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Abstract 
 
The versatility of similarity searching and QSAR to model the activity of compound sets within 

given bioactivity ranges (i.e., interpolation) is well established. However, their relative 

performance in the common scenario in early-stage drug discovery where lots of inactive data 

are available, but no active data points (i.e., extrapolation from the low-activity to the high-

activity range) has not been thoroughly examined yet. To this aim, we have designed an 

iterative virtual screening strategy which was evaluated on 25 diverse bioactivity data sets from 

ChEMBL. We benchmark the efficiency of Random Forest (RF), multiple linear regression, 

Ridge Regression, similarity searching and random selection of compounds to identify a highly 

active molecule in the test set among a large number of low-potency compounds. We use the 

number of iterations required to find this active molecule to evaluate the performance of each 

experimental setup. We show that linear and Ridge Regression often outperform RF and 

similarity searching, reducing the number of iterations to find an active compound by a factor of 

two of more. Even simple regression methods seem better able to extrapolate to high-bioactivity 

ranges than RF, which only provides output values in the range covered by the training set. In 

addition, examination of the scaffold diversity in the data sets used shows that in some cases 

similarity searching and RF require two times as many iterations as random selection depending 

on the chemical space covered in the initial training data. Lastly, we show using bioactivity data 

for COX-1 and COX-2 that our framework can be extended to multi-target drug discovery, where 

compounds are selected by concomitantly considering their activity against multiple targets. 

Overall, this study provides an approach for iterative screening where only inactive data are 

present in early stages of drug discovery in order to discover highly potent compounds, and the 

best experimental set up to do so. 
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Introduction 
 

The wealth of bioactivity data accumulated over the last years in high-throughput screening 

campaigns enables the application of artificial intelligence (AI) in drug discovery to model 

compound activity1–4. AI enable researchers to work with high-dimensional data that escape 

human intuition, e.g., the many variables that govern the modulation of protein activity by small 

molecules, thus making it an unparalleled approach to better understand and model complex 

systems. Machine learning models are possibly the most common AI approach used in drug 

development2–4. The tasks where machine learning has enabled data-driven decision making, 

and contributed to unravel fundamental biological aspects of pharmacology, include the 

prediction of drugs’ side effects, computational ADMET profiling, toxicity prediction, the 

derivation of structural alerts, as well as target-based and ligand-based virtual screening5–15.  

 

A major goal in early-stage drug discovery campaigns is to discover hits as efficiently as 

possible. Today, high-throughput screening technologies enable cherry picking of compounds at 

sufficient speed to perform iterative screening on a large scale (thousands of compounds tested 

per day)16–18. However, what compounds should be picked at each iteration still remains a 

largely unresolved question. Hence, learning patterns in the screening data using artificial 

intelligence to increase hit rates, and hence discover active molecules faster and more 

efficiently, is gaining increasing attention19–22.  

 

Virtual screening (VS) refers to techniques that capitalize on compound and/or target 

information to discover novel bioactive molecules more efficiently than random selection. These 

techniques are most often applied in combination with high-throughput screening to prioritize 

compounds with higher chances of being active for further experimental testing14,23–28. 

Discovering highly selective and potent molecules from a set of initial hits is fundamental to drug 

discovery, and hence, considerable effort has been invested in the development of VS 

approaches in both the public and private sectors. 

 

The simplest, and perhaps most widely used VS approach, is similarity searching29–33. This 

approach consists of computing the similarity between a set of active molecules, and a (usually 

large) collection of structurally diverse compounds of unknown activity. Although the versatility 

of similarity searching is well established, chemical information across compounds is not 
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integrated, thus limiting its power to learn chemical patterns predictive of bioactivity across 

active molecules. Also, what makes two molecules similar, and how to efficiently compute this 

similarity is still the subject of intense debate, and it depends strongly on the compound 

descriptors used32,34,35. 

 

Chemical information and bioactivity data on a target of interest can be integrated using 

Quantitative Structure-Activity Relationship (QSAR)12,36,37. QSAR embraces those mathematical 

approaches that regress compound activity on compound descriptors. This permits to model 

(often non-linear) relationships between chemical features and bioactivity across compounds, 

and hence, interpolate compound activity to the extent the training data allows38. 

