
Assimilating Radial Distribution Functions to Build Water 
Models with Improved Structural Properties

Alexander D. Wadea, Lee-Ping Wangb, and David J. Huggins*,a,c

aUniversity of Cambridge, TCM Group, Cavendish Laboratory, 19 J J Thomson Avenue, 
Cambridge CB3 0HE, United Kingdom

bDepartment of Chemistry, University of California, Davis, Davis, California 95616, United States

cUniversity of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, UK CB2 1EW, 
United Kingdom

Abstract

The structural properties of three and four site water models are improved by extending the 

ForceBalance parameterization code to include a new methodology allowing for the targeting of 

any radial distribution function (RDF) during the parametrization of a force field. The mean 

squared difference (MSD) between the experimental and simulated RDFs contributes to an 

objective function, allowing for the systematic optimization of force field parameters to reach 

closer overall agreement with experiment. RDF fitting is applied to develop modified versions of 

the TIP3P and TIP4P/2005 water models in which the Lennard-Jones potential is replaced by a 

Buckingham potential. The optimized TIP3P-Buckingham and TIP4P-Buckingham potentials 

feature 93 and 98 percent lower MSDs in the OO RDF compared to the TIP3P and TIP4P/2005 

models respectively, with marked decreases in the height of the first peak. Additionally, these 

Buckingham models predict the entropy of water more accurately, reducing the error in the 

entropy of TIP3P from 11 to 3 percent and the error in the entropy of TIP4P/2005 from 11 to 2 

percent. These new Buckingham models have improved predictive power for many non-fitted 

properties particularly in the case of TIP3P. Our work directly demonstrates how the Buckingham 

potential can improve the description of water’s structural properties beyond the Lennard-Jones 

potential. Moreover, adding a Buckingham potential is a favorable alternative to adding interaction 

sites in terms of computational speed on modern GPU hardware.

Introduction

The water molecule has been studied in great detail with significant attention from 

experimental and theoretical works [1] [2] [3] due to its ubiquity and many unique properties 

such as a large heat capacity and its expansion when frozen. With such a large amount of 

attention given to water, naturally there are a wide range of atomistic water models for 

molecular simulation [4] [5] [6] [7]. The variation in these models comes from the different 
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approximations made in the model or which properties of the system have been targeted 

during their parametrization. Within the space of rigid water molecules, TIP3P [4] and 

TIP4P/2005 [8] are common three and four site water models used in biomolecular 

simulation and are the starting point of our study. Improving the accuracy of modelling 

water enables studies of biochemical mechanisms with atomic resolution, for example 

protein-ligand binding [9] or protein folding [10]. Some of the crucial properties for the 

accuracy of these simulations are the entropy and enthalpy. The entropy is strongly linked 

with the structural properties and correlation in a fluid and it is therefore important to note 

that water exhibits significantly more correlation than a simple LJ fluid of comparable 

densities [11].

This work focuses on classical water models designed for classical molecular dynamics 

(MD) simulation. Compared to more exact quantum mechanical methods, classical MD and 

the associated potentials employ many approximations intended to describe much of the 

physics underlying the behavior of a system implicitly. For example, water models with 

nonpolarizable effective pair potentials do not allow for the redistribution of charge on a 

molecule’s atoms, resulting in the neglect of any induced dipoles. The permanent dipole of 

the model may be fitted to include the averaged induced dipole for a chosen density, but the 

approximation will start to fail as the density and intermolecular separations start to deviate 

from the parameterization conditions. Additional approximations pertain to the 

intramolecular vibrations, and their temperature dependence, which are neglected by rigid 

water approximations. Ideally these vibrational effects would receive a quantum mechanical 

treatment, however in the absence of this, many water models [8] [12] will apply corrections 

to reproduce raw experimental data.

Considering these approximations, the difficulty in selecting potential forms and parameters 

that can reproduce a wide range of properties over a wide range of temperatures and 

pressures becomes clear. Historically, the parametrization of force fields has been described 

as a “black art” [13] because modifying parameters, running simulations, calculating 

properties, and comparing with experiments involves a complicated workflow that is 

arduous to perform manually and can be difficult to reproduce. The ForceBalance code [14] 

addresses the challenge of reproducibility by enabling diverse types of parameterization 

calculations in a common software framework. In this work, our goal is to improve the 

agreement of water’s simulated structural properties with experiment for two common water 

models using ForceBalance as a principal tool.

Radial distribution functions

A radial distribution function (RDF) describes the structure of a molecular system as the 

variation in particle number density with distance from a reference particle. Equation (1) 

[15] shows how a RDF could be calculated.

gαβ(r) = lim
dr 0

ρ(r, dr)
4π(Nαβ/V)r2dr

(1)
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Here r is the distance between the atom pairs, ρ(r, dr) is the number of atom pairs in the 

infinitesimal shell spanning r to r + dr (averaged over all trajectory frames), Nαβ is the 

number of pairs for the two species considered and V is the volume of the system. ρ(r, dr) is 

normalized to the uniform density of an ideal gas; thus any deviation for the value of gαβ(r) 
from unity is the result of some order or correlation in the material. While an RDF can’t be 

used as a unique fingerprint for a material it can be a robust description. RDFs can be 

informative of bond lengths and coordination number, and can be used to calculate many 

thermodynamic properties assuming the potentials describing the system are pairwise 

additive [16]. Moreover, RDFs can be derived from experimental X-ray or neutron 

diffraction data to provide robust comparisons between simulation and experiment.

Water can cause potential complications in the calculation of the experimental RDFs due to 

the presence of light and weakly charged hydrogen. X-ray diffraction is a good tool to 

calculate the OO RDF, but less information about HH and OH RDFs can be extracted [17]. 

