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ABSTRACT: Model reliability is generally assessed and reported as an intrinsic component of 

QSAR publications; it can be evaluated using defined quality criteria such as the Organisation for 

Economic Cooperation and Development (OECD) Principles for the validation of QSARs. 

However, less emphasis is afforded to the assessment of model reproducibility, particularly by 

users who may wish to use model outcomes for decision making, but who are not QSAR experts. 

In this study we identified a range of QSARs in the area of absorption, distribution, metabolism 

and elimination (ADME) prediction and assessed their adherence to the OECD Principles, as well 

as investigating their reproducibility by scientists without expertise in QSAR. 85 papers were 
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reviewed, reporting over 80 models for 31 ADME-related endpoints. Of these, 12 models were 

identified that fulfilled at least four of the five OECD Principles and three of these 12 could be 

readily reproduced. Published QSAR models should aim to meet a standard level of quality and 

be clearly communicated, ensuring their reproducibility, to progress the uptake of the models in 

both research and regulatory landscapes. A pragmatic workflow for implementing published 

QSAR models and recommendations to modellers, for publishing models with greater usability, 

are presented herein. 

 

Introduction 

In the chemical, pharmaceutical, pesticide and personal care product industries there is an ever 

increasing pressure to deliver ingredients that are fit for purpose, whilst at the same time avoiding 

any adverse effects to either humans or the environment. The traditional use of animal models to 

identify potential effects of chemicals has been criticised in terms of scientific relevance, time and 

cost - driving the quest for suitable alternatives.1 In silico and in vitro methods have been proposed 

to address these concerns as well as the commercial, regulatory and ethical requirements for 

alternatives.2-4 Quantitative structure-activity relationship (QSAR) modelling is a widely-used 

approach for predicting properties of chemicals, predicated on a mathematical relationship being 

derived between a chemical’s structure and its physicochemical or biological (toxicological) 

properties. Acceptance of QSAR methods is increasing with the European Chemicals Agency 

(ECHA)5 reporting that, for information on endpoints concerning vertebrate animals, 34% contain 

one or more QSAR predictions (6,290 substances analysed). 
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Over a period of more than fifty years a significant number of QSAR models have been 

published covering an extensive range of properties and biological endpoints. A wide variety of 

modelling techniques have been employed ranging from simple, transparent (multivariate) linear 

regression to more complex (potentially “black box”), machine learning algorithms. Cherkasov et 

al.6 provide a comprehensive overview of the development of the field of QSAR including its 

history, methodologies used, advantages, limitations, applications to real world challenges and 

examples of both good and bad practice in model development. The importance of correctly 

recording all relevant information so that other users can realistically evaluate and reproduce 

published QSAR models is acknowledged as well as identifying the need for model developers 

and users to communicate effectively.6 

Guidelines to assist in the development of robust in silico models for regulatory purposes were 

captured in the OECD Principles for the validation of QSARs7 published in 2004. According to 

these guiding principles a model should have (i) a defined endpoint, (ii) an unambiguous 

algorithm, (iii) a defined domain of applicability, (iv) appropriate measures of goodness-of-fit, 

robustness and predictivity and (v) a mechanistic interpretation where possible (a fuller description 

is provided in the Supporting Information). Other publications have highlighted both good 

practice8 and common errors in the development and reporting of QSARs9, 10 with recent emphasis 

on more transparent recording of in silico models to ensure their reproducibility. Judson et al.11 

proposed Good Computer Modelling Practice (GCMP) guidelines which identify best practice in 

conducting and recording modelling procedures. The QSAR Model Reporting Format (QMRF),12 

provides a template for recording key information regarding a given QSAR model and associated 

validation studies, where relevant. The Journal of Chemical Information and Modelling has 

published required standards13 for papers in the area of QSAR/QSPR. The QSAR databank14 
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provides a repository for storing QSAR models along with their associated metadata. Similarly, 

Ball et al.15 report on best practice for read-across summarising the state-of-the art, lessons learned 

from REACH submissions to ECHA, how data can be used to support a read-across prediction and 

consideration of uncertainty. This body of literature emphasises the importance of ensuring that 

methodology is transparent and reproducible and all associated information is fully documented; 

this increases the acceptability of models and predictions derived therefrom. ECHA is active in 

promoting reliable and understandable QSAR models, which can be useful within the context of 

REACH regulation.  

A similar case can be made for all models that are published which require some form of 

acceptance from other scientists, whether or not they are intended for a regulatory outcome. 

Cronin16 reported a process by which QSAR models can be described and evaluated and 

demonstrates application of the method using case studies in which models are evaluated according 

to the OECD Principles. Hewitt et al.17 proposed a scheme for the verification of in silico models 

in accordance with GCMP; the authors describe a Standard Operating Procedure (SOP) for the 

verification of in silico models along with templates (based on the QMRF format) to ensure 

sufficient information concerning the model is available to evaluate and reproduce the model. In a 

wider context Hanser et al.18 discussed confidence in models with respect to the validity of the 

model for a given compound (applicability), the quality and quantity of the information supporting 

the prediction (reliability) and finally the likelihood of the outcome of this prediction 

(decidability). 

