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Abstract

Molecular docking can account for receptor flexibility by combining the docking score over 

multiple rigid receptor conformations, such as snapshots from a molecular dynamics simulation. 

Here, we evaluate a number of common snapshot selection strategies using a quality metric from 

stratified sampling, the efficiency of stratification, which compares the variance of a selection 

strategy to simple random sampling. We also extend the metric to estimators of exponential 

averages (which involve an exponential transformation, averaging, and inverse transformation) and 

minima. For docking sets of over five hundred ligands to four different proteins of varying 

flexibility, we observe that for estimating ensemble averages and exponential averages, many 

clustering algorithms have similar performance trends: for few snapshots (less than 25), medoids 

are the most efficient while for a larger number, optimal (the allocation that minimizes the 

variance) and proportional (to the size of each cluster) allocation become more efficient. 

Proportional allocation appears to be the most consistently efficient for estimating minima.

Graphical Abstract

Introduction

Molecular docking is widely used to virtually screen large chemical libraries against 

biological targets to identify potential chemical probes and drug leads. Although it is clearly 

established that biological macromolecules are flexible and that their conformational 
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equilibria may be influenced by ligand binding, docking programs, in order to be fast, often 

treat them as rigid.

One important strategy to ameliorate this approximation is ensemble docking, where 

docking is performed to multiple rigid receptor conformations1–3. These receptor 

conformations may be obtained in many ways, including from crystal structures4,5, normal 

modes analysis6, or molecular dynamics (MD). The latter can be performed with a receptor 

by itself or complexed to a ligand — this is known as the relaxed complex method7–9 — or 

with enhanced sampling methods including replica exchange10 and accelerated11 MD, or 

even with a virtual ligand12. The overall score for the receptor-ligand pair is often based on 

the average docking score across the ensemble of receptor conformations13–17. Another 

common alternative is to use the minimum docking score of the ensemble11,18.

In many cases, ensemble docking can be linked to standard binding free energies through 

implicit ligand theory (ILT)19. In ILT, coordinates of the entire complex, rRL, are partitioned 

into internal coordinates of the receptor, rR, and ligand, rL, and external coordinates, ξ, that 

specify their position and orientation with respect to one another. The standard binding free 

energy between a receptor and ligand, ΔG°, has been shown to be an exponential average,

ΔG° = − β−1ln e
−βB rR

R

rR
+ ΔGξ, (1)

of the binding potential of mean force (BPMF), B(rR), the binding free energy between a 

flexible ligand and rigid receptor configuration, rR. β = (kBT)−1 is the inverse of 

Boltzmann’s constant multiplied by the temperature. The angled brackets … R
rR denote an 

average of receptor configurations over the ensemble of the receptor by itself without bound 

ligand (the apo ensemble). ΔGξ is the free energy of confining the external degrees of 

freedom into the binding site. A BPMF can also be expressed as an exponential average of 

the receptor-ligand interaction in implicit solvent, Ψ(rRL), the difference between the energy 

of the complex and of the separated receptor and ligand. In physics-based scoring functions, 

the molecular docking score is usually based on Ψ(rRL), so we will use this symbol to 

designate the docking score. Because exponential averages are typically dominated by low 

values of the exponent, the minimum Ψ(rRL) — the typical goal of molecular docking — 

can be regarded as a dominant state approximation to the BPMF.

Based on this dominant state approximation, the most common combining rules in ensemble 

docking can be interpreted in terms of Equation 1. The ensemble average docking score is 

the first order in a cumulant expansion20. The minimum docking score can be treated as a 

dominant state approximation to ΔG°. In general, virtual screening based on the average and 

minimum docking score will identify different classes of ligands as strong binders. The 

average will identify ligands that bind tightly to all apo conformations and the minimum will 

identify those that bind tightly to a smaller subset. Because the former has a larger entropy, it 

can achieve the same or even greater binding affinity than the latter. The minimum may 

perform better in retrospective screens11,18 because it is unnecessary that known ligands 
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(which are unlikely to have been discovered by the same virtual screening protocol) will 

adopt the strategy of binding to all apo configurations.

Of course, it is also feasible to use the exponential average in Equation 1 as a combining 

rule. To our knowledge, this has only been attempted by Nunes-Alves and Arantes21 and by 

us22. For ligands of T4 lysozyme, neither study found that using exponential average was a 

better combining rule than the average or minimum. In our study, the different combining 

rules resulted in nearly equal performance in classifying molecules as active or inactive 

against the target (Figure 11 of Xie et al.22). In theirs, the dominant state approximation 

resulted in a smaller root mean square deviation (RMSD) and higher coefficient of 

determination, R2 (Table 4 of Nunes-Alves and Arantes21). However, for human 

immunodeficiency virus reverse transcriptase and human FK506 binding protein 12, they 

found that the exponential average had a smaller RMSD, higher R2, and smaller Emax 

(maximum difference between predicted and experimental values). These results suggest 

that the loss of entropy upon binding is relatively consistent among the known ligands to the 

artificial binding cavity in the T4 lysozyme L99A and L99A/M102Q mutants, which are 

largely small and rigid. However, differences in the entropy of binding are more important 

for the larger ligands to the pharmaceutically relevant drug targets in their study. Comparing 

the virtual screening performance of different combining rules for ensemble docking is an 

area worthy of further investigation, but outside the scope of the present paper.