Neutron diffraction methods also have difficulty with hydrogen, as the low atomic weight 

makes it difficult to approximate the neutron scattering as elastic, and this inelasticity 

complicates the measurement. As a treatment the inelasticity can be modelled [1] or isotope 

substitution can be used. In 1982 Soper [1] used the latter to make a calculation of water 

RDFs. The neutron diffraction Soper data from 2000 [17] was used as the experimental 

reference in this work. The RDFs in Soper’s work are calculated at 298K and 1atm of 

pressure.

Entropy

One benefit of accurately reproducing the experimental RDF is improving calculations of 

the excess entropy. The link between the excess entropy and RDF are clear when 

considering the RDF as a measure of correlation in atoms. RDFs as presented can be used to 

calculate the translational two-body entropy of a fluid and these calculations can be seen 

more formally in the work of Hernando [18] and Laird et al [19].

For a molecular fluid such as water, an additional orientational component to the two-body 

entropy exists. Studies which look at the entropy of water beyond the two-body translational 

term have been carried out by Lazaridis et al [11] and conclude that within the two-body 

entropy there is a significant contribution from the orientational correlation, around three 

times the translational excess entropy when studying TIP4P. Considering this, to improve the 

computed excess entropy for water, it would be beneficial to target the orientational 

correlation of a fluid via an orientational distribution function (ODF). However, in the case 

of water this is much more expensive to compute the than the RDF with the relative 

orientation defined by five angles. Even if computed the ODFs cannot be compared to 

experimental data by calculating a MSD, as there is currently no method to extract the ODF 

directly from experiment [20] [21]. Consequently, ODFs are not compatible with the 

presented fitting methodology, which relies on a MSD, and as such will not be targeted in 

this work. However, the RDF still can and will be used as a target property.
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Water Models

For later reference and for clarity, a presentation of the 3D models of TIP3P and TIP4P are 

presented in Figure (1). Both models are rigid and nonpolarizable, and have a single VDW 

site located on the position of the oxygen and partial charges on the hydrogen positions. 

TIP3P has a negative partial charge on the oxygen atom whereas TIP4P places this charge 

on a fourth (virtual) site. [22] The fourth site was originally explored by Bernal and Fowler 

[2] with the site introduced to allow for the screening if the hydrogen charge, moving some 

of the charge distribution towards the hydrogens along the HOH bisector; it also allows for 

the charge distribution to be varied independently of the HOH geometry or dipole.

TIP3P is a reparameterization [4] of an earlier three-point model TIPS built by Jorgensen et 

al [3]. TIPS force fields were built as part of an effort to simulate many solvents including 

water, alcohols, and ethers. TIP3P is one of the more common models with large under-

structuring in the second and third shells, as seen in Figure (2); this is somewhat corrected 

by more recent work to parametrize this force field for use with Ewald summations [5]. 

TIP4P-type models again have several parametrizations such as TIP4P [6], TIP4P/2005 [8] 

and TIP4P/ICE [23]. TIP4P was reparametrized as TIP4P/2005 by Abascal et al [8] with a 

fit based on the temperature of maximum density. TIP4P/2005 shows good agreement for 

many properties particularly the density; however the simulated RDFs differ from 

experiment, with the first peak on the OO RDF showing marked over-structuring as shown 

in Figure (3). Other parametrizations using ForceBalance with three and four site models 

have been performed previously [14], focusing on improving agreement for thermodynamic 

properties. The resulting TIP3P-FB and TIP4P-FB models provided improved predictive 

power for the kinetic properties such as the self-diffusion coefficient, but these models still 

have over-structuring in their RDFs similar to TIP4P/2005.

The LJ interaction in these TIPnP models is of particular interest. Soper highlighted the 

possibility that the r−12 term is too repulsive and may be the cause of much of the over-

structuring seen in the first shell of the OO RDF; [24] an additional exponential term was 

added to the non-bonded potential with the aim of softening the LJ interaction. The 

discussion by Wheatley et al on the approximately exponential nature of inter molecular 

repulsion [25] makes the Buckingham potential [26] a good candidate to replace the LJ. 

Wang et al [27] applied a modified version of the Buckingham potential in the 

parametrization of a polarizable water model, where the functional form was altered to 

remove the singularity at the origin. Despite these efforts, the first shell of the OO RDFs of 

these models remained over-structured compared to experiment, with one possible cause 

attributed to the lack of nuclear quantum effects in the classical simulations [27].

Materials and Methods

Radial distribution function fitting

ForceBalance is a program which allows for the systematic fitting of force field parameters 

[13] by including bulk properties taken from experiment and/or high-level theoretical 

calculations in the objective function. In this work, ForceBalance is extended to target any 

RDF of any material. During the fitting procedure, ForceBalance carries out a MD 
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simulation by calling external simulation software; the MD simulations in this work are 

performed by OpenMM; [28] this code includes GPU-accelerated implementations of the 

force fields and simulation methods. Simulation snapshots are saved at equally spaced time 

intervals, and a calculation of each targeted property is made for each snapshot. The RDF 

calculation from snapshot coordinates is handled by MDTraj [29], a Python library that 

focuses on fast MD trajectory analysis. Once the RDFs for all snapshots are computed, a 

mean squared difference (MSD) is calculated between them and an experimental RDF, 

provided by the user. The MSD is calculated for every snapshot individually before any 

averaging. This MSD when weighted contributes to the objective function in the fitting 

procedure, with Equation (2) showing the calculation the MSD.