Despite extensive guidance being available to ensure the validity and appropriate recording of 

QSAR models, little information is available on how widely these recommendations are 

implemented and the ramifications when attempting to reproduce literature models. Although in 
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silico techniques, (including QSAR modelling) have been widely applied, they can be perceived 

as the preserve of specialists. However, the end-user of such a model may well be an industrial, 

pharmaceutical or regulatory scientist who, whilst not a QSAR expert, may have responsibility for 

deciding whether or not a chemical progresses to the next stage (or is prioritised for testing) based, 

in part, on information obtained from QSAR predictions. Whilst literature on best practice in 

QSAR modelling is readily available much of this is aimed at those with a chemoinformatic/ 

mathematical understanding of the subject. An end-user with a background in biological sciences/ 

toxicology needs to have sufficient confidence in the model to justify its application in informing 

decisions on safety assessment or prioritisation. From a practical perspective guidance needs to be 

available on how to go about repeating a QSAR analysis, determining its suitability and applying 

the model to other compounds of interest. 

The first step in investigating the reliability and reproducibility of published models is the 

selection of an appropriate set of models on which to perform such an analysis. For the purposes 

of the present study, models for a range of absorption, distribution, metabolism and elimination 

(ADME) properties were selected. These four characteristics determine the internal exposure of 

an organism to a chemical, which in addition to external exposure and intrinsic efficacy, determine 

the overall effect that the chemical may elicit.19 Historically, much effort has been devoted to the 

assessment of toxicity models. However, whilst toxicokinetic considerations are increasingly 

recognised as an important component of read-across predictions, assessment of ADME is often 

neglected.20 As models for ADME are increasingly being applied and represent a coherent 

collection of related endpoints these were chosen for investigation. ADME models are essential to 

predicting chemical activity but have generally been neglected in terms of assessment of 

suitability.  
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Detailed reviews have been published concerning datasets, QSAR models and freely available 

or commercial software tools to predict ADME endpoints.19-21 The aim of this study was to 

investigate the reliability and reproducibility of QSAR models for ADME endpoints and to create 

a workflow to enable evaluation of in silico models by others. The specific objectives included 

investigating a range of ADME models available in the literature, assessment of a representative 

sample of these models for their adherence to the OECD Principles and determination of model 

reproducibility using a workflow designed to be appropriate for end-users who are not experts in 

QSAR. Whilst there are many ways to assess model quality, adherence to the OECD Principles 

was selected as a pragmatic approach as the Principles are well-known and can provide a consistent 

approach to assessing (traditional) QSAR models. Recommendations for improvements to the 

development and reporting of QSAR models, in order to make them more useful to others, are also 

included. 

It is recognised that there is an increasing number of web-based tools that are available to predict 

ADME (and other) endpoints. These models can be applied by naïve and expert users, enabling 

the underlying model to be readily “reproduced” by the user.14, 22, 23 Whilst these are a valuable 

and increasingly popular resource, the investigation here was focussed on published models, rather 

than assessment of such tools. 

 

Materials and Methods 

Identifying QSAR models for ADME endpoints available in the literature  

Models available in the literature for ADME endpoints were identified using information 

provided in relevant reviews19-21 in addition to searching on-line literature databases (PubMed, 

Google). The search terms that were used were taken from a previously identified list of ADME 
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parameters,24 which are provided here as Supporting Information. Where multiple publications 

were identified for a particular ADME parameter, a sample of up to six papers was selected for 

further analysis; in these instances more recent publications (e.g. from 2010 onwards) were 

favoured, where available. 

Evaluation of the models for their adherence to the OECD Principles for the validation of QSARs 

Details from the publications were used to evaluate each model against the OECD Principles for 

the validation of QSARs.7 The review of the models was carried out by experienced scientists with 

a background in chemistry and/or toxicology, who have a basic understanding of QSAR methods, 

but are considered naive rather than expert QSAR users. This involved a pragmatic application of 

the OECD Principles from the viewpoint of these stakeholders. Where a model was deemed to 

have fully met a specific OECD Principle (in the view of an individual scientist using their 

interpretation) this was indicated as ‘Yes’. Where a model met an OECD Principle only in part 

this was indicated as ‘Yes with limitations’. Models which failed to meet an OECD Principle were 

classed as ‘No’ (not meeting the Principle) or ‘N/A’ (not applicable in this case). The results of 

the evaluation of all of the models were tabulated in an Excel spreadsheet and are provided as a 

heat-map in the Supporting Information. 

