

superhelix were defined as the Cα atoms of one amino acid from the same location in each 

module (Table S2). Without covalent connections between these atoms or a reference frame 

to define the superhelical axis, ours is the only approach capable of characterizing an 

irregular superhelical tertiary structure. The results of the analysis indicate that, as expected, 

the average rise and twist of the protein (3.28 Å ± 1.1 Å and 32.6° ± 2.4° respectively) were 

nearly identical to those calculated for the DNA (3.34 Å ± 0.4 Å and 31.8° ± 4.7° 

respectively). The radius of BurrH (20.5 Å) was larger than the radius of the DNA (6.6 Å) 

because the protein traces a wider helix that wraps around DNA. Deviations in the 

parameters reflect local variation of the steps between superhelical Cα atoms for steps 

between modules. The deviations in rise and twist for BurrH - 1.1 Å and 2.4° respectively - 

reflect the average helix irregularity between modules (steps). Superhelical repeat-step 

parameters, their variation and their complementarity to the bp-step parameters of DNA will 

be expanded upon elsewhere.

Conclusion

We developed and tested a general method of helix-fitting that was geared towards 

characterizing geometries observed in structural biology applications. Validation tests were 

based on 399,360 test helices whose geometric parameters were representative of diverse 

biomolecules whose atoms might be perturbed from an ideal helix. The test helices were 

perturbed with known levels of noise to determine the sensitivity of the method. Helices 

frequently observed in structural biology applications were tested (peptide helical secondary 

structure elements, and nucleic acid single- and double-helices). The method was also used 

determine the helical complementarity of a TALE protein's superhelical tertiary structure 

and the DNA to which it was bound. Overall, the method introduced here is general, 

accurate and robust to noisy helical geometries. Based purely in geometry, our method can 

be used to characterize complementarity in protein-nucleic acid complexes, with potential 

applications in the design of genome editing reagents and biomaterials, astronomy and 

particle physics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The frame of a helix is rotated using spherical coordinates to find the projection that best fits 

a circle. The points tracing a suspected helix (pink) in a frame (x,y,ƶ) = (a,b,c); the points are 

projected (black) onto the x-y plane (blue disk) and are then fit to a circle using SVD. (a) A 

helix is projected on the x-y plane, with its frame defined by spherical coordinates (45°,90°). 

(b) The helix is rotated, its coordinates projected on x-y plane, and fit again; spherical 

coordinates (45°,45°). (c) After all rotations are complete, the rotation whose projection best 

fit a circle is the helix frame; spherical coordinates (0°,0°).
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Figure 2. 
A helix and its parameters. A helix (blue) whose pitch is (a) greater than its radius or (b) 

smaller than its radius. The red disk represents the x-y plane. Vertical planes (grey) represent 

steps whose height is the ƶ-component of the point and position is the x- and y-component 

of the point (i.e. radius2 = x2 + y2). Twist is the angle between successive points. The 

increase in height between successive steps is rise. Pitch is the height of the helix for one 

(360°) revolution.
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Figure 3. 
Overview of the test set of noisy helices, with varying shapes (R/κ), degrees of applied noise 

(CV+), number of points per helix (N) and points per helical turn (PPT). Five R/κ shape 

ratios (rows of one color) and four CV+-noise levels (columns with different colors) 

provided 20 shape-noise helix-matrices (each colored square depicts one helix-matrix). Each 

helix-matrix contains varying numbers of points per helical turn and total number of points 

in the helix. Each cell in this matrix (6 columns of PPT, 13 rows of N, 78 total cells) 

represents 256 different random perturbations of the helix. 399,360 total helices were 

evaluated below: 256 helices per cell, 78 cells per shape-noise matrix, 20 shape-noise 

matrices.
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Figure 4. 
The effect of scan resolution on accuracy measured by percent AAE (%AAE) of helical 

parameters for a set of 64 randomly oriented copies of a helix. Smaller %AAE values 

indicate less sensitivity to random orientation. (a) An ideal helix characterized using six scan 

resolutions (grid steps) of 6°, 3°, 2°, 1°, 0.5° and 0.25° (X axis). The reference rise and twist 

were 1 and 60, respectively. The Y axes show the measured %AAE for rise and twist. Black 

and blue symbols represent the measured %AAE of rise and twist respectively. (b) The 

coordinates of the ideal helix shown in panel (a) with random Cartesian coordinate 

perturbations applied to mimic the structure of an irregular, noisy helix.
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Figure 5. 
Twenty heat-maps of derived CVtwist for noisy helices with diverse geometries. Families of 

helices with five radius-pitch ratios, R/κ, are shown, each of which contains a matrix of 

helices with varying points/turn, PPT, and varying numbers of points, N. For a given N, 

increasing PPT decreases the number of turns present. For each shape geometry (colored 

cells, e.g. R/κ = 1/4, CV+ = 0.01 N = 16, PPT = 3, the top left-most cell), 256 irregular 

helices were generated subject to Cartesian coordinate perturbations with CV+, 0.01, 0.05, 

0.15 and 0.33. If a cell in a helix-matrix is light-colored (white), the measured CVtwist is low 

and the method precisely characterizes helix twist. However, if a cell is dark-colored (green), 

the measured CVtwist is large and the method does not precisely characterize helix twist; the 

method is susceptible to noise.
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Figure 6. 
Twenty heat-maps of derived CVrise for noisy helices with diverse geometries. The helices 

analyzed and the layout of the data are the same as in Figure 5.
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Figure 7. 
Helical parameters of α-helical secondary structure elements defined using three different 

pairs of φ/ψ backbone torsions (black, blue and red symbols represent α-57,-47, α-60,-40 and 

α-60,-45 respectively), and an increasing number of Cα atoms used in the fitting (X axis). 

Shown on the Y axes are the derived values for (a) rise; (b) twist; (c) radius.

Hauser et al. Page 22

J Chem Inf Model. Author manuscript; available in PMC 2018 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Helical parameters of π- and 310- helical secondary structure elements, black and blue 

symbols respectively, with an increasing number of Cα atoms used in the fitting (X axis). 

Shown on the Y axes are the derived values for (a) rise; (b) twist; (c) radius.
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Figure 9. 
Helical parameters of double-stranded nucleic acids using atoms from both strands. The X 

axis shows the number of atoms used in the fitting. Results for dsA-RNA, dsA-DNA and 

dsB-DNA are shown as black, red and blue symbols respectively. (a) Helical rise, with 

horizontal lines showing the reference values10 for dsA-RNA (black line), dsA-DNA (red 

line) and dsB-DNA (blue) line. (b) Helical twist, with horizontal lines showing the reference 

values10 for dsA-RNA (black line), dsA-DNA (red line) and dsB-DNA (blue) line. Two 

atoms per bp were used in the fitting.
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Figure 10. 
Helical parameters of single-stranded nucleic acids using atoms from both strands. The X 

axis shows the number of atoms used in the fitting. Results for ssA-RNA, ssA-DNA and 

ssB-DNA are shown as black, red and blue symbols respectively. (a) Helical rise, with 

horizontal lines showing the reference values10 for ssA-RNA (black line), ssA-DNA (red 

line) and ssB-DNA (blue) line. (b) Helical twist, with horizontal lines showing the reference 

values10 for ssA-RNA (black line), ssA-DNA (red line) and ssB-DNA (blue) line.
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Figure 11. 
Helix complementarity in the BurrH-DNA complex (PDB ID: 4CJA22). Protein (light grey 

ribbons), superhelical Cα atoms (red spheres), DNA (dark grey sticks) and C1' atoms (blue 

spheres).
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