 

Both similarity searching and QSAR rely on the similarity principle, which states that the 

bioactivities of similar molecules (where similar can refer to structural similarity, or similarity in 

bioactivity space39–43) tend to be more correlated than those of dissimilar ones32,44. This principle 

thus implies that a given QSAR model is not likely to generate meaningful predictions for 

molecules that are dissimilar in descriptor space to those in the training data. Similarly, a model 

will not accurately predict activity values outside the range covered in the training data (e.g., 

predict that a compound is active using a model trained on only inactive compounds). Hence the 

interest in developing reliable techniques to estimate errors in prediction for individual 

instances38,45,46. 

 

The applicability domain of a model refers to the regions of descriptor space for which it 

generates reliable predictions38. Commonly used machine learning algorithms in QSAR, such as 

RF (RF), show high interpolation power (i.e., they perform accurately within their applicability 

domain). However, their performance in extrapolation (i.e., when applied to molecules outside 

their applicability domain) is limited, due to the method of prediction used47. That is, the 

predicted value is given as the average value of data from the training set at each leaf. 

 

The virtual screening algorithms published in the literature have mostly focused on the 

prediction of compound activity within the bioactivity range of the training data (i.e., 

interpolation), but did not consider how to move from inactives to actives (i.e., extrapolation). 

The question then arises whether, and to what extent, QSAR models can provide meaningful 

information to guide drug development in cases where only bioactivity data about compounds 
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with low activity is available, a common scenario in early-stage drug discovery. The interpolation 

power of diverse QSAR methods has been extensively benchmarked48,49. Nevertheless, to the 

best of our knowledge, a systematic assessment of the efficiency of QSAR models, and 

similarity searching, to discover highly-active molecules from an initial set of low-active hits is 

still missing. To fill this shortage, we have benchmarked the efficiency of diverse algorithms 

using an iterative virtual screening framework and public IC50 data for 25 targets from ChEMBL 

(Figure 1). To quantify their relative performance we use the number of iterations required to 

discover an active molecule in the test set among a large number of less active molecules. As a 

starting point, the models are only trained on compounds showing a IC50 value several orders of 

magnitude higher than the active to be found (from 1 to 4 pCI50 units; Figure 1). To find general 

trends in the data, we have designed a factorial experiment with interactions to control for 

confounding factors affecting model performance. Overall, we show that similarity searching 

does not perform better than random picking of compounds in many occasions, and that 

algorithmically simple algorithms, including Ridge and multiple linear regression outperform RF, 

especially when the bioactivities of the initial training molecules and the active to be found differ 

by 3-4 pIC50 units. From this analysis, we provide guidelines on which method might be more 

suitable on the basis of the chemical diversity of the available training data, which could 

ultimately prove valuable to guide and design prospective virtual screening campaigns more 

efficiently. 
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Methods 
 
Data Collection and Curation 

We gathered IC50 data for 25 diverse protein targets from ChEMBL database version 23 using 

the chembl_webresource_client python module50–52. To assemble high-quality data sets, we 

only kept IC50 values for small molecules that satisfied the following filtering criteria: (i) an 

activity unit equal to “nM”, (ii) activity relationship equal to ‘=’, (iii) target type equal to “SINGLE 

PROTEIN”, and (iv) organism equal to Homo sapiens. IC50 values were modeled in a 

logarithmic scale (pIC50 = −log10 IC50). The average pIC50 value was calculated when multiple 

pIC50 values were available for the same compound. Further information about the data sets is 

given in Table 1. All data sets are provided in the Supporting Information. 

 

Table 1. Data sets used in this study. 

Target preferred name Target 
abbreviation 

Uniprot 
ID ChEMBL ID 

Number of 
bioactivity data 

points 
Alpha-2a adrenergic 

receptor A2a P08913 CHEMBL1867 203 

Tyrosine-protein kinase ABL ABL1 P00519 CHEMBL1862 773 

Acetylcholinesterase Acetylcholinester
ase P22303 CHEMBL220 3,159 

Androgen Receptor Androgen P10275 CHEMBL1871 1,290 
Serine/threonine-protein 

kinase Aurora-A Aurora-A O14965 CHEMBL4722 2,125 

Serine/threonine-protein 
kinase B-raf B-raf P15056 CHEMBL5145 1,730 

Cannabinoid CB1 receptor Cannabinoid P21554 CHEMBL218 1,116 
Carbonic anhydrase II Carbonic P00918 CHEMBL205 603 

Caspase-3 Caspase P42574 CHEMBL2334 1,606 
Thrombin Coagulation P00734 CHEMBL204 1,700 