It is worth noting that for the number of publications being considered, the assessment exercise 

was time-bound and as such was conducted at a fairly high level. Furthermore, this analysis is 

likely to be subjective, as it is based upon the individual assessment of the scientists involved. 

Examples of how the criteria were used to assess a model’s adherence to the principles are given 

below: 
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For the first principle, ‘a model must have a defined endpoint’, a methodology was considered 

to have fulfilled this principle fully if it clearly described the modelling of one of the previously 

enumerated ADME parameters.24 

For the second principle, ‘a model must have an unambiguous algorithm’, if a clear description 

of both the QSAR modelling procedure and the final equation were provided, then this principle 

was considered to have been met in full. 

For the third principle, ‘a model must have a defined domain of applicability’, if a publication 

describes the general class of chemicals for which a model is suitable (e.g. Volatile Organic 

Compounds), this would be considered partial information towards fulfilling the Principle and a 

verdict of “Yes with limitations” would be recorded. However, in order to fully satisfy the 

Principle the publication would ideally go into much more detail describing and defining the 

applicability domain, for example by looking at the range of descriptor and response values used 

or looking at how well particular sub-classes of chemicals within the training set are predicted.  

For the fourth principle, ‘a model must have appropriate measures of goodness-of-fit, robustness 

and predictivity’, the presence of performance measures (such as R2 and Q2) were considered 

sufficient evidence that the principle had been fulfilled, regardless of the magnitude of these 

parameters. This principle was also considered to have been fully met even in the absence of a 

predictivity measure from an external test set, as often experimental data were scarce and the 

removal of a test set of chemicals was deemed to be impractical. 

For the fifth principle, ‘a model must have a mechanistic interpretation, if possible’, the principle 

was considered to be fulfilled if the authors had commented on how each of the descriptors used 

in the algorithm were mechanistically related to the ADME parameter in question. 

Assessing the reproducibility of the selected QSAR models using a newly derived workflow  
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It was initially anticipated that models meeting all five OECD Principles would be taken forward 

to the next stage of the investigation. However, it was determined that only two out of 86 models 

met all five Principles, hence the threshold was lowered such that all models meeting four out of 

the five Principles were considered; this identified a further 10 models. Therefore, 12 models in 

total were assessed, using a decision tree workflow to ascertain the ease of model reproducibility. 

As stated above, adherence to the OECD Principles was selected as a pragmatic assessment tool. 

Scientific judgement was based entirely on interpretation of the information presented in the 

publications and may not reflect the quality assurance processes undertaken by the authors during 

model development. Whilst a more experienced QSAR practitioner may have greater success in 

interpreting or reproducing the models, the aim here was to more accurately replicate the real-life 

scenario where a non-expert may need to use the results of a model for business-appropriate 

decision making. The decision tree workflow (illustrated in Figure 1) was designed as a step-by-

step process to guide a non-expert in QSAR through the stages required in reproducing and 

evaluating a model. 
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Figure 1. Workflow used to determine the reproducibility of a published QSAR model. 
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Results 

Availability of QSAR models for ADME endpoints in the literature 

Many published QSAR models for ADME endpoints were retrieved from searches of relevant 

publications/review articles and on-line literature resources. In all, 85 papers were identified that 

reported one or more QSAR models (Supporting Information). Note that one paper contained 

models for two endpoints whilst other papers contained two or more models for the same endpoint; 

as such, the 85 papers reviewed contained 86 (sets of) QSAR models in total. The number of 

models for each endpoint varied significantly depending on the nature of the endpoint. Features 

associated with absorption, such as human intestinal absorption and skin permeability, were well 

represented within the publications identified, however, few or no publications were found for 

endpoints such as distribution to specific tissues and overall extent of metabolism. 

Adherence of the models to the OECD Principles for the validation of QSARs 

Each set of QSAR models was assessed for its adherence to the OECD Principles. For each of 

the five Principles the model was deemed to completely fulfil (Yes), partially fulfil (Yes with 

limitations) or not fulfil the criteria for that Principle (No). The results of this analysis are presented 

as a heat map in the Supporting Information, where the result for each Principle for every model 

is recorded. N/A (not applicable) indicates that a Principle could not be readily applied to that 

model. For example if the required information was not readily accessible or if the model in 

question was proprietary and no suitable alternative was available. The data are summarised in 

Table 1 below for all studies (86 models). Results for models published 2006 onwards have been 

shown separately (68 models). The cut-off year of 2006 was selected as the OECD Principles were 

published in 2004 and therefore any differences in the proportion of models fulfilling or not 

fulfilling the Principles before and after they were widely publicised could be investigated. Note 
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that the Principles themselves were a formalisation of good modelling practices which had been 

widely accepted for many years, therefore it is not unreasonable to expect models published earlier 

to adhere to the Principles. Initial analysis determined that only 12 of the 86 models assessed 

adhered to at least four of the five OECD Principles, with two of these adhering to all five 

Principles as shown in Table 2. 

