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Abstract

The new wave of successful generative models in machine learning has increased
the interest in deep learning driven de novo drug design. However, assessing
the performance of such generative models is notoriously difficult. Metrics that
are typically used to assess the performance of such generative models are the
percentage of chemically valid molecules or the similarity to real molecules in
terms of particular descriptors, such as the partition coefficient (logP) or druglike-
ness. However, method comparison is difficult because of the inconsistent use of
evaluation metrics, the necessity for multiple metrics, and the fact that some of
these measures can easily be tricked by simple rule-based systems. We propose a
novel distance measure between two sets of molecules, called Fréchet ChemNet
distance (FCD), that can be used as an evaluation metric for generative models. The
FCD is similar to a recently established performance metric for comparing image
generation methods, the Fréchet Inception Distance (FID). Whereas the FID uses
one of the hidden layers of InceptionNet, the FCD utilizes the penultimate layer
of a deep neural network called “ChemNet”, which was trained to predict drug
activities. Thus, the FCD metric takes into account chemically and biologically
relevant information about molecules, and also measures the diversity of the set
via the distribution of generated molecules. The FCD’s advantage over previous
metrics is that it can detect if generated molecules are a) diverse and have similar
b) chemical and c) biological properties as real molecules. We further provide an
easy-to-use implementation that only requires the SMILES representation of the
generated molecules as input to calculate the FCD. Implementations are available
at: github.com/bioinf-jku/FCD.

Introduction

Deep Learning has recently enabled generative models for molecules [21]. SMILES strings [26]
offer a convenient representation of molecules for generative methods. Therefore, Recurrent Neural
Networks (RNNs) are a natural basis for these methods, as they excel at generating text. RNNs
have been combined with variational autoencoders (VAE) [7], transfer learning [21], reinforcement
learning (RL) [12, 17] and generative adversarial networks (GAN) [8] to yield generative models for

ar
X

iv
:1

80
3.

09
51

8v
3 

 [
cs

.L
G

] 
 1

 A
ug

 2
01

8

https://www.github.com/bioinf-jku/FCD


molecules. Recently, also graph generating methods have been suggested [14, 22] which can be used
to generate graph representations of molecules.

Up to now, there is no established evaluation criterion that is consistently used across all publications
to assess generative models for molecules. The most basic and commonly reported metric is the
fraction of valid SMILES, which is a prerequisite for a generative model. However, this metric
can easily be maximized by generating simple molecules, such as “CC” and “CCC”, with a rule-
based system. Other metrics focus on numerical or visual comparison of molecular properties like
solubility [17], number of rotational bonds [17], number of aromatic rings [17], synthetic accessibility
[8, 12, 28] and druglikeness [8, 12]. Additional metrics that are used aim at assessing the diversity of
the generated molecules such as calculating the Tanimoto similarity/distance to the training set [8, 21]
or within the generated molecules [1]. The diversity of recently developed methods for molecule
generation shows the high interest in this new research field, but the diversity of different evaluation
methods inhibits focused and comparative research. Therefore, it is necessary to find a common
basis for evaluating generative models for molecules. We will suggest such a metric and show that
previously used metrics have their specific flaws, and fail to detect certain biases in generative models.

A proficient metric should capture the validity, chemical and biological meaningfulness, and diversity
of the generated molecules. We therefore aim at creating a metric which is capable of unifying these
requirements into one score. To this end we adopt a strategy that has been established to compare
generative models for images, the Fréchet Inception Distance (FID) [9]. This distance measure uses a
representation obtained from the Inception network[20] to represent the input objects of the network.
For these image representations, the Fréchet distance is used as a distance measure. Analogously,
we use the hidden representation from a neural network, called “ChemNet” (see details below),
which was trained to predict biological activities, as representation of molecules. This representation
contains both chemical as well as biological information about the molecules, since the input layer
can be seen as purely chemical information and the output layer as purely biological information.
The layers in between contain both chemical and biological information about the molecule, which is
a representation that we desire. By taking into account the distribution of these representations within
a set of molecules, we also capture the diversity within the set. A purely chemical representation
could be also used in combination with the Fréchet distance. This representation could be a set of
fingerprints, the principle components calculated on the fingerprints, the latent space of an autoencoder
to name just a few. However, we hypothesize that using just the chemical information is not sufficient
to judge generative models for drug design. We will examine our assumption by comparing the FCD
to a fingerprint based Fréchet distance, which we call Fréchet Fingerprint Distance (FFD).