A =
∑n (RDFn

comp − RDFn
exp)2

N (2)

A is the MSD for a one of the targeted RDFs in one snapshot, averaging across snapshots 

will give an ensemble average of the MSD 〈A〉. n indexes the bins in the histogram of the 

RDF. RDFcomp is the computed and RDFexp the experimental RDFs. N is the total number 

of bins, which is set by the number of data points in the experimental RDF provided by the 

user. To change the relative contribution of RDFs to the objective function the MSD can be 

multiplied by a user defined pre-factor that sets the relative weights for the different RDF 

targets; the weights in this work are provided in Table (1). The optimization carried out in 

this work took place in two steps: first allowing all the models parameters, excluding the 

geometric parameters to be optimized and then following this with further optimization of 

all parameters including geometric parameters. This was done to keep bond angles and 

lengths close to physical values and mitigate problems of over fitting. When running an 

optimization, the pre-factor for each residual in the objective function is specified. These 

pre-factors are chosen differently between the two runs of optimization and are shown in 

Table (1). The pre-factors in the optimization are chosen initially (Initial) in-line with Wang 

et al’s [14] work on ForceBalance. The revised (Revised) pre-factors in the continuation of 

the optimization are chosen to approximately normalize the contribution of the properties 

residual to the objective function during optimization and reflect the desire to achieve better 

experimental agreement for Hvap, with the aim of ultimately improving agreement with 

experimental free energies.

To minimize the objective function efficiently, ForceBalance needs the gradient of the target 

property w.r.t the fitting parameters, Equation (3) shows how this gradient is calculated.

d A
dλ = − β AdE

dλ − A dE
dλ (3)

Above λ is the parameter which is being optimized, β the reciprocal of the temperature and 

Boltzmann constant product. E is the potential energy. dE/dλ is evaluated in ForceBalance 

by the post processing of the collected trajectories. More detail on this and the general 

ForceBalance methodology can be found in the ForceBalance papers [14] [13].
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A feature of ForceBalance is the specification of rescaling factors (also called prior widths) 

for the optimization parameters; these have the dual effect of improving the Hessian 

condition number used in the optimization algorithm, and secondly to limit how much the 

physical parameters can vary during optimization. In this work, the priors are set to the 

ForceBalance default value, which means the prior for each observable takes the value of 

that observable. In all the presented work, the nearest-neighbor OH and HH peaks 

corresponding to intramolecular distances are omitted as the models being optimized are 

rigid; improving the agreement in these peaks would require a flexible model and/or 

treatment of nuclear quantum effects.

Parametrization simulations

Two sets of optimization calculations were made in this work. The first set involves fitting of 

TIPnP models using the LJ potential, and the second set involves fitting alternative versions 

of the TIPnP models where the LJ potential is substituted by a Buckingham potential. All 

non-bonded and geometric parameters were fit unless specified otherwise. Each step of 

optimization involved running a simulation with a total length of 6 ns; the simulation time 

step used was 2 fs. Simulation snapshots are saved and bulk properties / RDFs calculated at 

20 ps intervals, providing 300 data points over the trajectory. The experimental RDF was 

taken from neutron diffraction experiments [17]; the other data used for fitting was the 

enthalpy of vaporization ΔHvap = 43.989 kJmol−1 and density ρ = 997.045 kgm−3 for a 

temperature of 298°C and 1 atm of pressure [14]. These simulations were performed in the 

NPT ensemble using the Langevin integrator with 1 ps−1 time constant and a Monte Carlo 

Barostat with volume changing moves every 50 fs. A switching distance of 9 Å and cutoff of 

11 Å was used with PME treating the long range electrostatic interactions; the Ewald 

tolerance was set to 5×10−4. The optimizations used 25-30 Å water cubes containing 

512-895 molecules with periodic boundary conditions. Self-polarization corrections were 

applied for the calculation of the heat of vaporization with the permanent dipole moment µo 

= 1.855 Debye and polarizability α = 1.47 Å3 [30]. The RDFs for final presentation in the 

results section were calculated after the fitting under the same conditions, however, now 

using a 10 ns trajectory and 1 ps snapshot allowing for better converged values.

Buckingham potential

The Buckingham potential can be used by OpenMM within the custom force feature. Using 

the functional form shown in Equation (4) [27]. There are now three parameters that needed 

to be fit ε, Rmin and γ.

Vb0 = ε
1 − 6/γ

6
γ e

γ(1 − r
Rmin

)
−

Rmin
r

6
(4)

Here ε is the well depth, Rmin is the position of minimum energy and γ a constant which 

controls the repulsiveness. The singularity at a radial distance of zero should be noted; for 

small enough γ values, particles can jump over the repulsive barrier falling into the 

singularity producing unphysical results. In the calculations presented here, γ never enters a 

Wade et al. Page 6

J Chem Inf Model. Author manuscript; available in PMC 2018 October 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



region of parameter space which would allow for this jumping to become a problem. This 

Buckingham potential is added to the oxygen in place of the LJ potential.

Free energy calculations

To assess the claim that fitting to the RDF will improve the entropy of bulk water these 

entropies must be calculated. The calculation of the entropy will be made from calculations 

of the Gibbs free energy and enthalpy following the definition of the excess free energy 

given in Equation (5).

Gexcess = Hexcess − TSexcess (5)

Where Gexcess is the excess free energy, Hexcess the excess free enthalpy which is equivalent 

to - Hvap and TSexcess temperature multiplied by the excess entropy. If the free energy and 

enthalpy are calculated the entropy can be accessed. The enthalpy was calculated within 

ForceBalance via a fluctuation formula and this was done during the fitting, with the 

computed values presented in Table (2). The free energy calculations require additional work 

to compute. For this YANK [31] a GPU accelerated platform for alchemical free energy 

calculations was used.

For the LJ potentials, a straight forward application of YANK can be made. The free 

energies for the original and optimized three-point and four-point models using the LJ 

potential are calculated by studying the annihilation of a single water in a 25 Å box of water 

with Hamiltonian replica exchange [32] for 15 replicas with swapping made between 

neighbouring replicas every 1 ps for a total of 5000 iterations of swapping, giving 5 ns of 

sampling per replica. These calculations where performed three times for every water model, 

an analysis was performed by YANK using the MBAR method [33] and resulting three free 

energy values are given a polarization correction, as was done previously for ΔHvap. This 

gives three Gexcess values which where then averaged and presented in Table (2) (see Table 

S1 in the supplementary information for the raw data).