One noteworthy aspect of ILT is that receptor conformations must be drawn from the apo 

ensemble or from a statistical distribution that can be appropriately reweighed. After all, 

Equation 1 is an average over the apo ensemble. Recently, we have also derived a version of 

ILT that enables relative binding free energy calculations based on an average over a holo 

ensemble.23 The criterion for applying Equation 1 or the new expression from Nguyen and 

Minh23 are satisfied for ensemble docking to MD trajectories, but using these expressions 

for a set of crystallographic structures is not statistically rigorous.

The most effective receptor sampling strategy is dependent on the nature of the binding 

process. The strategy of simulating the apo ensemble is simple and likely effective for 

ligands that bind by conformation selection, such that holo ensembles are similar to the apo 

ensemble. On the other hand, simulating a holo ensemble may be a useful strategy if binding 

occurs by induced fit, such that holo ensembles significantly differ the apo ensemble. In Xie 

et al.22, we pursued yet another strategy, drawing and reweighing receptor configurations 

from a series of thermodynamic states in an alchemical pathway between apo and holo 

ensembles with six different reference ligands. Other strategies for generating holo-like 

receptor conformations, e.g. enhanced sampling algorithms, are an active area of research.

Once a suitable ensemble is generated, the computational cost of calculating ensemble 

averages can be decreased by using ensemble reduction techniques. Ensemble reduction 

techniques are useful because while simulation methods can generate a large number of 

configurations, it is computationally expensive to dock to all of them. Instead, docking can 

be performed to a representative subset9. The rationale behind selecting a representative 

subset is that when receptor configurations are similar, especially for atoms near the binding 

site, they are likely to have similar docking scores. Performing an independent docking 
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calculation for each configuration may be redundant, offering only a modest increase in 

accuracy for the increased computational expense. Thus, docking to a reduced ensemble can 

lead to significant computational savings.

Several methods for ensemble reduction have been developed. The most popular approach is 

to group the initial structures into clusters of similar conformations and to select a 

representative from each cluster. The most common way to measure the distance between 

conformations is the RMSD between α-carbons or between heavy atoms in the binding site 

(see the section on RMSD-based clustering in Amaro and Li1). Other distances based on 

structural properties of the binding cavity24 and the occupancy of points on a three-

dimensional grid25,26 have also been devised. Besides clustering, ensemble reduction 

methods based on QR factorization13 and maximizing differences between receptor-ligand 

interaction properties27 have also been considered.

In addition to (or instead of) structure-based distances, ensemble reduction can also use 

experimental information about whether or not molecules bind to the receptor6,28–33. With 

these approaches, members of a training set are docked to all potential members of a 

reduced ensemble. The reduced ensemble is then selected based on which structure or 

combination of structures leads to the best discrimination between known active and inactive 

molecules. As with all knowledge-based strategies, these approaches to ensemble reduction 

are dependent on having a suitable training set, may not be applicable outside the training set 

(e.g. if a new ligand binds to a different pocket34 or in a different way compared to training 

set ligands), and are difficult to interpret (e.g. it is unclear why particular structures are 

chosen.)

While ensemble reduction methods have been evaluated in a number of ways, none are 

directly related to the precision of ensemble averages. One class of quality metric is based 

on structural consistency24,35,36, e.g. whether members of a cluster are closer to each other 

than to members of other clusters. Another class is based on virtual screening performance 

for a training set6,28–33. While improved virtual screening performance is the ultimate goal, 

it is unclear whether the right answers are obtained for the right reasons; ensemble reduction 

trained on discriminating known active and inactive molecules may not actually improve the 

precision of calculated of ensemble averages. Moreover, evaluating ensemble docking based 

on virtual screening performance does not point to a clear way to improve estimates. Lastly, 

Amaro et al.9,13 compared the ensemble average from a large ensemble (400 structures) to 

the average from a representative ensemble (33 structures). The calculation provided 

anecdotal evidence that a reduced ensemble may be suitable for calculating the average 

docking score of a large ensemble, but did not provide information about statistical 

precision.

The key insight of this paper is that ensemble reduction methods are an application of a 

well-established statistical variance reduction technique, stratified sampling37. In stratified 

sampling, a population is broken up into strata in which members have similar 

characteristics. The average over the entire population is calculated as a weighted average of 

averages for each strata, with the weight being the size of the strata. Averages within each 

strata are usually but not necessarily obtained by simple random sampling within the strata.
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There are a number of schemes to allocate samples to specific strata. If the number of 

samples is proportional to the size of the strata, this is referred to as proportional allocation. 