Cyclooxygenase-1 COX-1 P23219 CHEMBL221 1,343 
Cyclooxygenase-2 COX-2 P35354 CHEMBL230 2,855 

Dihydrofolate reductase Dihydrofolate P00374 CHEMBL202 584 
Dopamine D2 receptor Dopamine P14416 CHEMBL217 479 

Norepinephrine transporter Ephrin P23975 CHEMBL222 1,740 
Epidermal growth factor 

receptor erbB1 erbB1 P00533 CHEMBL203 4,868 

Estrogen receptor alpha Estrogen P03372 CHEMBL206 1,705 
Glucocorticoid receptor Glucocorticoid P04150 CHEMBL2034 1,447 

Glycogen synthase kinase-3 
beta 

Glycogen P49841 CHEMBL262 1,757 

HERG HERG Q12809 CHEMBL240 5,207 
Tyrosine-protein kinase 

JAK2 JAK2 O60674 CHEMBL2971 2,655 

Tyrosine-protein kinase LCK LCK P06239 CHEMBL258 1,352 
Monoamine oxidase A Monoamine P21397 CHEMBL1951 1,379 

Mu opioid receptor Opioid P35372 CHEMBL233 840 
Vanilloid receptor Vanilloid Q8NER1 CHEMBL4794 1,923 
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Molecular Representation 

The python module standardizer (https://github.com/flatkinson/standardiser) was used to 

standardize all chemical structures. Inorganic molecules were removed, and the largest 

fragment was kept in order to filter out counterions. 

 

We computed circular Morgan fingerprints 53 using RDkit (release version 2013.03.02) 54. 

Morgan fingerprints encode compound structures by considering radial atom neighborhoods. 

The choice of Morgan fingerprints was motivated by the high retrieval rates obtained with these 

fingerprints in benchmarking studies of compound descriptors 34,55. The radius was set to 2 and 

the fingerprint length to 128 to reduce computing time, as we did not obtain significantly higher 

predictive power when increasing the fingerprint size when modelling these data sets. 

 
Model Training 

All models reported here were built using the python library scikit learn56. RF models were 

trained using the default parameter values except for the number of trees, which was set to 100. 

This value was chosen because using more than 100 trees does not generally lead to increased 

model performance when modelling bioactivity data sets57–59, and thus permits to reduce the 

training times. Default parameter values were used to train Ridge Regression (a=0.1) and 

multiple linear regression models.  

 
Simulation of Prospective Iterative Screening 
 

- Data set split 
 
To simulate a prospective screening scenario, we initially split the data sets into three subsets in 

the following manner (Figure 1A): 

 
(i) Inactive molecules (shown in green in Figure 1A): compounds annotated with an 

activity value lower than a given bioactivity threshold (parameter ‘Max inactives’ Î 

{5,6,7} ) are used as the training set. For instance, if the value of the parameter ‘Max 

inactives’ is set to 6, all compounds exhibiting a pIC50 value equal to or smaller than 

6 are selected for training. The goal is to train the models at iteration zero using only 

inactive or moderately active compounds. This is a common scenario in drug 

discovery campaigns where the goal is to find highly active molecules starting from a 

set of low to moderately active compounds.  
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(ii) Active molecules (shown in red in Figure 1A): in each prospective screening 

simulation, one highly active compound (i.e., IC50 larger than the value for the 

parameter “Min actives”; Figure 1) is kept in the test set, whereas the other active 

compounds are dismissed from both the training and test sets, and hence, no longer 

considered in a given simulation. Active compounds are those showing an activity 

value equal to or larger than the bioactivity threshold defined by the value of the 

parameter ‘Min actives’ Î {7,8,9}.  

 

(iii) Remaining molecules (shown in orange in Figure 1A): this subset is composed of 

those compounds with an activity value equal to or larger than the value of the 

parameter ‘Max inactives’ and smaller than the value of the parameter ‘Min actives’. 

All these are kept in the test set (see below). 

 

- Iterative screening  

We developed a modelling workflow to simulate a prospective drug discovery scenario where, 

given an initial set of inactive compounds, a RF, linear, or Ridge Regression model is trained on 

these inactives to predict the activity for a set of molecules (i.e., test set) containing only one 

active molecule (Figure 1B). The goal is to then test how many screening iterations are required 

by each method to find this active molecule. Once the predicted values for the test set are 

calculated, the C molecules with the highest predicted activity are selected (where C 

corresponds to the value of the parameter ‘number of choices’, set to 1 in the current study), 

and experimentally (or virtually in our framework) tested on the target under consideration. If the 

active molecule kept in the test set is not identified in one given iteration, it is incorporated into 

the training set and the model is regenerated. The steps above are repeated until the active 

molecule is identified and the number of iterations needed to reach this goal is recorded.  