The free energies for the water models using the Buckingham potential required an 

extension to OpenMMTools [34] a library used by YANK. This extension was made in this 

work and the extended version of the code can be found here https://github.com/adw62/

openmmtools/tree/Buckingham. The original functional form of the Buckingham potential is 

prohibitive to alchemical free energy calculations as there is a singularity in the potential for 

r = 0, where r is the separation between interaction centers. This singularity becomes 

exposed for small values of λ in an alchemical pathway, where λ is a parameter used in 

alchemical calculations [35] to scale interactions. To avoid this singularity a hybrid of two 

Buckingham like functional forms is used. Both individual functional forms can be found in 

the work of Wang et al [27]. With the individual functional forms show in Equations (4) and 

(6) and the hybrid presented in Equation (7).
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Vb1 = 2ε
1 − 3

γ + 3

Rmin
6

Rmin
6 + r6

3
γ + 3e

γ(1 − r
Rmin

)
− 1 (6)

Vb2 = λε
1 − 6/γ

6
γ e

λγ(1 − r
Rmin

)
−

Rmin
6

(1 − λ)Rmin
6 + r6 (7)

Evidently, if Equation (6) was used from the beginning then the hybrid is redundant and this 

would be suggested for future work. A plot of Equation (7) for different λ can be seen in 

Figure (4) below. Equation (7) reduces to Equation (4) when λ = 1 but as λ is perturbed 

along the alchemical path it behaves like Equation (6) without an exposed singularity, which 

is crucial for the alchemical calculation.

With this functional form implemented into YANK free energy calculations for the 

Buckingham models could be performed. The alchemical calculations are performed with an 

identical methodology to the LJ calculations with three free energies calculated and 

averaged as before and presented in Table (2).

Geometry

To calculate the derivative of the calculated property w.r.t the fitting parameters (needed for 

the parameter optimization) ForceBalance needs access to the gradient of a snapshot’s 

energy with respect to the fitting parameters. In this work, this becomes a problem when 

optimizing the geometry of rigid water molecules as the energy of the system can no longer 

be considered an explicit function of the geometric parameters [14]. The optimization of 

geometric parameters is carried out using a trick where all the interaction sites are made into 

virtual sites during the parameterization calculation only; the parameters defining the virtual 

site positions are then optimized. Varying these parameters varies the position of the virtual 

sites and so the position of the interaction sites. Finding the optimal value of these 

parameters is equivalent to finding the optimal position of the interaction sites. Since we are 

only concerned with thermodynamic properties the positions of the masses in the molecule 

are unimportant, but this would affect the fitting of kinetic properties. When optimizing the 

geometry with the above method the RDFs are calculated from the positions of the virtual 

interaction sites instead of the positions of the masses. After parametrization the virtual sites 

are restored to be normal interaction sites but the interaction sites are now in the optimal 

position determined by the optimization. And therefore, these virtual sites, used for 

geometry optimization, play no role in the force field after the parametrization.

Scoring

Following the model parameterization, a modified form of the scoring equation proposed by 

Vega et al. [36] is used in this work to qualitatively compare the relative performance of the 
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water models. Used by Vega and Izadi, [36] [37] this scoring system compares water models 

and their relative performance at reproducing a variety of bulk properties with 

experimentally known values. Included in these properties are the height and position of the 

first OO RDF peak. Efforts are made in the work of Izadi [37] to choose the LJ parameters 

in a way to maximize the agreement for the position of the first peak and the density. It is 

then appropriate in their scoring system to consider only the height and position of the first 

OO RDF peak. In this work, however, an assessment of the agreement for every calculated 

point for all water RDFs is needed. The first approach to this would be to consider every 

point in the RDFs in the same way Izadi considers the first OO peak. However, in Vega’s 

scheme, which takes the maximum of [10 − |(x − xexp) × 100/(xexptol)|] and 0, it is possible 

for models with extremely poor agreement in the RDF over a small r range and good 

agreement everywhere else to outperform a model which perform with average agreement 

everywhere. Therefore, a modified method of scoring is presented in Equation (8).

Score = max 10 −
∑n |(xn − xn

exp) × 100/(xn
exptol)|

N , 0 (8)

The definitions in Equation (8) are like those made in Vega’s work [36] except there is now a 

summation over n which indexes the non-zero points in the RDF with N as the total number 

of non-zero points in the RDF. In the case of properties outside the RDFs N would be set, N 
= 1, and Equation (8) reduces to Vega’s scoring system. This Score will be calculated for the 

properties and tol values shown in Table (2). For comparison Izadi [37] uses a tol of 0.5 for 

ρ, Hvap, and position of the first OO peak, 5.0 for the height of the first peak and 2.5 for all 

other properties. The larger the value of tol the larger the difference between calculated and 

experimental properties can be before the Score is reduced. The individual Score for each 

property are averaged to give the final Score.

Results

Lennard-Jones potential

The first section of the results will present the force fields which are using the LJ functional 

form optimized by RDF fitting. Figure (5), shows the resulting RDFs of an optimization 

starting from the original TIP3P parametrization. Agreement is improved for all RDFs over 

the original parametrization. Relative to Figure (2) the under-structuring in the second and 

third shell of the OO RDF has been reduced; however, this has introduced some over-

structuring in the first shell. It will be shown in subsequent sections that this can be treated 

with the Buckingham potential.

The next set of plots, Figure (6), pertains to the RDF fitting of the TIP4P/2005 model. 

Compared to the original TIP4P/2005 parametrization, Figure (3) shows that there is an 

improvement to the OO and OH RDF. The most notable improvement is to the decrease in 

the over-structuring in the first OO shell which also can be seen as a decrease in the over-

structuring of the first OH shell. There is, however, a decrease in the agreement of the HH 

RDF. The original TIP4P/2005 has a HH RDF which agrees well with experiment. 
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Therefore, the agreement of the HH RDF is likely to worsen as the optimizer attempts to 

improve the OO RDF whilst sacrificing the HH RDF. This potentially could be fixed by 

changing the relative weights of the RDFs. Moreover, while the OO over-structuring has 

decreased it has not been completely resolved.