Fréchet ChemNet Distance. We introduce the Fréchet ChemNet Distance (FCD) to calculate
the distance between the distribution pw(.) of real-world molecules and the distribution p(.) of
molecules from a generative model. To obtain a numerical representation of each molecule, we use
the activations of the penultimate layer of “ChemNet” (see next paragraph). We then calculate the
first two moments (mean, covariance) of these activations for each of the two distributions. Since
the Gaussian is the maximum entropy distribution for given mean and covariance, we assume the
hidden representations to follow a multidimensional Gaussian. The two distributions (p(.), pw(.)) are
compared using the Fréchet distance [6], which is also known as Wasserstein-2 distance [25]. We
call the Fréchet distance d(., .) between the Gaussian pw(.) with mean and covariance (mw,Cw)
obtained from the real-world samples and the Gaussian p(.) with mean and covariance (m,C)
obtained from a generative model the “Fréchet ChemNet Distance” (FCD), which is given by [4]:

d2((m,C), (mw,Cw)) = ‖m−mw‖22 +Tr
(
C +Cw − 2

(
CCw

)1/2)
. (1)

Throughout this paper, the FCD is reported as d2(., .) analogously to Heusel et al. [9].

The FCD is based on the activations of the penultimate layer of ChemNet. The model [15] was
trained to predict bioactivities of about 6 000 assays available in three major drug discovery databases
(ChEMBL [2], ZINC [11], PubChem [24]). We used long short-term memory (LSTM) [10] recurrent
neural networks based on the one-hot encoded SMILES representation of chemical molecules. The
full architecture of this model consists of two 1D-convolutional layers with SELU activations, [13]
followed by a max-pooling layer, two stacked LSTM layers, and a fully connected output layer.
Hyperparameter selection and training were done on two thirds of the available data and the last
third was used for testing. The network was optimized for mean predictive performance. The hidden
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representation of the 2nd LSTM layer after processing the full input sequence is used for calculating
the FCD.

To estimate the mean m and covariance C of the real and generated samples sufficiently large data
sets should be chosen. Therefore, we determined the necessary sample size for a reliable estimate.
We have chosen 200 000 randomly drawn real molecules to represent the reference molecules.
Additionally, we have drawn 5, 50, 500, 5 000, 50 000 and 300 000 real molecules which represent
different data sizes of generated samples. If the data set size of the “generated” samples is sufficiently
large than the mean m and covariance C can be accurately estimated and the FCD is close to 0.
This experiment was repeated 5 times, to show that for a large enough sample the variance of FCD
becomes negligible. For 5, 50, 500, 5 000, 50 000 and 300 000 samples the mean FCD values ± one
standard deviation were 76.46±5.03, 31.86±0.75, 4.41±0.03, 0.42±0.01, 0.05±0.00, 0.02±0.00,
respectively. Therefore, a sample size of 5 000 is already sufficient to get a mean FCD which is
close to 0 and a negligible variance meaning that the mean m and covariance C can be accurately
estimated.