In optimal allocation, samples are allocated in a way that minimizes the variance of the final 

estimate. While optimal allocation yields more precise estimates, it is impractical because it 

requires prior knowledge of the variance of each stratum to calculate the number of samples 

to draw from each; obtaining this variance requires performing calculations on every data 

point. In ensemble docking, the most established procedure is to use the same number of 

samples within each strata. To our knowledge, this scheme has no established name in the 

context of stratified sampling. We will refer to it as senatorial allocation, after the Senate 

chamber in the United States legislature. Each state in the United States of America is 

allocated a fixed number of senators regardless of its population. In contrast, the number of 

congresspersons allocated to each state in the other legislative chamber, the House of 

Representatives, is an example of proportional allocation because it is (roughly) proportional 

to its population.

The recognition that ensemble reduction methods are stratified sampling is not merely a 

matter of taxonomy; it allows us to apply an established tool to assess the efficiency of 

stratified sampling to ensemble reduction methods: the efficiency of stratification, η. The 

efficiency of stratification compares the variance of averages obtained by stratified sampling 

to those based on random sampling. In this paper, we develop ways to analyze the efficiency 

of stratification for senatorial allocation. We also develop expressions to evaluate η for 

calculating exponential averages such as Equation 1. We then analyze molecular docking 

scores between libraries of known ligands and MD trajectories of four proteins — Abl 

kinase, cruzipain, dihydrofolate reductase (DHFR), and estrogen receptor α (ERα) — 

comparing the efficiency of stratification for senatorial, proportional, and optimal allocation 

with a number of different ensemble reduction techniques.

Theory

Efficiency of Stratification for Ensemble Averages

In stratified sampling, the statistical estimator for the ensemble average of x is,

x = ∑
h

H Nh
N xh, (2)

where N is the total population size, where h ∈ {1, …, H} is an index for the strata, Nh is the 

number of samples in strata h, and xh is the estimate for the expectation of x within strata h.

The variance of Equation 2 is based on the variance of a linear combination of independent 

random variables xh,

σstrat
2 [x] = ∑

h

H Nh
N

2
σ2 xh . (3)
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On the other hand, for simple random sampling from the entire population, if the finite 

population correction is neglected, then the variance of the sample mean based on n samples 

is,

σsimple
2 [x] = 1

nσ2[x] . (4)

The efficiency of stratification is based on the ratio of σstrat[x] from Equation 3 to σsimple[x]

from Equation 4,

ηstrat = n
σ2[x]

∑
h

H Nh
N

2
σ2 xh . (5)

While Equation 5 includes the total number of samples, n, for simple random sampling 

within each strata, it usually cancels out with another n from σ2 xh  such that the efficiency 

of stratification is independent of the sample size.

If the finite population correction – which accounts for the fact that samples are drawn 

without replacement from a finite population instead of with replacement from an infinite 

population – is included, then the efficiency of stratification is dependent on sample size. 

The finite population correction to Equation 4 is N − n
N − 1 . For simple random sampling within 

each strata, the variance σ2 xh  also includes 
Nh − nh
Nh − 1 , which does not cancel with the finite 

population correction for simple random sampling from the whole population. For 

simplicity, we will neglect the finite population correction; we observed that our qualitative 

efficiency trends are very similar with and without the correction.

If ηstrat is less than one, stratified sampling is superior to simple random sampling from the 

entire population. The efficiency of stratification can also be thought of as a ratio of the 

effective sample size. For example, ηstrat = 0.5 implies that when using stratified sampling 

instead of simple random sampling, the same precision can be achieved with half the 

number of samples. Alternately, stratified sampling has twice the effective sample size of 

simple random sampling. On the other hand, if ηstrat is equal to one then stratified sampling 

and simple random sampling are equally efficient. Lastly, if ηstrat is greater than one then 

stratified sampling is less efficient.

If every data point is its own strata, then every σ2 xh  is zero and the stratification efficiency 

is zero. If there is a single stratum and samples are drawn by simple random sampling, then 

ηstrat is always equal to one. In other situations the efficiency of stratification will depend on 

the allocation algorithm.
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Senatorial Allocation

In senatorial allocation, there are an equal number of samples from each strata. For n total 

samples, the number of samples drawn from strata h is n/H. If samples within each strata are 

drawn by simple random sampling, the variance of the mean within each strata is, 

σ2 xh = H
n σ2 xh , and the efficiency of stratification is,

ηsen = H
σ2[x]

∑
h

H Nh
N

2
σ2 xh . (6)

However, the standard practice in ensemble docking is not simple random sampling within 

each strata. The calculated strata average is based on a non-random representative, such as 

the medoid of the strata. We will refer to this approach as archetypal senatorial allocation. In 

general, the variance of an estimator is defined as the expectation of the squared deviation of 

an estimate from its true value,σ2 xh = xh − xh
2 . Thus if the estimate is constant, then 

the variance is simply σ2 xh = xh − xh
2. By substitution into Equation 5,

ηsen* = H
σ2[x]

∑
h

H Nh
N

2
xh − xh

2 . (7)

We have assumed that there is one sample per strata such that the total number of samples n 
is equal to the number of strata H.

Proportional Allocation

In proportional allocation, the number of samples drawn from strata h is proportional to Nh. 