Buckingham potential

The following section will now consider the use of the Buckingham potential in the 

currently presented RDF fitting procedure. Here, TIP3P geometry and charges with a 

Buckingham potential is taken as a starting point. The initial parameters of the Buckingham 

potential are chosen by hand ensuring the density of the box remains close to 1000 kgm-3 

after equilibration. The results of these optimizations are presented in Figure (7). The under-

structuring in the second and third shells is largely resolved, similar to the results in Figure 

(5); however, now there is also less over-structuring in the first shell. The introduction of the 

Buckingham potential appears to have made it much easier for these features of the OO RDF 

to simultaneously agree. All RDF’s MSD are improved by the introduction of the 

Buckingham potential relative to the original parametrization and to the LJ optimization. 

Next, the Buckingham potential using TIP4P/2005 geometry and charges are optimized with 

the result shown in Figure (8). Relative to the optimization using the LJ potential, Figure (6), 

there is an improvement to all RDFs. Similar to using the Buckingham potential in TIP3P 

the over-structuring in the first shell can again be reduced. Compared to the original TIP4P/

2005, both the OO and OH RDFs significantly improve whilst there is no significant change 

in HH RDF MSD.

The temperature dependence of the densities can be seen in figures S1 and S2 in the 

supplementary information. Difference plots between the calculated and experimental RDFs 

are presented in figures S3-S8 in the supplementary information. These highlight the 

improved RDFs in the majority of cases, particularly the O-O RDF.

Discussion

The improvement to the RDF has been presented in Figures (5-8), but to make a more 

complete discussion of the presented models, additional relevant properties and all 

parameters should be inspected. These values are presented in Tables (2) and (3), 

respectively. Table (2) features the Score as defined in Equation (8) and this is a measure of 

the relative performance of the presented models. This Score is calculated with the 

calculated and experimental properties along with the tolerances in in Table (2) using 

Equation (8). The static dielectric constant ϵ(0), isothermal compressibility κT and isobaric 

heat capacity Cp are calculated by fluctuation formulas in ForceBalance from the same 10 ns 
trajectory used to calculate the RDFs. The thermal expansion coefficient αp is calculated 

following the methodology of Abascal et al [8] performed on seven 0.5 ns simulations being 

run between 240-360 K. The self-diffusion coefficients D is calculated following the 

methodology of Horn et al [12] using 20 simulations of 100 ps in an NVE ensemble. µ(D), 

ϵ(0), D, TMD, ΔGexcess, ΔSexcess, κT, Cp and αp are included in Tables (2) to assess the 

predictive power of these models, they are properties which were not targeted in the 

parameter optimization. The poor scoring of TIP3P should be noted; this is a result of the 
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calculations being performed with PME, a scheme for which TIP3P was not parametrized. 

However, without PME the RDFs remain equally under-structured [4].

It is clear from looking at the calculated properties in Table (2) that the fitting for TIP3P 

improves overall agreement with experiment. Relative to the original, TIP3P, 

parametrization optimizing the LJ potential improves the prediction for D, TMD, ΔGexcess, 

ΔSexcess, κT, Cp and αp. However, accuracy is lost for ϵ(0) and µ(D). TIP3P-Buckingham 

corrects this loss of accuracy in ϵ(0) and µ(D) and further adds to the predictive power of the 

model. Compared to the LJ optimization the Buckingham optimization has improved 

predictions for µ(D), ϵ(0), D, TMD, ΔGexcess, ΔSexcess, κT, Cp and αp. The TIP3P-

Buckingham force field also has the best agreement for the fitted properties ρ, ΔHexcess and 

all RDF MSDs of any of the TIP3P models presented here.

The LJ optimization in the case of TIP4P/2005 only demonstrates an improved prediction 

for the calculated value of ΔSexcess but generally sees improved accuracy for the fitted 

properties OO-MSD, OH-MSD and ΔHexcess. This is perhaps not surprising considering that 

the TIP4P/2005 parameters have already been carefully optimized to reproduce temperature-

dependent and phase change properties. On the other hand, the usefulness of the 

Buckingham potential is more clearly demonstrated. Compared to TIP4P/2005, the 

Buckingham model has equivalent or improved predictions for κT, ΔGexcess and ΔSexcess but 

reduced accuracy for µ(D), ϵ(0), D, TMD, Cp and αp. Of the fitted properties, improved 

accuracy is seen for OO-MSD, OH-MSD and ΔHexcess and in general overall agreement 

with experiment is improved, reflected by the higher Score of TIP4P-Buckingham. The 

reduction in accuracy for TMD, Cp and αp should not detract from the utility of the 

Buckingham potential, as no effort was made to fit to any temperature dependent properties 

in this work. Relative to the optimized LJ model, TIP4P-Buckingham has improved 

predictions for µ(D), ϵ(0), D, TMD, ΔGexcess, ΔSexcess, κT, Cp and αp; for the fitted 

properties, improvement is seen for all RDF MSDs and ΔHexcess. In the case of both TIP4P-

Buckingham and TIP3P-Buckingham the predicted isothermal compressibility is closer to 

experiment than original and optimized LJ models, which may reflect the physically 

motivated repulsive part of the Buckingham potential.

Adding the Buckingham potential with TIP4P/2005 improves overall agreement between the 

calculated and experimental properties examined in this work. However, the improvement is 

less definitive compared to using the Buckingham potential in TIP3P, particularly for 

temperature dependent properties. As a more stringent test of the usefulness of the 

Buckingham potential, we suggest that the TIP4P/2005 optimization could be reproduced, 

but using the Buckingham potential instead of LJ. Any improvement or lack thereof in this 

parametrization would be a good assessment of the Buckingham potentials utility in four-

point models.

Of main interest to this work was correcting the over and under-structuring in the OO RDF. 