 

We implemented a random picking and a similarity searching approach based on the Tanimoto 

coefficient60,61 to serve as baseline methods for comparison. The underlying idea is to evaluate 

whether a commonly used algorithm in virtual screening, i.e. a RF, provides higher extrapolation 

capabilities than (i) just picking C molecules at random from the test set until an active molecule 

is found, or (ii) picking the C molecules showing the highest average Tanimoto similarity to the 

top N active molecules in the training set, where 𝑁 ∈ {1, 5, 10, 20, 50}. The similarity searching 
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runs are referred to in the Figures and in the main text as “Tanimoto 1”,  “Tanimoto 5”, 

“Tanimoto 10”, “Tanimoto 20”, “Tanimoto 50”, depending on the value of N.  

 

The steps of the iterative screening workflow can be summarized as follows (Figure 1B): 

 

1. Train: 

• In the case of RF, linear, and Ridge Regression, train a model on the training 

set (initially the training set corresponds to the inactive molecules, green box 

in Figure 1A). Next, use these models to predict the activity for the molecules 

in the test set (initially composed of one active molecule and those 

highlighted in orange in Figure 1A).  

• In the case of similarity searching, compute the average Tanimoto similarity 

between the molecules in the test set and the N most active molecules in the 

training set.  

2. Select:  

• The molecule from the test set with the highest predicted activity in the case 

of RF, linear regression, and Ridge Regression. 

• The molecule showing the highest average Tanimoto similarity to the N most 

active molecules in the training set when using the similarity searching 

method, or  

• 1 molecule at random from the test set in the case of the random picking 

approach. 

3. Evaluate: 

• If the active molecule is among the selected ones, stop and record the 

number of iterations needed to identify the target molecule. If not, add this 

molecule to the training set and repeat steps 1-3 till the active molecule is 

found. 

 
Experimental Design  
The discovery power of the models was quantified using the variable “Number of molecules 

tested”, which corresponds to the number of molecules virtually tested until the active molecule 

in the test set was found.  
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To benchmark the discovery power of the algorithms described above, we designed a balanced 

fixed-effect full-factorial experiment with replications62. We considered the following 3 factors:  

(i) Data set: 25 data sets (Table 1). 

(ii) Algorithm: RF, Ridge Regression, linear regression, Tanimoto similarity searching, 

and random compound selection. 

(iii) pIC50 cut-off: this corresponds to the combinations for the values of ‘Max inactives’ 

(cutoff pIC50 value to include a molecule in the training set; see Figure 1A), and ‘Min 

actives’ (minimum pIC50 value required to consider a molecule active; Figure 1A). We 

considered the following pairs of ‘Max inactives’ and ‘Min actives’ values: 5-7, 5-8, 5-

9, 6-7, 6-8, 6-9, 7-8, 7-9, and 8-9. 

 

This factorial design was studied with the following linear model: 

 

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠	𝑡𝑒𝑠𝑡𝑒𝑑
= 𝐷𝑎𝑡𝑎	𝑠𝑒𝑡! +	𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚" +	𝑝𝐼𝐶50	𝑐𝑢𝑡𝑜𝑓𝑓# +		(𝐷𝑎𝑡𝑎	𝑠𝑒𝑡 ∗ 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)!,"
+		(𝐷𝑎𝑡𝑎	𝑠𝑒𝑡 ∗ 	𝑝𝐼𝐶50	𝑐𝑢𝑡𝑜𝑓𝑓)!,# +		(𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 ∗ 	𝑝𝐼𝐶50	𝑐𝑢𝑡𝑜𝑓𝑓)",# + 𝜇% + 𝜀!,",#,& 

(𝑖	 ∈ {1,… ,𝑁'()(	+,)+ = 25}; 	𝑗	 ∈ J1,… ,𝑁(&-./!)01+ = 9L; 	𝑘	 ∈ J1,… , 𝑁2345%	67).88 = 8L;	 

	𝑙	 ∈ J1, … ,𝑁/,2,)!)!.9+ = 250L; ) 

 

where the response variable, “Number of molecules tested’, corresponds to the number of 

molecules required in a given instance of the simulated virtual screening approach to identify 

the active molecule contained in the test set. Data seti, Algorithmj, pIC50 cutoffk are the main 

effects considered in the model, while the terms Data set * Algorithm, Data set ∗pIC50 cutoff, and 

Algorithm ∗pIC50 cutoff correspond to the interaction terms.  