For n total samples, the number of samples drawn from strata h is nNh/N. If samples within 

each strata are drawn by simple random sampling, the variance of the mean within each 

strata is σ2 xh = N
nNh

σ2 xh . By substitution of this variance expression into Equation 5, the 

efficiency of stratification is,

η∝ = 1
σ2[x]

∑
h

H Nh
N σ2 xh . (8)

Optimal Allocation

Optimal allocation is derived by minimizing the variance of the estimator with respect to the 

number of samples allocated to strata h. For simple random sampling of nh samples from 

strata h, then the variance of the estimate is,σ2[x] = ∑h
H Nh

N

2 1
nh

σ2 xh . Using Lagrange 
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multipliers, we would like to minimize this variance subject to the constraint that 

g nh = ∑h
H nh − n = 0. The total differential of the constrained variance is,

d σ2[x] − αg = ∑
h

H ∂σ2[x]
∂nh

− α ∂g
∂nh

dnh

= ∑
h

H
−

Nh
N

2 1
nh

2σ2 xh − α dnh .

(9)

Setting each term in the sum to zero, yields nh ∝ Nhσ[xh]. Hence, for n total samples,

nh = n
Nhσ xh

∑k N
k
σ xk

. With this allocation, the variance is,

σ2[x] = 1
n ∑

h

H Nh
N

2∑k Nkσ xk
Nhσ xh

σ2 xh

= 1
n ∑

h

H Nh
N σ xh

2
,

(10)

and the efficiency of stratification is,

ηopt = 1
σ2[x]

∑
h

H Nh
N σ xh

2
. (11)

The efficiency of stratification for proportional and optimal allocation are well-established37 

and are included to introduce important notation and so that the paper is better self-

contained.

Efficiency of Stratification for Exponential Averages

In certain situations, it is of greater interest to evaluate an exponential average of the form,

F = − β−1ln e−βx , (12)

than the expectation value of x. β is a constant. For convenience, let us define y = e−βx and 

yh to be the expectation value of y within strata h.

The statistical estimator for Equation 12 based on stratified sampling is,

F = − β−1ln∑
h

H Nh
N yh . (13)

Xie et al. Page 8

J Chem Inf Model. Author manuscript; available in PMC 2019 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using error propagation based on a first-order Taylor series expansion, its variance is,

σstrat
2 [F] =

β−2σ2 ∑h
H Nh

N yh

∑h
H Nh

N yh

2

=
β−2∑h

H Nh
N

2
σ2 yh

e−2βF .

(14)

The term in the denominator is based on evaluating the partial derivative that appears in the 

expansion at the mean, or the true value of yh. With simple random sampling, in contrast, the 

statistical estimator for Equation 12 is,

F = − β−1ln 1
N ∑

n
yn . (15)

Using the same error propagation procedure, its statistical variance is,

σsimple
2 [F] = β−2σ2[y]

y2

= β−2σ2[y]
ne−2βF .

(16)

The efficiency of stratification is based on the ratio of σstrat[F] from Equation 14 to 

σsimple[F] from Equation 16,

ηstrat = n
σ2[y]

∑
h

H Nh
N

2
σ2 yh . (17)

This expression is exactly analogous to Equation 5 except that x has been replaced by y. 

Hence, expressions for efficiency of stratification for senatorial, proportional, and optimal 

allocation are also analogous to Equations 6, 8, and 11 above and will not be reproduced 

here.

Efficiency of Stratification for Minima

Now consider the efficiency of stratification for estimating the minimum. For convenience, 

let us define z = min(x). The variance of an estimator for z is σ2[z] = (z − z)2 . There is no 

central limit theorem that describes how the variance of the estimated minimum changes 
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with sample size. However, this variance can be estimated by bootstrapping. To obtain the 

variance for n snapshots, we repeatedly resampled n snapshots from the population with 

replacement, used the minimum from each resampling as the point estimate, and then took 

the sample variance of the point estimates. For archetypal senatorial allocation, the variance 

is the squared difference between the estimated and true minima.

Computational Methods

System Preparation and Molecular Docking

Structures of abl kinase, cruzipain, DHFR, and ERα were downloaded from the Protein Data 

Bank (PDB IDs (chain) were 1opj(A), 1me4(A), 1j3j(A), and 1x7e(A), respectively). Protein 

protonation states were predicted with pdb2pqr 1.9.038 at a pH of 7.0. Using AmberTools 

1439, parameter/topology files were prepared based on the AMBER ff14SB force field40. 

Solvent was treated using the generalized Born model 2 from Onufriev, Bashford, and Case 

(OBC2)41.

Using OpenMM 6.242, the structures were minimized and then simulated with Langevin 

dynamics at 300 K using a time step of 2 fs. Snapshots were stored every 1 ps. The first 20 

ns were discarded as equilibration. 800 snapshots from the last 80 ns were used for 

production. The snapshots were split into two sets of 400 based on every other saved 

simulation snapshot.

SMILES strings43 for sets of up to 520 (520, 518, 518, 520, respectively) known ligands for 

each receptor were obtained from the BindingDB44 (http://www.bindingdb.org/). Balloon45 

was used to generate 3D models from the SMILES strings and UCSF Chimera46 was used to 

protonate ligands and to calculate AM1-BCC partial charges47,48. AmberTools 1439 was 

used to prepare parameter/topology files based on the Generalized Amber Force Field.49

The binding site of each receptor was defined based on sets of homologous crystal 

structures. First, a UniProt50 template sequence for each protein was selected (Table 1). 