It can be seen in Table (2) that both RDF fitting and the use of the Buckingham potential are 

effective tools to treat this. Using RDF fitting, 85 and 87 percent reductions to the OO MSD 

are achieved for TIP3P and TIP4P/2005 respectively. When the LJ potential in the TIP3P 

and TIP4P/2005 models are replaced with a Buckingham potential and optimized targeting 
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the RDF, the MSD in the OO RDF are reduced by 93 and 98 percent, for TIP3P and TIP4P/

2005 respectively. It can be seen in Table (2) that this increased agreement for the RDFs has 

translated into improved predictions of ΔSexcess. In the case of TIP3P the correction of the 

under structuring in the O-O RDF has increased the correlation in the water and reduced the 

error in the entropy from 11% to 3%. For TIP4P/2005 the correction of the over structuring 

in the O-O RDF has reduced the correlation in the water and reduced the error in the entropy 

from 11% to 2%. Both the three and four-point models using the Buckingham potential have 

ΔSexcess which agree most closely with experiment compared to the other models examined 

here.

Figures (9) and (10) show comparisons of the LJ and Buckingham potentials using the 

parameters from Table (3). From Figures (9) and (10) it can be seen that for small atomic 

separation the Buckingham potential is less repulsive than both original and optimized LJ 

parametrizations. In the case of TIP3P the original and optimized potential are very similar. 

The plotted lines practically overlap on the presented scales. These results indicate that the 

improved agreement of the RDFs using the Buckingham potential is likely to result from the 

reduced repulsiveness.

The other trend that can be commented on in these optimizations is the change in the HOH 

angle. The optimized LJ models favor large HOH angles of between 114° and 118° whereas 

the angles obtained in Buckingham optimizations are between 108.89° and 109.93°. The 

angles obtained in the Buckingham optimization are far closer to the tetrahedral angle 

109.47°. The change to the bond length can be classified by number of sites modelled where 

TIP3P models favor longer bonds of approximately 0.99 - 1.03Å and the TIP4P models 

favor shorter bonds 0.91-0.93 Å. Whilst progress has been made in correcting the over-

structuring in the first OO shell, one problem with the current models is that none of them 

agree well for the second OH shell, presented as the first peak in all OH RDF plotted in this 

work. When moving from TIP4P/2005 to TIP4P-Buckingham there is a reduction in peak 

height associated with the OH second shell so that it is closer to the Soper data [17]; this 

should be expected as in a hydrogen bonding configuration the OO first neighbor and OH 

second neighbor distances are strongly linked, see Figure (11). Since the OO first shell is 

now better agreed in TIP4P-Buckingham but the error in the OH second shell persists 

perhaps the over-structuring in the OH second shell comes from some another source with 

the first OH shell as a potential candidate.

The nearest-neighbor peak is omitted in the OH and HH RDFs in this work, and if plotted 

would each feature an infinitely sharp peak corresponding to the OH and HH separations 

within the molecule respectively. When in a hydrogen bonding configuration, the OH first 

and second neighbor distances are also highly correlated (see Figure (11)). If the distribution 

of first OH neighbor distances is unphysically localized due to the rigid bond approximation, 

this localization could be inherited by the second OH neighbor distance. It might be 

expected that for non-rigid models the problem would be alleviated; however, this is not the 

case in common flexible models SPC/Fw [38] and uAMOEBA [39]. Whilst the source of 

this error has not been treated in this work, a potential source has been speculated upon and 

a potential solution will be commented on in the conclusion.
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It is demonstrable that the Buckingham potential improves the accuracy for many of water’s 

computed properties, but this should not come as a surprise. The repulsive component of the 

LJ is chosen partly for computational convenience and it would be hoped that moving 

towards a more accurate physical description of the repulsion would yield improved 

computational properties. Previous work has demonstrated that replacing the LJ r−12 term 

with r−9 also has the potential for improved accuracy [40]. The remaining open question is if 

this loss of computational convenience is justified by the gain in accuracy. To answer this an 

estimation for the computational speed of both the Buckingham and LJ potentials used in 

three and four site models across several computational platforms can be seen in Table (4). 

The [ns/day] calculations in Table (4) are performed for a 30 Å3 box of water with hardware 

and software configuration provided in the SI. For calculations on GPU platforms (CUDA or 

OpenCL), the use of Buckingham potentials instead of LJ incurs a small additional cost, 

resulting in a <10% performance decrease for CUDA (the fastest platform overall). This is 

less expensive than adding an interaction site (i.e. going from TIP3P to TIP4P) which results 

in a 20% overall performance decrease. On the other hand, the CPU platform is not well-

optimized for the Buckingham potential, as the performance decreases by 90% relative to 

LJ. As such the Buckingham potential could be considered in place of or supplementary to 

adding additional interaction sites.

Conclusion

The present work sought to improve the structural properties of water models. This was 

achieved by addition of the RDF as a target property to ForceBalance, a code for the 

systematic optimization of force fields. Fitting with the OO, OH and HH experimental RDFs 

was carried out starting from the TIP3P and TIP4P/2005 water models. Re-parametrizations 

were performed which overall achieved improved structural properties, but these models still 

carried some over-structuring in the first OO RDF shell. To treat this, the LJ potentials in the 

models were replaced with Buckingham potentials and these new models were again 

parametrized targeting the RDFs. The new Buckingham based models were found to have 

the best agreement with the experimental RDFs. TIP3P–Buckingham, a new three-site 

model, achieved a reduction of 93, 47 and 57 percent to the OO, OH and HH RDF MSDs 

respectively when compared to TIP3P. TIP4P-Buckingham, a new four-site model, reached 

the best agreement for the OO RDF out of all the models tested here with reductions of 98 

and 44 percent for the OO and OH RDF MSDs respectively but a percentage increase of 20 

for the HH RDF MSD when compared to TIP4P/2005. This improvement to the RDFs MSD 

was reflected in ΔSexcess where the percentage error in ΔSexcess for TIP3P-Buckingham and 

TIP4P-Buckingham was 2 and 3 percent respectively compared to 11 percent in both TIP3P 

and TIP4P/2005.