 

The levels “A2a” (Data set), “random” (Algorithm), and “5-7” (pIC50 cut-off) were used as 

reference factor levels to calculate the intercept term of the linear model, μ0, which corresponds 

to the mean value of ‘Number of molecules tested’ for this combination of factor levels. The 

coefficients (slopes) for the other combinations of factor levels correspond to the difference 

between their mean ‘Number of molecules tested’ value and the intercept. The error term, 

ϵi,j,k,l,m, corresponds to the random error of each ‘Number of molecules tested’ value, defined as 
ϵ!,",#,& =	Nb.molecules	tested!,",#,& −	mean(Nb.molecules	tested!,",#) These errors are assumed to 

(i) be mutually independent, (ii) have zero expectation value, and (iii) have constant variance. 
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We ran 250 prospective screening simulations for each combination of factor levels to ensure a 

balanced experimental design. We found that this was necessary to obtain robust statistics, as 

the number of iterations required to find the active molecule varied by two orders of magnitude 

across replicates. In each of the 250 simulations run for each combination of parameter values, 

the active molecule to be identified was different. For each combination of factor levels, we 

chose a different random number as seed for each of the 250 replicates. 

This experimental design corresponds to a total of 450,000 simulations (25 data sets × 9 

algorithms × 8 pIC50 cutoffs × 250 repetitions). The normality and homoscedasticity assumptions 

of the linear model were respectively assessed with (i) quantile–quantile (Q-Q) plots and (ii) by 

visual inspection of the distribution of “Nb. molecules tested” values, and by plotting the fitted 

values against the residuals62. Homoscedasticity means that the residuals are evenly distributed 

(i.e., equally dispersed) across the range of the dependent variable used in the linear model. It 

is necessary to test this condition to guarantee that the modeling errors (i.e., residuals) and the 

dependent variable are not correlated. A systematic bias of the residuals would indicate that the 

errors are not random and that they contain predictive information that should be included in the 

model63,64. 

 
Multi-target virtual screening experiments 

We used the 1,070 compounds present in both the COX-1 and COX-2 data sets (Table 1) to 

test the discovery power of RF and Ridge Regression using multiparameter optimization, i.e. 

considering the bioactivity against a set of protein targets in parallel (here, two). In this scenario, 

the goal is to find a specific target compound in the test set that satisfies two criteria based on 

its activity on COX-1 and COX-2. The three target compounds were defined as those satisfying 

the following activity cut-off values: (i) pIC50 on COX-1 > 9 and pIC50 on COX-2 > 10; (ii) pIC50 

on COX-1 > 8 and pIC50 on COX-2 < 5; and (iii) pIC50 on COX-1 < 5 and pIC50 on COX-2 > 8.7, 

corresponding to dual ligands, selective ligands for COX-1 over COX-2, and selective ligands 

for COX-2 over COX-1.  

To compare the efficiency of RF and Ridge Regression to find one of these three target 

compounds, we trained either two RF or two Ridge Regression models on 200 randomly 

selected compounds from the whole activity range. These models were then used to predict the 

activity for the remaining 870 compounds on both COX-1 and COX-2. These sets of predictions 

were then combined using one of three metrics (see below), the compounds were ranked, and 
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the top-ranked compound was selected. The simulation was stopped if the selected compound 

was the target compound. Otherwise, the selected compound was added to the training sets, 

the two models were regenerated, and the process started again until the target compound was 

found. Each simulation was run 100 times, each time using a different set of 200 compounds as 

initial training set.  

 
The three metrics used to rank the compounds in the test set are:  

•  “Euc”: Euclidean distance for the predicted bioactivities for each compound in the 

test set on COX-1 and COX-2, and the threshold bioactivity values on these two 

proteins. The compound in the test set displaying the lowest distance was 

selected.  

• “Cumulative Distribution Function (CDF)”: we iteratively fit two Ridge or two RF 

models, one to predict activity on COX-1 and the other to predict activity on COX-2. 