Next, MODELLER 9.1851 was used to identify crystal structures with sequences with at 

least a minimum sequence identity (specified in Table 1) compared with the template. A 

reference chain was selected arbitrarily. ProDy 1.8.252 was then used to align each structure 

by minimizing the α carbon RMSD relative to a reference chain. The center-of-mass (COM) 

was then calculated for every ligand. The binding site center was defined as the mid-point of 

the maximum COM and minimum COM. The binding site radius was defined by rounding 

the maximum distance from the site center to a ligand COM up to the nearest Ångstrom. 

Because the ligands that have been co-crystallized with some receptors are often very 

similar, some of the binding sites were manually expanded. PDB IDs of homologous crystal 

structures and binding site radii are described in Section S1 of the Supporting Information.

Each of the ligands was then docked to the 800 snapshots using UCSF DOCK 653.

Sphgen was run with default parameters: dotlim = 0.0, radmax = 4.0 Å, and radmin = 1.4 Å. 

Spheres for docking were selected from clusters with spheres within the binding site, as 
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defined in the previous paragraph. The docking grid was defined with the binding site center 

as its center and the edge length,

l = 2 × ceil r + dmax, atom , (18)

where the function ceil(·) denotes rounding up to the nearest integer, r is the binding site 

radius, and dmax,atom is the maximum distance between crystallographic ligand atoms and 

the center. The grid spacing was 0.25. DOCK was run with 5000 maximum orientations, 

using internal energy with an exponent of 12, a flexible ligand, an a minimum–anchor–size 

of 40. Pruning was performed with clustering, 1000 maximum orientations, a clustering 

cutoff of 1000, and conformer score cutoff of 25.0. A bump filter was used with max–

bumps–anchor = 12 and max–bumps–growth = 12. Final conformations were clustered with a 

root mean square deviation (RMSD) threshold of 2.0 Å. If no binding pose was obtained, the 

docking score was assumed to be zero.

Ensemble Reduction

Ensemble reduction was performed based on three types of distances:

1. The RMSD between: (a) α-carbons in the whole protein, (b) α-carbons in the 

binding site, and (c) heavy atoms in the binding site.

2. Principal components analysis (PCA), a dimensionality reduction technique 

that describes motion in a different way from the RMSD. PCA was performed on 

the aligned coordinates of α-carbons in the whole protein. Because the 

eigenvalues significantly dropped off within the first six eigenvalues (Figure S1 

in the Supporting Information), projections were made onto the first six 

eigenvectors of each snapshot. The distance matrix was based on the Euclidean 

distance,

di j = ∑
k = 1

6
cik − c jk

2, (19)

where dij is the distance between snapshots i and j and cik is the projection of 

snapshot i onto eigenvector k.

3. Occupancy fingerprints, based on the occupancy of points spaced 0.25 Å apart 

on a three-dimensional grid in the binding site. They were marked as occupied if 

they were within the van der Waals radius of a receptor atom. These distances 

were calculated by minor modification to POVME 2.054. For a pair of grids, 

Mnm represents the total number of points where the first grid has the value n and 

the second the value m. Distance matrices were based on the occupancy 

fingerprint overlap,
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doverlapi j = M10 + M01, (20)

Tanimoto-inspired similarity,

dtanimotoi j = − log2
M11

M11 + M10 + M01
, (21)

and Jaccard distance,

d jaccardi j =
M10 + M01

M11 + M10 + M01
. (22)

Offutt et al.25 also used the Tanimoto similarity and and Motta and Bonati26 used 

Equation 22.

4. The QH structural similarity measure55, which compares interatomic distances 

between structures. For a pair of protein structures with the exact same amino 

acid sequence, QH ∝ ∑ je
− Δd j/σ j

2
, where j is the index for dj, an interatomic 

distance between α carbons. Δdj is the difference in this distance between two 

structures. The standard deviation σj that weights each difference is dependent on 

the index. QH is normalized as described in O’Donoghue and Luthey-Schulten55. 

It was calculated using the QR factorization module in VMD 1.9.756.

Before clustering, snapshots were aligned to the reference crystal structure by VMD 1.9.756. 

For the RMSD between all α carbons in the whole protein, PCA, and the QH-QR 

calculations, structures were aligned according to all α carbons in the whole protein. In the 

other calculations, structures were aligned according to atoms in the binding site.

For most calculations, ensemble reduction was performed based on hierarchical clustering. 

Hierarchical clustering was performed using the scipy.cluster (http://www.scipy.org/) 

package using the different types of distances and with four different linkage criteria: single, 

complete, average, and weighted. In our analysis, each cluster was considered a strata.