In validation studies it was demonstrated that these Buckingham models improve many non-

targeted properties. This improvement was particularly pronounced for TIP3P-Buckingham 

which was demonstrated to have equal or greater accuracy for all non-fitted properties 

calculated in this work when compared to both the original and optimized LJ TIP3P models. 

Of the four-point models the optimized LJ model (TIP4P-LJ OPT) achieved improved 

accuracy for ΔSexcess when compared to TIP4P/2005 where as TIP4P-Buckingham 

displayed improved or equal predictive power for κT, ΔGexcess and ΔSexcess when compared 
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to TIP4P/2005. TIP4P-Buckingham had more accurate calculations for all non-targeted 

properties when compared to TIP4P-LJ OPT.

The above improvements to both fitted and predicted properties demonstrates the utility of 

the Buckingham potential, with TIP3P-Buckingham equalling or improving the accuracy of 

the entire property set studied here compared to TIP3P and TIP4P-Buckingham achieving 

improved accuracy, where a LJ optimization could not, when compared to TIP4P/2005. 

Overall, the TIP3P-Buckingham performs best achieving the highest Score in a modified 

version of Vega’s scoring system [36] of any models tested in this work. This is particularly 

promising considering the small additional cost of replacing LJ with a Buckingham potential 

on modern GPU hardware. TIP4P-Buckingham achieved the highest Score of the presented 

TIP4P models, however, this came at the sacrifice of some of the non-targeted properties. A 

methodology was outlined in the discussion that could more rigorously compare a four-point 

Buckingham model to TIP4P/2005.

An accurate representation of the intermolecular geometry of water molecules is important 

to generate accurate thermodynamic properties [41] [42]. The optimized Buckingham 

potentials are less repulsive than both the original and optimized LJ potentials, in agreement 

with predictions that the LJ potential is too repulsive [24]. This work could be extended by 

investigating the source of the error in the second OH peak; this may be addressable by 

using a flexible water model and specifically fitting the OH RDF. In the optimization of the 

models presented here, a methodology has been described which can systematically fit 

computational to experimental RDFs. This general methodology is expected to be highly 

applicable to other molecular liquids. In this work progress has been made to addressing the 

under- and over-structuring of the water OO RDF and improvements in ΔSexcess seen. 

However, considering the work of Lazaridis et al, [11] the important orientational 

contribution to the total entropy is not targeted. To address this the excess free energy could 

be made a target of the parameterization; if the excess enthalpy were also targeted, it would 

make the excess entropy an implicit target of the parameterization. A major challenge would 

be the sampling time required to calculate converged values for the excess free energy 

changes, especially in the context of an iterative optimization. One promising possibility 

would be to employ a perturbative methodology to compute the free energy change from the 

original force field to the current set of parameter values being optimized; this would remove 

the requirement of running a free energy calculation at every optimization cycle, and by 

extension allow the excess entropy to be implicitly targeted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representation of TIP3P and TIP4P geometries. TIP3P left and TIP4P right. Oxygen shown 

in red, hydrogen in white and the TIP4P virtual site in blue. HOH are bonded with angle 

between them θº. The virtual site position is defined as a function of atomic positions, and 

placed along the HOH angle bisector. l1[Å] is the OH bond length and l2[Å] is the distance 

between oxygen and the virtual site.
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Figure 2. 
OO, OH and HH RDFs for the original TIP3P parametrization (TIP3P-LJ OG) compared to 

Soper data. [17]
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Figure 3. 
OO, OH and HH RDFs for the original TIP4P/2005 parametrization (TIP4P-LJ OG) 

compared to Soper data. [17]
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Figure 4. 
Plot of Equation (7) for λ in range 1.0 to 0.0. With ε = 1.0, Rmin = 0.35 and γ = 15.
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Figure 5. 
OO, OH and HH RDFs for an optimized TIP3P type model with a LJ potential (TIP3P-LJ 

OPT). The parameter set of TIP3P-LJ OPT is parametrized with the fitting procedure shown 

in this work. Compared to OO, OH and HH RDFs for TIP3P with original parameter set 

(TIP3P-LJ OG) and experimental Soper data. [17]
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Figure 6. 
OO, OH and HH RDFs for an optimized TIP4P type model with a LJ potential (TIP4P-LJ 

OPT). The parameter set of TIP4P-LJ OPT is parametrized with the fitting procedure shown 

in this work. Compared to OO, OH and HH RDFs for TIP4P/2005 with original parameter 

set (TIP4P-LJ OG) and experimental Soper data. [17]
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Figure 7. 
OO, OH and HH RDFs for an optimized TIP3P type model with a Buckingham potential 

(TIP3P-Buckingham). The parameter set of TIP3P-Buckingham is parametrized with the 

fitting procedure shown in this work. Compared to OO, OH and HH RDFs for TIP3P with 

original parameter set (TIP3P-LJ OG) and experimental Soper data. [17]
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Figure 8. 
OO, OH and HH RDFs for an optimized TIP4P type model with a Buckingham potential 

(TIP4P-Buckingham). The parameter set of TIP4P-Buckingham is parametrized with the 

fitting procedure shown in this work. Compared to OO, OH and HH RDFs for TIP4P/2005 

with original parameter set (TIP4P-LJ OG) and experimental Soper data. [17]
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Figure 9. 
Comparison of non-Coulombic contribution to the potentials of TIP3P type models. The 

distance referenced here is the interatomic distance between oxygen atoms. LJ-OG as the 

original parametrization, LJ-OPT as the optimized model presented in this work using the LJ 

potential and Buckingham as the optimized model presented in this work using the 

Buckingham potential. Inset shows potentials plotted on larger scale to highlight change in 

repulsiveness.
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Figure 10. 
Comparison of non-Coulombic contribution to the potentials of TIP4P type models. The 

distance referenced here is the interatomic distance between oxygen atoms. LJ-OG as the 

original parametrization, LJ-OPT as the optimized model presented in this work using the LJ 

potential and Buckingham as the optimized model presented in this work using the 

Buckingham potential. Inset shows potentials plotted on larger scale to highlight change in 

repulsiveness.
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Figure 11. 
Simplification of hydrogen bond in water to the link between OH first, OH-1, and second, 