 

Table 1. Summary of the number of models adhering to each of the OECD Principles (total number 

and those published 2006 onwards). 

      

Percentage of models meeting OECD Principle 

    (i) model 

based on a 

defined 

endpoint 

(ii) model uses an 

unambiguous 

algorithm 

(iii) model has 

a defined 

domain of 

applicability 

(iv) appropriate 

measures of 

goodness-of-fit, 

robustness and 

predictivity used 

(v) model is 

mechanistically 

interpretable 

All studies (86) Yes  65 28 30 50 26 

 Yes / Yes with limitations  84 53 60 76 57 

  

  

Studies 2006 onwards (68) Yes 68 26 26 54 25 

Yes / Yes with limitations  87 51 56 76 60 

 

 

 

 

 

 

 

 



 13 

Table 2. ADME models which were judged to meet at least four of the five OECD Principles. 

 Adherence to OECD Principle nos 1-5 

Model ADME parameter(s) modelled Reference 1  2 3 4 5 

1 Skin permeability/retention (PAMPA, Kp) 25 Yes No Yes Yes Yes 

2 Skin absorption (Kp, Jmax) 26 Yes Yes Yes Ywl Yes 

3 Oral absorption (PAMPA, HIA) 27 Yes Yes Yes Yes Ywl 

4 Volume of distribution (Vd) 28 Yes Yes Yes Yes Yes 

5 Blood-brain barrier permeability (log BB) 29 Yes No Yes Yes Yes 

6 Plasma protein binding (log K’HSA) 30 Yes Yes Yes Yes No 

7 Tissue:unbound plasma distribution ratio (Ktb) 31 Yes Ywl Yes Yes Yes 

8 Placental transfer (CI, TI) 32 Yes Yes Yes Yes Yes 

9 Brain:blood/plasma partition coefficient (Ktb) 33 Yes Yes Ywl Yes Yes 

10 Volume of distribution (Vd) 34 Yes Yes Ywl Yes Yes 

11 Tissue:blood/plasma partition coefficient (Ktb) 35 Yes Yes Ywl Yes Yes 

12 Biliary excretion (BE%) 36 Yes Ywl Yes Yes Yes 

Ywl = Yes with limitations. 

 

 

 

 

 

Reproducibility of the selected QSAR models for ADME endpoints 

The 12 models identified as meeting at least four of the five OECD Principles were assessed for 

their reproducibility using the workflow described above. Table 3 shows the results of this analysis 

indicating whether the model could be readily reproduced or at which step of the process the 

decision was made not to proceed further with attempts to re-create the model. Where a model 

could be successfully reproduced, a KNIME workflow was developed to enable other researchers 

to implement the model more readily. 
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Table 3. Results of the assessment of reproducibility of the 12 selected models. 

Model Algorithm(s) Outcome of workflow Comment 

1 MLR, ANN, PLS Stopped at step 3 This set of models requires the use of commercially 

available descriptors for which no suitable 

alternative was available for this study. 

2 MLR Reproduced (to step 9) KNIME workflow generated. 

3 Bi-linear QSAR 

model 

Stopped at step 4 Lack of explicit designation of the training and test 

set compounds. 

4 MLR Stopped at step 3 Descriptors based on experimentally derived 

parameters, requires in vitro experiments. 

5 GBT, BDT Stopped at step 2 Algorithm and settings are complex and difficult to 

implement. 

6 NLR, SLR Stopped at step 3 Software and settings for calculating descriptors 

were not clearly reported for the model. Descriptors 

not adequately explained. 

7 PBPK model, SLR Reproduced (to step 9) KNIME workflow generated. 

8 MLR, SLR Reproduced (to step 9) KNIME workflow generated. 

9 MLR Stopped at step 3 The required descriptors are either experimental 

values or have been calculated using commercial 

software not available for the present study. 

10 MLR, NLR Stopped at step 3 Required software not available in the present study, 

full list of 250 descriptors not provided in the paper. 

11 NLR Stopped at step 3 Descriptors were calculated using proprietary 

software not available for the present study. 

12 MLR, CART, BT, 

RF 

Stopped at step 3 The majority of the descriptors in the paper are 

calculated with commercial software (not available 

for the present study) including calculations from a 

docking experiment where settings were not 

reported. 

MLR – Multiple Linear Regression (i.e. containing 2 or more independent variables), ANN – 

Artificial Neural Networks, PLS – Partial Least Squares regression, SLR – Simple Linear 

Regression (i.e. containing only 1 independent variable), NLR – Nonlinear Regression, CART – 

classification and regression trees, BT – boosted trees, RF – random forest, GBT – gradient boosted 

trees, BDT – bagging decision trees. 
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Discussion 

This study described herein included a brief review of available QSAR models for ADME 

endpoints, their adherence to the OECD Principles for the validation of QSARs and an 

investigation into how readily a non-expert in QSAR could reproduce a selection of the models. 