We also considered ensemble reduction based on QR factorization55, which was previously 

used to improve the relaxed complex method9 and is implemented in VMD56. QR 

factorization is a well-established linear algebra in which a matrix A is decomposed into an 

orthogonal matrix Q and upper triangular matrix R such that A = QR. O’Donoghue and 

Luthey-Schulten55 applied a multidimensional variant of QR factorization to order protein 

structures by increasing linear dependence. We used a QH threshold of 0.9, similar to the 

threshold of 0.86 previously used in the relaxed complex method9. After representative 

structures were determined, we calculated distances from each snapshot to each 
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representative snapshot. The cluster of each snapshot was assigned based on the nearest 

representative.

After clustering, the stratification efficiency was plotted as a function of H. To summarize 

this plot, the area under the curve was computed using the trapezoidal rule, as implemented 

in the numpy.trapz function in numerical python57 1.13.3 (http://www.scipy.org/).

Our data and analysis scripts are available at https://github.com/bxie4/

stratification_efficiency_data.git.

Results and Discussion

Distance matrices provide unique angles on trajectories of varying flexibility

Even when considering the same MD trajectories, different distance matrices are 

qualitatively unique from one another (Figure 1). Because elements of these matrices are 

ordered by time, they consist of blocks with correlated configurations along the diagonal. 

The precise boundaries of these blocks and the magnitude of off-diagonal blocks are key 

properties that distinguish one type of distance from another.

The most significant factor distinguishing our matrices is choice of atoms for alignment and 

distance calculations. Distances based on atoms from the entire protein, which appear on the 

left column of Figure 1, are more similar to each other than those based on atoms in the 

binding site, which appear on the right column of the corresponding figures. Considering 

Abl kinase, for example, matrices on the left side consist of three major diagonal blocks, but 

those on the right side appear to have four. Furthermore, according to the RMSD between all 

α carbons, the first fourth of the Abl kinase trajectory has little structural resemblance to 

latter portions of the trajectory. On the other hand, according to the RMSD between α 
carbons in the binding site, the structures that emerge after about half of the trajectory are 

not that different.

The Jaccard distance is unique because it is bounded. Whereas other types of distances have 

no upper bound, the Jaccard distance is bounded between 0 and 1. In the other panels, 

because we used the same color scale for all four proteins, the reddest colors are established 

by the largest observed distance in any of the systems. This makes on-diagonal blocks look 

particularly blue. In Figure 1d, the reddest color is 1 and blue only appears with very similar 

binding sites. For this reason, Figure 1d appears to (but actually does not) have less time 

correlation than the other panels.

The distance matrices reveal different levels of receptor flexibility in each of the four MD 

simulations. Cruzipain was comparatively rigid. The RMSD between binding site α carbons 

remained within 1.5 Å for all snapshots and within 0.6 Å for most snapshots. It also had the 

smallest range of Jaccard distances between occupancy fingerprints. According to the 

RMSD between all α carbons, Abl kinase had the largest range of overall flexibility. 

However, the Jaccard distance between occupancy fingerprints shows that the shape of the 

binding site remained fairly constant. Compared to cruzipain and Abl kinase, DHFR and ER 

Xie et al. Page 13

J Chem Inf Model. Author manuscript; available in PMC 2019 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.scipy.org/
https://github.com/bxie4/stratification_efficiency_data.git
https://github.com/bxie4/stratification_efficiency_data.git


α had an intermediate range of RMSDs between all α carbons and a larger range of Jaccard 

distances between occupancy fingerprints.

The distance matrices could be used to argue that most of the MD simulations have not fully 

converged. Fully converged simulations would return to the same conformations multiple 

times. For our present purposes, however, it is not relevant whether the snapshots correctly 

represent the Boltzmann distribution and adequately represent the configuration space 

available to the protein. Instead, we are treating the sampled snapshots as our populations 

and assessing methods to estimate summary statistics for these populations based on a subset 

of snapshots.

Our summary statistics of interest are based on docking scores, which have different levels 

of variability (Figure 2). For most ligands, the docking scores of cruzipain and Abl kinase 

have a small standard deviation. In contrast, most ligands for DHFR have large range of 

docking scores. For ER α, the distribution of docking score standard deviations is bimodal. 

The small standard deviations of docking scores for cruzipain and Abl kinase ligands are 

consistent with the small maximal Jaccard distance between occupancy fingerprints. 

Likewise, broader range of standard deviations for DHFR and ER α reflect the larger 

maximal Jaccard distance.

Stratification efficiencies are sensitive to multiple factors

Ensemble reduction involves a number of choices including the type of distance, the 

clustering algorithm, and the allocation scheme. Each of these choices influences the 

efficiency of stratification in different ways. Tables S1, S2, and S3 in the Supporting 

Information show the area under the η( H) curve for ensemble averages, exponential 

averages, and minima, respectively. In the following sections, we will first describe the 

influence of these choices for ensemble averages.

Allocation affects the shape of η( H) curves

Each allocation scheme has a characteristic behavior of η as a function of the number of 

strata (Figure 3). Indeed, the choice of allocation scheme is the factor with the largest 

influence on the area under this curve (Table S1 in the Supporting Information). With 

archetypal senatorial allocation, the stratification efficiency exhibits a hump-shaped curve. 