OH-2, neighbour distances. It can also be seen that the OO first neighbour (the distance 

between the two red oxygen atoms) and OH-2 second neighbour are in line. Hydrogen is 

shown in white.
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Table 1

Relative Pre-factors of Target Properties Used in the Twoa Runs of Sequential Parameter Optimization. Pre-

factors Presented are for Density ρ, Enthalpy of Vaporization Hvap and MSDs Between Experimental and 

Computed RDFs OO-MSD, OH-MSD and HH-MSD.

ρ Hvap OO − MSD OH − MSD HH − MSD

Initial 1 0.16 1000 1000 1000

Revised 1 1600 40000 20000 100000

a
First run is denoted Initial second as Revised. Pre-factors are presented as relative to the pre-factors of the density.
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Table 2

Calculated Properties for Original and Re-parametrized Water Models. Experimental Data Taken from [14], 

[20] and [32]: Density ρ, Enthalpy of Vaporization Hvap, Static Dielectric Constant ϵ(0), Isothermal 

Compressibility κT, Isobaric Heat Capacity Cp, Thermal Expansion Coefficient αp, D Is the Self-diffusion 

Coefficient, μ(D) the Fix Dipole, OO g(r) Max the Maximum Height of the O-O RDF, TMD the Temperature 

of Maximum Density, ΔGexesss the Excess Free Energy, ΔSexesss the Excess Entropy and MSDs Between 

Experimental and Computed RDFs OO-MSD, OH-MSD and HH-MSD. 3p and 4p Denote Three and Four 

Point Models. LJ OG Denotes the Original Parametrization. LJ OPT Denotes the LJ Model Optimized in This 

Work. Buck Denotes the Buckingham Model Optimized in This Work. Score and tol here from Equation (8).

3P - LJ OG 3P - LJ OPT 3P - Buck 4P - LJ OG 4P - LJ OPT 4P - Buck Exp tol

μ(D) 2.35 2.20 2.34 2.31 2.15 2.25 2.5-3.0 2.5

ρ[g/cm3] 0.985 1.004 0.998 0.996 0.999 1.005 0.997 0.5

D[109m2/s] 5.63 5.38 4.51 2.34 3.97 2.94 2.29 2.5

ϵ(0) 95.8 50.9 68.7 56.9 41 53.4 78.5 2.5

Cp[cal/(K · mol)] 16.5 18.1 18.2 19.1 19.6 19.3 18.0 2.5

αp[10−4K−1] 9.86 6.11 5.89 2.93 5.76 4.99 2.56 2.5

κp[10−6bar−1] 57.3 46.4 45.2 47.7 51.2 45.4 45.3 2.5

OO g(r) Max 2.62 2.94 2.75 3.08 2.93 2.66 2.75 2.5

TMD[K] 196 241 241 274 248 252 277 2.5

Gexcess[kcal/mol] -5.21 -6.12 -6.19 -6.38 -6.16 -6.28 -6.33 0.5

Hvap[kcal/mol] -8.95 -10.50 -10.51 -11.01 -10.18 -10.58 -10.51 0.5

Sexcess[cal/(K·mol)] -12.45 -14.61 -14.41 -15.42 -13.41 -14.32 -14.05 0.5

OO – MSD 0.0138 0.0021 0.0009 0.0156 0.0020 0.0003 0.0000 2.5

OH – MSD 0.0109 0.0068 0.0058 0.0172 0.0143 0.0096 0.0000 2.5

HH – MSD 0.0047 0.0022 0.0020 0.0005 0.0025 0.0006 0.0000 2.5

Score 3.09 5.28 6.45 5.82 4.44 6.05 10.00 N/A
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Table 3

Parameters for Original and Re-parametrized Water Models. 3p and 4p Denote Three and Four Point Models. 

LJ OG Denotes the Original Parametrization. LJ OPT Denotes the LJ Model Optimized in This Work. Buck 

Denotes the Buckingham Model Optimized in This Work. l1[Å], l2[Å], θ° and ϕ° Are the Geometrical 

Parameter Referenced in Figure (1) and q[e] Is the Oxygen Charge or Virtual Site Charge Again Referenced in 

Figure (1).

3P - LJ OG 3P - LJ OPT 3P - Buck 4P - LJ OG 4P - LJ OPT 4P - Buck

𝜖[kcal/mol] -0.1521 -0.1556 -0.1849 -0.1852 -0.1313 -0.1978

Rmin[Å] 3.5358 3.5335 3.5373 3.5457 3.5584 3.5764

𝛾 N/A N/A 15.05 N/A N/A 14.12

q[e] -0.8340 -0.8506 -0.8189 -1.1128 -0.9824 -1.0828

l1[Å] 0.9572 0.9899 1.0284 0.9572 0.9116 0.9251

𝜃° 104.52 114.13 109.28 104.52 118.00 109.93

𝜙° N/A N/A N/A 120.79 119.44 120.51

l2[Å] N/A N/A N/A 0.1558 0.0133 0.0982
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Table 4

Comparison of ns/day Performance Between: Lennard-Jones (LJ) and Buckingham (Buck) Functional forms, 

Three (3p) and Four-Point (4p) Models and Computational Platforms. Nvidia Quadro M1000M (CUDA, 

OpenCL). Intel i5-6300HQ (CPU).

3P – LJ [ns/day] 3P – Buck [ns/day] 4P – LJ [ns/day] 4P – Buck [ns/day]

CUDA 203 189 169 142

OpenCL 150 133 121 97

CPU 47 5 30 3
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