The role of internal exposure in predicting effects of chemicals is now well recognised.37 Models 

are needed for all ADME endpoints, however, review of the literature demonstrated that there are 

significant differences in numbers of models available depending on the endpoint in question. This 

reflects the availability of data on which to build models and the complexity of the processes 

involved. Future priorities lie in building models for poorly represented endpoints to reduce the 

knowledge gaps in this area. Data sharing initiatives, such as those undertaken within European 

Union funded projects, may be useful in developing datasets for modelling purposes. 

Availability of QSAR models for ADME endpoints 

It would have been advantageous to have equal numbers of models for all endpoints to make a 

fair comparison, however there was a heterogeneous distribution of models across endpoints. 

Where many models were available, a maximum of six models for an individual ADME endpoint 

were selected for investigation. This was a pragmatic approach to ensure a variety of models were 

selected without placing too much emphasis on well-studied endpoints. Where several models 

were available priority was given to more recent models. 

Assessment of adherence of the models to the OECD Principles 

86 models were assessed for their adherence to the OECD Principles. It is recognised that there 

are many methods by which the reliability or robustness of models can be assessed. The OECD 

Principles formalised factors generally associated with good modelling practice and therefore, 

even if models were developed prior to the publication of the Principles, such factors should have 
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been considered. However, where models are identified as not meeting the OECD criteria 

(according to our interpretation) this does not necessarily imply poor model quality. Conversely, 

it is possible that a model that meets most or all criteria could still be considered of poor quality 

for other reasons. For example, training and test sets may be well-defined but may not have been 

appropriately selected. Models built or tested using small or restricted datasets will not provide 

reliable results across diverse chemical space - a model user would need to check the 

appropriateness of the model for their purposes. 

The Excel spreadsheet available in the Supporting Information gives the results for adherence to 

the Principles for the individual models and these data are summarised in Table 1. Strictly applying 

the criteria (i.e. ‘Yes’ fully meets OECD Principle) 65% of all models were considered to satisfy 

Principle 1 and 50% satisfied Principle 4, with only 28%, 30% and 26% meeting Principles 2, 3 

and 5 respectively. With a more generous interpretation of the criteria (i.e. allowing both ‘Yes’ 

and ‘Yes with limitations’) overall scoring improved with 84% of all models satisfying Principle 

1 and 76% meeting criteria 4. 53%, 60% and 57% of models adhered to Principles 2, 3 and 5 

respectively. No significant differences were seen for models analysed here between those 

published before and after 2006. This is disappointing as evidencing the validity of a model is 

associated with greater confidence in their use and wider application. Modellers should be 

encouraged to ensure published models explicitly satisfy criteria for the validation of QSARs or 

provide a sound rationale for why there may be exceptions. In this analysis, only two models 

explicitly met all five criteria as strictly applied, with 12 meeting the criteria when more generous 

allowance was made. In selecting models to forward to the next stage (i.e. assessment of 

reproducibility) an assumption was made that all five Principles carry equal weight, such that if 

any four criteria were met the models were taken forward. This ensured a consistent approach was 
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applied when selecting models to reproduce, however, it does not imply that these models were 

ideal. It is also acknowledged that some of the other models which met fewer OECD Principles 

may have been more readily reproduced; however, this may have given rise to unfair selection 

bias. 

Assessment of model reproducibility 

The workflow represented in Figure 1 was used in a step-wise manner to reproduce the models 

and/or identify at which stage of the process reproduction of the model failed. This workflow 

serves as a pragmatic tool for other researchers interested in evaluating QSAR models available in 

the literature. 

Using the workflow 

The first step is to identify a relevant model for an endpoint of interest e.g. from a literature 

databases, on-line repositories of models or websites. For certain endpoints a plethora of models 

are available, whilst for other endpoints models are scarce. Where a selection of models are 

available from which to choose, those based on large, diverse training sets, employing transparent 

methodology are useful starting points.  

The second step relates to the “transparency” of the model. Is it clear how the model was 

generated and how the results should be interpreted? Simple (multiple) linear regression models 

are generally considered transparent, i.e. it is apparent how descriptors for chemical structures are 

mathematically correlated with the property or activity of interest. In other cases, e.g. neural 

network-based models, how such a relationship was derived may not be as obvious. As a general 

rule, a more complex modelling algorithm will at the very least require much more detailed 

explanation of model architecture/settings etc. in order to be sufficiently transparent to ensure 

reproducibility and interpretability. If not apparent from the publication itself, it may be possible 
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to obtain further information from the model developers directly or from other users (e.g. via a 

user forum). 