This curve starts with a low value, approximately 0.1, and gradually increases until H ≈ 100 

before gradually decreasing to zero. Although the curves are noisier, the same qualitative 

trend is seen for archetypal senatorial allocation based on QR factorization (Figure S2 in the 

Supporting Information). With the other allocation schemes, η starts near 1. For optimal 

allocation, η quickly decreases for H < 25 and decreases more gradually for larger H. For 

proportional allocation, η gradually decreases as H increases. For senatorial allocation, η 
actually increases for low H and then gradually decreases. These qualitative trends held 

across all four systems studied.

Observed trends in stratification efficiency validate the most common practice in the field of 

ensemble docking. For small H (H < 25), the best algorithms for archetypal senatorial 

allocation have lower η and thereby outperform the other allocation schemes. In contrast, for 
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H > 25, η is lower for optimal allocation and increases between optimal, proportional, and 

senatorial allocation. The contrast between archetypal senatorial allocation and senatorial 

allocation based on random samples is especially stark. This contrast shows that, for 

calculating the average, the medoid is more suitable than an arbitrary representative. The low 

η of archetypal senatorial allocation shows that selecting a single representative from each 

cluster is a reasonable strategy for estimating ensemble averages with a small number of 

snapshots.

The results also suggest that for larger H, variance-based allocation may be beneficial. The 

difference between the efficiency of optimal and proportional allocation is substantial. 

Unfortunately, because it is impossible to determine the precise variance of docking scores 

without performing docking to all structures, optimal allocation is an idealization that is not 

practical to fully implement. However, a subset of allocated computational effort could be 

used to estimate the variance prior to allocating remaining computational effort. With such a 

procedure, it should be possible to achieve an efficiency between that of optimal and 

proportional allocation.

Linkage criteria also affect stratification efficiency

With hierarchical clustering methods, the efficiency of stratification is sensitive to the 

linkage criterion and specific to the allocation method (Table S1 in the Supporting 

Information). For optimal allocation, complete linkage has the lowest η, followed by 

weighted, average, and single linkage (Figure 4). As a number of clusters increases, the 

efficiency of weighted and average linkages become comparable to complete linkage. For 

archetypal allocation, most linkage criteria have similar efficiency (Figure 4). The exception 

is single linkage, which has the worst efficiency. In all systems except for DHFR, the area 

under the curve for H < 25 is the smallest for complete linkage. For proportional allocation, 

most linkage criteria have similar efficiency, but single linkage performs well for a large 

number of clusters (Figure S3 in the Supporting Information).

The type of distance is relevant for senatorial allocation

The stratification efficiency is sometimes but not always sensitive to the type of distance. For 

optimal and proportional allocation, the area under the η vs. H curve is fairly consistent 

across different types of distances (Table S1 in the Supporting Information). On the other 

hand, using different distances can lead to significant efficiency differences in senatorial 

allocation, both when the sample is the medoid or it is random. Because of its lower η, we 

will focus on archetypal senatorial allocation.

In archetypal senatorial allocation, no type of distance has completely consistent 

performance across all systems. However, distances based on occupancy fingerprints have 

similar performance and are among the best in all systems, especially for low H (Figure 5). 

The superior performance of these distances are most evident for cruzipain. It is least evident 

for DHFR, especially with larger H.

For DHFR, the relatively poor performance of the Jaccard distance between occupancy 

fingerprints for larger H may be due to the effects of electrostatics on docking scores. 
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Electrostatic effects have a large influence on ligand binding to DHFR; the enzyme 

possesses pockets of positive potential in its active site that enable it to bind negatively 

charged substrates.58 Because occupancy fingerprints only consider short-range van der 

Waals interactions and neglect electrostatics, they may not work as well for clustering 

conformations with similar docking scores. In contrast, although ER α has similar flexibility 

and a larger maximum Jaccard distance (Figure 1), the Jaccard distance is effective because 

electrostatics have a smaller influence on ligand binding; the native ligand estrogen is a 

mostly hydrophobic hormone with no net charge.

Qualitative trends in η( H) are similar for ensemble averages and exponential averages, but 

distinct for minima

Regardless of allocation scheme, the stratification efficiency of exponential averages is very 

similar to that of ensemble averages (see Figures 6 and S4 in the Supporting Information for 

archetypal senatorial allocation, and Figures 7 and S5 in the Supporting Information for 

proportional allocation, and Figure S6 in the Supporting Information for optimal allocation). 

The exponential average of the docking score appears to cluster in a similar way as its non-

transformed counterpart. Thus, the same conclusions about the most efficient allocation 

scheme and other choices hold for both ensemble averages and exponential averages.

In contrast, stratification efficiency for minima follow different trends. With archetypal 

senatorial allocation, η starts between 0.5 and 1, depending on the system, and gradually 

decreases with increasing H. For some systems, the decrease is not monotonic and smooth. 

On the other hand, for proportional allocation, η starts at 1.0 and decreases very quickly 

with H. In some cases, it increases at high H. The increase at high H is likely due to the fact 

that simple random sampling becomes increasingly likely to draw from all strata, 

diminishing the benefits of stratified sampling.