Detecting flaws in generative models. We determine the capability of the FCD to detect if a
generative model has produced diverse molecules which possess chemical and biological properties
similar to already known molecules. We compare the FCD to four commonly reported metrics:
mean logP [27], mean druglikeness [3], mean Synthetic Accessibility (SA) score [5] and the internal
diversity score with Tanimoto distance [1] of the generated samples. Additionally, to evaluate if the
activations of ChemNet are a suitable representation for molecules we also compare the FCD to the
Fréchet Fingerprint Distance (FFD) which is calculated analogously to the FCD. However, in contrast
to the FCD, the FFD is based on 2048 bit ECFP_4 fingerprints. A generative model performs well
if it produces samples in a similar logP and druglikeness range as the training data and possesses
comparable internal diversity.

All compared metrics were calculated in RDKit. The internal diversity score is calculated using Mor-
gan Fingerprints of RDKit with radius 2 (equivalent to ECFP_4 [19]). For the methods comparison
we have selected a subset of real molecules from the three databases which were neither used for
training ChemNet nor to estimate the real sample statistics (m, C) needed for calculating the FCD.

For the real subsample of the combined databases we calculated each metric, i.e., logP, druglikeness,
SA score, internal diversity1, FFD and FCD to illustrate the baseline value for real samples. In the
next step, to simulate generative models with particular flaws, we created “disturbed data sets” of
molecules with a) low druglikeness (< 5th percentile), b) high logP values (> 95th percentile), c) low
SA scores (< 5th percentile), d) high Tanimoto similarity and e) stemming from the same target
class to simulate generative models producing molecules a) with a low druglikeness, b) a high logP,
c) which are difficult to synthetize, d) having low diversity and e) are active for a specific target. We
aim to show that FCD can detect all four biases, thereby combining the benefits of other metrics into
a single one and is able to identify distribution differences in biological meaningful subsets.

• Bias towards low druglikeness: A biologically based assessment can be performed in
terms of the average druglikeness of the generated compounds. Druglikeness [3] is the
geometric mean of several desired molecular properties such as solubility, permeability and
metabolic stability. Therefore, it is often used to determine if generated molecules are close
to real samples. Molecules with a low druglikeness are commonly not desired since they
possess low bioavailability. We simulated models generating molecules with a druglikeness
lower than the 5th percentile of the druglikeness values (i.e. 0.19) of real molecules. We
randomly selected 5 000 molecules with a low druglikeness for this simulation. This was
repeated 5 times to create 5 different generative models producing molecules with a low
druglikeness.

• Bias towards high logP: Similar chemical properties such as the average logP value of the
generated molecules are another way to judge whether created molecules are reasonable
or not. Therefore, we simulated a generative model that has a bias towards generating
molecules with a high logP. For this purpose, we selected 5 000 molecules that have a logP
value higher than the 95th percentile of logP values (i.e. > 6.15) of real molecules. Although

1The calculation of the full distance matrix required for this metric is too time and memory intense, therefore
we have averaged the results from 5 subsets of randomly drawn 5 000 samples.
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these molecules are valid, they are located on the edge of the logP distribution, which should
be detectable by an appropriate metric. This procedure was repeated 5 times to simulate 5
different generative models with a bias towards molecules with a high logP.

• Low synthetic accessibility: Furthermore, it is beneficial if a generative model produces
molecules which are indeed synthetically feasible. Therefore, we simulated generative
models which have a bias towards molecules with a low synthetic accessibility (SA) score.
We randomly drew 5 000 molecules with a SA score lower than the 5th percentile of the SA
scores (i.e. <1.91) of real molecules. This procedure was repeated 5 times to simulate 5
different generative models with a bias towards low SA.

• Mode collapse: Another desirable property of generative models is to create a wide variety
of different samples. However, generative models might suffer from mode collapse [16, 23],
such that they produce only molecules with a low diversity. Although there also exist models
which do not suffer from mode collapse [18], an appropriate metric should be able to assess
the internal diversity of the generated molecules. We simulated generative models which
suffer from mode collapse. For this purpose, we used single linkage clustering with a
Tanimoto similarity cut-off of 0.65. We have chosen a large cluster of which we randomly
selected 5 000 molecules. This procedure was repeated 5 times to simulate 5 different
generative models suffering from mode collapse.