Step three in the workflow refers to the availability, to the model user, of tools used by the model 

developer for generating the descriptors and/or creating the model. Ideally, the same tools should 

be available to the model user, but this may not be practically possible due to costs or accessibility. 

Problems can also arise where for example, different versions of the same software may give 

different results. There are also instances where commonly used, freely available software is no 

longer supported by the software developers and becomes obsolete. Whilst it is not possible to 

prevent all such eventualities, use of well-established, free tools is preferable. However, it is 

recognised that specific very high quality software may only be available on a commercial basis. 

If the same software is not available to the model user then suitable alternatives should be sought. 

Step four is fundamental - in order to repeat a model for the training set used the correct 

structures, unambiguously associated with endpoint values, must be available. Journals now 

commonly encourage the publication of all relevant data, either within the text or as Supporting 

Information and therefore the information can often be readily obtained in a given format. 

Przybylak et al.24 discuss the importance of data format in determining modellability i.e. how 

suitable they are for QSAR (and other) modelling in terms of accessibility of structures, relevance, 

number of data etc. Formats such as Excel spreadsheets are convenient, where two or more 

concordant identifiers (e.g. SMILES string, CAS number, InChI key, pictorial representation) are 

associated with each chemical. SMILES strings have the advantage of being interpretable and 

recognisable by a wide range of software, although there are specific issues with this form of 

representation (e.g. limited ability to deal with stereochemistry or tautomers). Where chemical 

structures are not provided in a readily portable format (e.g. use of GIF images or non-standard 
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names) then the cost: benefit ratio must be considered. It may be unreasonably time consuming 

and potentially highly error-prone to derive structures from non-standard data formats, therefore 

the user must determine if the potential benefit of the model out-weighs this cost. The accuracy of 

the endpoint data is another consideration – a good model cannot be based on poor quality data. 

Methods for assessing the quality of data and processes of data curation have been extensively 

reviewed elsewhere and is not the focus here (for further information see Przybylak et al.38; Nendza 

et al.39; Williams et al.40; Williams and Ekins41; Fourches42; Tropsha43; Young44). Where a model 

is reported by an experienced QSAR practitioner, the model developer should have considered 

issues of data quality when generating the model. 

Steps five to eight cover the process of reproducing the model itself, either using descriptor 

values as recorded in the publication or generating the descriptor values de novo. If descriptor 

values are given in the publication, these can be compared to those generated by the model user 

and any discrepancies identified (e.g. differences arising from software versioning or recording 

errors) and where possible rectified. It is within these steps where model documentation is of 

paramount importance. Sufficient detail regarding software version, settings, protocols, 

assumptions or constraints must be provided to enable another user to achieve the same output. In 

reality it may require repeated attempts and investigation into discrepancies before all issues can 

be resolved and concordant results reached. Note that results (from generating descriptors, or 

output from the final model) should be concordant although not necessarily identical. For example 

different versions of software may result in insignificant differences in values, or a recording error 

may be identified which when corrected results in non-identical output from the model. The model 

may still be considered as reproducible and of benefit to the end user as it is pragmatic application 

of the model in a real-world scenario that is important rather than a direct repetition. 
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Success at stage eight indicates a reproducible model has been identified; steps nine and ten 

relate to the confidence which may be placed on the output from the model. Model validation 

includes an assessment of the applicability of the model to compounds beyond the training set. A 

model that cannot reliably make predictions beyond the data on which it was trained has limited 

use (albeit the model may elucidate underlying mechanisms relevant to the training set). Assessing 

model predictivity using a validation dataset gives a true indication of the usefulness of the model. 

If reliable results are obtained for validation data then the model can be used with greater 

confidence for compounds of interest. 

Note that all models can only make predictions reliably within the applicability domain of the 

model i.e. the chemicals for which predictions are to be made must be sufficiently “similar” to the 

training set compounds. Whilst an applicability domain aims to provide support to allow a decision 

to be made based upon the model’s output, this alone is generally insufficient. A user primarily 

requires an understanding of the expected certainty (or confidence) associated with an individual 

prediction and some analysis as to how robust this measure is in order to undertake expert review. 

Defining an applicability domain can help if there is an explanation of how the boundary is defined, 

which properties are considered important for the endpoint, how the thresholds have been defined, 

what level of performance should be expected within the boundary and evidence that this is true 

across the chemical space it encompasses. There are many ways in which applicability domain 

may be determined, for example ensuring the descriptor values for the test chemicals do not exceed 

the values for the training set chemicals or ensuring that models derived from simple structures 

are not inappropriately extrapolated to complex chemicals with multiple functional groups. 

Methods for assessing applicability domain are discussed elsewhere.45-50 This then moves some 

way towards recognising the difference between the average performance of a model for a test set 
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(typically the modeller’s measure of success) and the specific performance for a particular 

compound of interest (normally the user’s measure of success). Successful navigation of the 

complete workflow illustrated in Figure 1 indicates a model has been shown to be useful, 

reproducible and predictive. 