Notably, efficient strategies for minima also contrast with the averages because of the best 

linkage criterion. For calculating ensemble averages and exponential averages, the single 

linkage criterion usually is the worst, with the largest area under the curve (Tables S1 and S2 

in the Supporting Information). In contrast, for obtaining the minimum docking score, the 

single linkage criterion is usually the best. The most consistently efficient methods for 

obtaining a minimum docking score are based on hierarchical clustering with single linkage 

and either the RMSD between binding site α carbons or the Jaccard distance between 

occupancy fingerprints (Table S3 in the Supporting Information).

Conclusions and Future Directions

A tool from stratified sampling, the efficiency of stratification, was imported and used in the 

context of ensemble docking with reduced ensembles. We applied the efficiency of 

stratification for ensemble averages, developed theory pertaining to exponential averages, 

and implemented methods to estimate η for minima. A variety of ensemble reduction 

methods incorporating different types of distances and clustering algorithms were compared. 

We applied our analysis to four systems with varying flexibility.
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For estimating ensemble averages, we found that the prevailing approach, archetypal 

senatorial allocation, was most efficient for small numbers of clusters. For a larger number 

of clusters, optimal and proportional allocation are more efficient. With optimal allocation, 

hierarchical clustering based on the complete linkage criterion was found to perform 

similarly or better than other clustering algorithms. For most systems, the Jaccard distance 

between occupancy fingerprints was one of the best performing types of distances with 

archetypal senatorial allocation.

While similar performance trends were observed for exponential averages, minima behave 

differently. For estimating minima, hierarchical clustering based on the single linkage 

criterion with a distance based on the Jaccard distance between occupancy fingerprints was 

found to be the most efficient for nearly any cluster size.

Based on their performance for these four systems, we cautiously recommend these 

clustering algorithms and allocation schemes in future ensemble docking calculations. Our 

recommendation is cautious because we have analyzed a limited number of systems and 

types of ensembles. Regarding the latter point, we have focused our analysis on apo 

ensembles and thereby only considered ligands that bind by conformational selection. 

Although we have no particular reason to think so, it could be possible that other ensemble 

reduction schemes are better suited for docking to other, e.g. ligand-bound, ensembles. 

Because docking to other types of ensembles may be useful strategy for ligands that bind by 

induced fit, analysis of the efficiency of stratification for these ensembles could be a fruitful 

future research direction. Beyond analyzing more systems and different types of ensembles, 

we also suggest that the efficiency of stratification should be used to assess other algorithms, 

existing and new, for ensemble reduction.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Distance matrices for MD simulations of Abl kinase (top left), Cruzipain (top right), 

DHFR (bottom left), and ER α (bottom right) based on (a) the RMSD between α carbons in 

the whole protein, (b) the RMSD between α carbons in the binding site, (c) PCA, (d) the 

Jaccard distance between occupancy fingerprints.
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Figure 2: The standard deviation of docking scores.
Histograms of the standard deviation, σ, of docking scores for different ligands binding to 

the population of snapshots for each protein: Abl kinase (red circles), cruzipain (purple 

square), DHFR (blue upwards triangles), ER α (green hexagons). The standard deviation of 

docking scores is computed for each ligand. A histogram of these standard deviations is 

shown.
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Figure 3: 
Comparing allocation schemes for computing ensemble averages: archetypal senatorial 

(purple hexagons), optimal (green squares), proportional (red circles), and senatorial (blue 

upwards triangles). Hierarchical clustering was performed based on the Jaccard distance 

between occupancy fingerprints and the complete linkage criterion.
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Figure 4: Comparing linkage algorithms for computing ensemble averages based on archetypal 
senatorial (left) and optimal (right) allocation.
Clustering was performed based on the Jaccard distance between occupancy fingerprints and 

complete (purple hexagons), weighted (blue upwards triangles), average (green squares), and 

single (red circles) linkage algorithms.
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Figure 5: 
Comparing types of distances for computing ensemble averages using archetypal 
senatorial allocation: the RMSD between all α carbons (red circles), binding site α carbons 

(purple hexagons), and binding site heavy atoms (magenta downwards triangles); the Jaccard 

distance between overlap fingerprints (blue upwards triangles); and PCA (green squares).
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Figure 6: 
Comparing the stratification efficiency of archetypal senatorial allocation for different 
summary statistics: the ensemble average (red circles), exponential average (green 

squares), and minima (blue upwards triangles). Clustering was performed based on the 

Jaccard distance between occupancy fingerprints and the complete linkage criterion.
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Figure 7: 
Comparing the stratification efficiency of proportional allocation for different 
summary statistics: the ensemble average (red circles), exponential average (green 

squares), and minima (blue upwards triangles). Clustering was performed based on the 

Jaccard distance between occupancy fingerprints and the single linkage criterion.
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Table 1:

Protein information.

Protein system UniProt ID Minimum sequence identity Reference chain

Abl Kinase P00520 100 1OPJ (A)

Cruzipain P25779 90 1ME4 (A)

DHFR P13922 90 1J3J (A)

ERα P03372 99 1X7E (A)
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