• Kinase inhibitors: Conditional generative models are used to produce molecules active
for a specific target. We assessed if the metrics can catch the bias towards a certain target
family. For this experiment we have selected a large scale activity assay from PubChem
(AID 720504). We have randomly selected 5 000 active molecules for polo-like kinase 1 -
polo-box domain (PLK1-PBD).

We examined the average changes of the metrics when generative models suffer from a) a bias towards
low druglikeness, b) a bias towards high logP molecules, c) a bias towards low SA scores and d) mode
collapse. Furthermore we assess the changes of the metrics for e) molecules stemming from the
same target class (see Fig.1). In a), druglikeness, the FFD and the FCD are able clearly to detect the
disturbed data set. In b), the bias towards high logP values is reflected in the druglikeness, LogP, the
FFD and the FCD. In c), the disturbed set is recognized by the SA score, the FFD and the FCD and
to a minor extend by druglikeness and internal diversity. The mode collapse of d) is clearly revealed
by internal diversity, the FFD and the FCD. The active compounds for PLK1 are only uncovered by
the FFD and the FCD. Both FFD and FCD show in all four cases a clear difference in the mean of the
disturbed and undisturbed data sets. The difference is especially high for both metrics in the case in
which we simulated a generative model that suffers from mode collape. Although, FFD is able to
detect all the biased sets, FCD is able to make more distinct differentiations. Especially in epxeriment
e) where more biological relevant information is necessary, the FCD shows superior behaviour.
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a)

b)

c)

d)

e)

Figure 1: Mean responses of druglikeness (blue), logP (green), synthetic accessibility score (yellow),
internal diversity (red), FFD (purple) and FCD (cyan) to the real sample data set and the disturbed
molecule sets a) with low druglikeness, b) a high logP, c) which are difficult to synthetize, d) having
low diversity and e) stemming from one target family. The height of the bars indiciate the mean
of the metrics over repeated experiments and the error bars indicate the mean standard deviation
across molecules of the repeated experiments. Please note that for the internal diversity, the FFD
and the FCD the standard deviation cannot be determined because these measures are based on sets
and cannot be determined for single molecules. The green arrows indicate the difference between
the mean measure of the real set and the disturbed set. In a), the low druglike set is clearly detected
by druglikness, the FFD and the FCD. In b), logP, druglikeness, the FFD and the FCD detect the
bias towards high logP molecules. In c), the bias towards molecules with a low SA score is clearly
revealed by the SA score, the FFD and the FCD. In d), the models suffering from mode collapse are
discovered by the internal diversity, the FFD and the FCD. In e) the active molecules for PLK1 are
uncovered by the FFD and the FCD.
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FCD of recent generative models. We calculated the FCD for publicly available SMILES strings
of recently developed generative models [1, 17, 21]. Segler et al. [21] generated more than
450 000 SMILES strings with an LSTM network used for next character prediction. Benhenda
[1] aimed at producing SMILES strings with ORGAN [8] and RL that are active against the dopamine
receptor D2 (DRD2). 32 000 molecules were generated after 40 and 60 training iterations for RL,
and after 30 and 60 training iterations for ORGAN. Olivecrona et al. [17] trained two RL agents
to produce molecules active for the DRD2 receptor. The canonical and the reduced agent were
trained on the complete ChEMBL and a subset from which molecules similar to Celecoxib were
removed, respectively. Each agent produced 128 001 molecules. Furthermore, we examined a simple
rule-based approach, which randomly draws C, N and O atoms and concatenates them to obtain
SMILES with random lengths between 1 and 50. The sample statistic was calculated with 200 000
randomly selected real molecules that were not used for training ChemNet. For each model, we have
randomly drawn 10 000 samples of the generated SMILES 10 times and determined the FCD score.