Outcome of assessment of reproducibility for 12 selected models 

Table 3 summarises the results of the assessment of the 12 selected models for their 

reproducibility. Full details for each model i.e. workflow forms, detailing the process and decisions 

taken at each step are available in the Supporting Information. Whilst individual reasons for failing 

varied on a case by case basis, a summary of the overall trends observed across all 12 of the models 

considered is presented. Three models were successfully recreated (models 2, 7 and 8 as indicated 

in Table 3); KNIME51 workflows, containing the training data, for these models are also provided 

in the Supporting Information. For the small number of reproducible models the relevant chemical 

and biological data could be extracted from the publication relatively easily and required a minimal 

amount of further data curation. The models relied on non-commercial software, or could be 

recreated using freely available versions of the descriptors used. Furthermore, all three (sets of) 

models were examples of linear regression, highlighting the fact that this modelling technique is 

generally both easy to comprehend and to replicate. 

In the process of attempting to recreate the 12 ADME QSAR models, a number of useful, free 

tools were identified, such as the KOWWIN software,52 produced by the US Environment 

Protection Agency for calculating the logarithm of the octanol water partition coefficient (log P). 

The modelling itself was carried out within KNIME, and the RDKit and CDK nodes provided 

therein were used to calculate a number of different descriptors. Furthermore within KNIME it 

was possible to access the Royal Society of Chemistry’s ChemSpider web service;53 this was used 
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in cases where there were no explicit chemical structures provided in the publication in order to 

generate such information from other chemical identifiers (CAS number and chemical name). 

Whilst this service proved invaluable in being able to reproduce some of the models, it is worth 

noting that the structures generated in this manner did require further manual curation, as errors 

were occasionally produced. One useful way of checking the validity of the structures produced 

was to compare the generated molecular weight to the molecular weight value reported by the 

original authors, and to further scrutinise any compounds where there was a large discrepancy 

between the two values (this, of course, is only possible where the original publication contains 

the relevant molecular weight information). Issues with data quality, such as ensuring correctness 

of chemical structure, are well recognised and have been extensively reviewed previously. A 

review of methods for assessing data quality is beyond the scope of this paper, but can be found 

elsewhere.43,44 In assessing model reproducibility here, absolute repetition of the original model 

was not considered the main criterion. The aim here was to determine if the algorithm could be 

used, and precise reproducibility is not as important as providing an output that is sufficiently 

similar for the decision to be made from it. For example if the original model required use of 

specific software to calculate a molecular property and the same software (or version of the 

software) was not available when assessing the model, alternative software/versions (giving minor 

differences in property calculation / endpoint prediction) could be considered suitable. Where 

errors were identified in the original publication (e.g. repetition of compounds in the training set, 

or ambiguous structural identity for one or two compounds within a large dataset) these were 

corrected, although this resulted in non-identical values to the original publication (hence strict 

duplication of the model failed) the model was still deemed reproducible. In this manner the 

process reflects how an end-user is likely to utilise models in real-life scenarios. 
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Table 3 shows that 9 out of the 12 selected models were not successfully reproduced in this 

analysis. The most common reason for being unable to replicate a model was not having access to 

the relevant software to generate descriptors, or a suitable alternative. For this reason seven of the 

models did not proceed beyond step three of the workflow. It is recognised that this limitation will 

not be an issue for all researchers wishing to replicate the model; however, to ensure greater uptake 

of a model use of software that is more widely available is preferred. As certain endpoints may 

only be amenable to modelling techniques requiring proprietary software, this issue may not be 

resolvable in all cases; however, this highlights the need to use freely available software whenever 

possible. Another reason for failure (models 5 and 6) was lack of sufficient information in the 

publication i.e. in relation to software and settings for descriptor generation; this issue is 

resolvable. Modellers should ensure all details are available and this can be tested prior to 

publication (e.g. by requesting a third party, in-house or external, to attempt to reproduce the 

model). This is comparable to chemists publishing in Organic Synthesis where all experimental 

procedures are reproduced before publication.54 In this way any lack of detail or possible 

ambiguities could be identified in advance. Similarly, model 3 failed as the designation of training 

and test set compounds was not clear and again this is not a difficult problem to overcome. Within 

the EU eTOX project, templates were devised (based in large part on the QMRF format) for 

modellers to guide appropriate documentation of the modelling process such that another user 

could verify or repeat the model.17 Using such templates should help to resolve some of these 

miscommunication issues which could lead to wider uptake of published models. Other issues 

encountered included the use of experimentally-derived descriptors in the model which limits 

reproducibility to those with comparable laboratory facilities. 
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Overall it was shown that, for the models studied here, ranking on the basis of adherence to the 