We calculated our new FCD performance metric for the following methods:

• Segler: The next-character LSTM approach by Segler et al. [21].

• Olivecrona canon agent: An RNN-based RL approach to generate active molecules for
DRD2 [17].

• Olivecrona reduced agent: An RNN-based RL approach to generate active molecules for
DRD2 using a reduced training set [17].

• RL 40/60 iterations: An LSTM-based RL approach to generate active molecules for DRD2
trained for 40/60 iterations [1].

• ORGAN 30/60 iterations: A GAN using an LSTM-based generator and a CNN-based
discriminator trained for 30/60 iterations [1].

• baseline: A generative model producing just methane.

Fig. 2 shows the results for the different methods. Please note that this is not a methods comparison
but should demonstrate that the ranking by the FCD matches our intuition. The lowest FCD value of
0.22 is obtained by randomly drawn real molecules. Since this value is close to zero the randomly
drawn subsamples sufficiently represent the underlying distribution of real molecules. The method
“Segler” [21] achieved the second lowest FCD of 1.62, indicating that the distribution of these
generated molecules is closer to the real molecule distribution than distributions produced by other
methods. This matches our intuition, because the other methods (“Olivecrona”, “RL”, and “ORGAN”)
were optimized to generate molecules that are active for DRD2 and are therefore not designed to
approximate the distribution of the complete set of real molecules. This optimization procedure
is clearly captured by the FCD metric: for all these methods the FCD is notably higher, ranging
from 24.14 to 47.85. Furthermore, ORGAN after 60 iterations and RL after 60 iterations produce
molecules that are more distant from real molecules than ORGAN after 30 iterations and RL after
40, respectively. Intuitively, more training iterations lead to more DRD2 specific molecules and
therefore to molecules more distant to the complete real molecule distribution and lower diversity
[1]. Additionally, the FCD captures that the canonical and the reduced agents both learn a similar
chemical space as concluded by Olivecrona et al. [17]. The rule-based system has the highest FCD of
58.76, which can be considered an easily achievable baseline. Overall, the ranking of the methods
by their FCD matches our intuition and previous findings. In this comparison, randomly drawn
molecules from the combined data set were used to determine the sample statistic underlying FCD,
therefore methods which are optimized to capture the distribution of active molecules for DRD2 have
a higher FCD. By using a different distribution to calculate the sample statistic, the FCD could also
be used to evaluate targeted molecule generation.

Conclusions. In previous studies, the assessment of generative molecules was based on specific
properties such as logP, druglikeness or SA score. However, looking at all these properties individi-
ually makes the comparison of generative models difficult. We introduce the FCD, a novel metric for
generative models for drug design. FCD is based on a multi-task network and therefore incorporates
a wide variety of important chemical and biological features into a single metric. FCD was able to
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Figure 2: FCD of generated molecules based on different methods. A low value indicates that the
distribution of the real molecules was approximated well by the generated molecules. The method
“Segler” was optimized to produce molecules similar to the molecules present in the ChEMBL
database. Six further models were optimized to produce molecules with activity on a certain protein
target. This optimization process leads to a higher FCD value indicating a larger difference to the
distribution of real molecules.

detect four potential flaws of generative models, as we have demonstrated in our experiments. Fur-
thermore we also show that the FCD can also catch a biological bias (active PLK1 kinase inhibitors).
Our proposed approach is not restricted to generative models that produce SMILES strings, but can
readily be used for graph generating methods by converting the produced molecules into a SMILES
format. Within our experiments, we compare the FCD also to a fingerprint based Fréchet distance.
This comparison clearly illustrates that by incorporating biological information the metric further
improves and the differences between the real and biased sets are more distinct. Overall, we show
that FCD is a comprehensive, simple and powerful metric for the evaluation of generative models in
drug discovery.

Availability

Implementations to calculate FCD and to reproduce the experiments of this work are available at:
github.com/bioinf-jku/FCD
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