OECD Principles was not successful in identifying models that were readily reproducible. As 

alluded to previously, adherence to the Principles does not necessarily imply a good model, an end 

user would need to determine the appropriateness of the model for a given query. Documentation 

of rationale, methods and data for published QSAR models were often lacking; descriptors and 

relevant software tools were not freely available for many of these models. Some models would 

appear to only be usable by other experienced QSAR practitioners or those with facilities to 

generate descriptors from experiment; this limits their application by others interested in the 

outcomes of such models (e.g. risk assessors / regulators). Models may be either unusable or 

provide results in which the end user has less confidence. This means that models are unlikely to 

be used, or are indefensible when making decisions based on predictions from such models. These 

findings confirm those from D’Onofrio55 who assessed the reproducibility of linear regression 

models in the European Commission’s Joint Research Centre QSAR Database.22 Despite being 

recorded in a well documented manner, there were still difficulties in reproducing a number of the 

models in the database.  

Since the publication of the OECD Principles in 2004, there have been many innovations in the 

area of in silico prediction. Whilst application of the Principles to traditionally developed QSAR 

models is still valid, it is recognised that the Principles do not provide an appropriate means to 

assess some models generated using newer techniques, such as Deep Learning. Assessment of the 

usefulness of such models is driven more by their success in modelling endpoints accurately, rather 

than their transparency and mechanistic interpretability. Newer approaches to model development 

will similarly require a new approach to model assessment to ensure user confidence in applying 

the approach and promote greater uptake of the models. 
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Conclusions 

Literature concerning QSAR models can be difficult to understand for a non-expert in the area, 

however using such models may be a key requirement for their decision making. QSAR models 

are published and promoted on the basis of cost, utility, scientific validity and reproducibility. 

Whilst models are developed and published by domain experts, the target users are often 

experimental or regulatory scientists with diverse backgrounds outside the QSAR modelling arena. 

If QSAR practitioners wish to promote wider usage of their models, comprehensive reporting of 

methodology and results to enable assessment of validity, reproducibility and translation into 

biological relevance is essential. Traditionally-derived QSAR models should follow the OECD 

Principles and practical guidance for submission to journals is available to encourage transparency 

and reproducibility. The OECD Principles provide a benchmark for the assessment of QSAR 

models; however, there is the potential for disparity between assessors as to whether the Principles 

are interpreted strictly or more flexibly. A lack of adequate documentation has been shown here 

to be responsible for many instances of models failing to be reproducible. This means the model 

is of no value to other users and this needs to be addressed by the modelling community if greater 

uptake of models is to be achieved. The decision tree workflow presented in Figure 1 is designed 

to assist the non-expert in QSAR in assessing the usefulness, reproducibility and practical 

application of a QSAR model of interest. The methodology applies to QSAR models in general 

although the emphasis here was on QSAR models for ADME endpoints. From the above analysis, 

several areas where improvements can be made have been identified and these are summarised 

here as recommendations for the future development and reporting of QSAR models. 

Recommendations: 
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(1) More models are required for the ADME endpoints for which there are currently few or no 

models. Lack of models may be a reflection of lack of data on which to the build models, or 

inherent complexity of the endpoint. Data sharing initiatives may assist in building suitable 

datasets for modelling where data are lacking.56 Developments in computational methods are being 

used to generate models for more complex endpoints. 

(2) The OECD Principles provide a consistent approach for assessing models, however, this does 

not necessarily equate with reproducibility. Adherence to OECD Principles should be assured 

explicitly as part of the modelling process (or a rationale provided where adherence to a Principle 

is not deemed relevant for a specific case). Note that the Principles relate to specific aspects of 

model quality, it is possible for a model to adhere to the Principles but to be considered “poor 

quality” for other reasons. The end user may need to ascertain appropriateness of the model for 

their purpose. 

(3) The “simplest” modelling technique, that is suitable for purpose, should be applied, i.e. the 

most easily reproducible and transparent approach. For certain endpoints more complex 

methodologies may be required to provide adequate predictivity, however, the philosophy of 

applying the “simplest” approach to achieve the required outcome is still applicable. 

(4) Ideally the same software should be available for model developers and subsequent users. 

This means that wherever possible freely available tools should be used in model development. 

Where commercial tools offer the best solution, this can provide a useful model for some 

researchers but will limit the general uptake of the model. Computational pipeline tools such as 

KNIME allow for a transparent working model to be provided alongside the publication which is 

highly beneficial for other users. Where appropriate, providing models as web-based tools for other 
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researchers is another possibility to ensure reproducibility and promote further uptake and 

assessment of the model. 

(5) Full documentation / appropriate metadata should accompany the published model so that it 

can be understood, assessed for validity and readily reproduced. Templates for ensuring adequate 

documentation of models are readily available, for example the QMRF documentation available 

from the JRC15 or those published by Hewitt et al. under the auspices of the EU eTOX project20 

which in turn were largely based on the QMRF. 
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