At each iteration, we calculated the mean squared error for the predictions on the 

test set for both models, namely e COX-1 and e COX-2. We next calculated the 

probability (𝑃4:;<=) that the predicted activity for each molecule in the test set on 

COX-1 (𝑦a4:;<=) is higher than the activity cut-off value for COX-1 (𝑇4:;<=; e.g., 

pIC50 9) as: 

 

𝑃4:;<= = 	𝜑(
𝑦a4:;<= − 𝑇4:;<=

e4:;<=
) 

 

where 𝜑(𝑥) is the normal CDF. Similarly, for COX-2 we calculated 𝑃4:;<> as: 

 

𝑃4:;<> = 	𝜑(
𝑦a4:;<> − 𝑇4:;<>

e4:;<>
) 

 

The probability that the two predicted activities for a given molecule, 𝑦a4:;<= and 

𝑦a4:;<> ,	are in the region of interest (i.e., 𝑦a4:;<= > 𝑇4:;<= and 𝑦a4:;<> > 𝑇4:;<>) was 
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considered to be the product of the two probabilities 𝑃4:;<= and 𝑃4:;<>. The 

molecule with the highest combined probability was selected at each iteration. 

• ‘Addition’: a RF or Ridge Regression model was trained to predict the sum of the 

activity values, for both dual and selective inhibitors, on both COX-1 and COX-2. 

This model was then applied to the test set and the compound with the highest 

predicted value was selected.  

Conformal prediction 

Cross-conformal predictors were built as previously reported65,66. In brief, RF models were 

trained on 70% of the training data randomly selected using 10-fold cross validation. The cross-

validation predictions served to calculate a list of non-conformity values for the molecules in the 

training set, using the standard deviation across the forest as a scaling factor58,67. The validity 

was assessed on the remaining 30% of the data. 

We note that a plethora of methods to compute errors in prediction have been developed38. We 

decided to consider conformal prediction for this analysis as the state of the art given that (i) the 

calculated confidence intervals are always guaranteed to be valid if the exchangeability principle 

holds, and (ii) they have proved a versatile technique in diverse early-stage drug discovery 

applications20, 58, 74, 65,67–73.  
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Results and Discussion 

Data set modelability 

We first evaluated the modelability of the 25 data sets considered using RF (Table 1) in order to 

test whether our descriptor choice permits to model compound activity with high predictive 

power. To this end, we trained a RF model on 70% of the data set selected at random (training 

set), and used the resulting models to predict the activity for the remaining 30% (test set). The 

mean R2 values (averaged across 5 replicates) for the observed against the predicted pIC50 

values on the set were above 0.5 for all data sets (see Figure S1 for details), indicating that our 

choice of descriptors provides a molecular representation that captures aspects of the chemical 

structures related to bioactivity. The average RMSEtest values were in the 0.5-0.9 range, 

consistent with the expected modelling errors for heterogeneous IC50 data from ChEMBL75,76. 

Extrapolation power of RF and Ridge regression 

We next sought to investigate the extrapolation power of linear models and RF. To this end, we 

used as a training set all compounds in each data set with a pIC50 value <7, and as test set the 

remaining (i.e., higher-activity) data. RF models did not predict values higher than 7 pIC50 units 

for the molecules in the test set in none of the 25 data sets considered (Figure S2). This is 

consistent with the formulation of RF, as RF predictions are the average value of those similar 

instances in the training data. Hence, RF models never generate predictions outside the range 

of activities comprised in the training data76. By contrast, Ridge Regression models often 

extrapolated compound activity to values outside those present in the training set, generating 

predictions higher than the maximum activity value in the training set (Figure S3). Although the 

correlation between observed and predicted values for this low-activity to high-activity 

evaluation is generally poor for all data sets, there are three cases where the errors in prediction 

for molecules with a pIC50 value of around 8 were often smaller than 0.5 (see the performance 

for the A2a, Carbonic, Dopamine datasets in Figure S3). Overall, these results indicate that less 

algorithmically complex models, in this case Ridge Regression, extrapolate compound activities 

to values different from the training set better than RF.  

Although inaccurate, extrapolated predictions might be informative if they were accompanied by 

a quantitative measure of their reliability. Thus, we next evaluated whether the confidence 
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intervals calculated using conformal prediction72 serve to identify those predictions that are 

unreliable because the available training data is not representative of the molecules in the test 

set, and thus, force the models to extrapolate. 

To this aim, we challenged conformal prediction in intrapolation using the workflow previously 

described72 across the 25 data sets considered (Methods). As expected, the errors in prediction 

correlate with the confidence level (R2 > 0.95, P <0.01; Figure S4). This indicates that the 

confidence intervals provide valuable information about the reliability of individual predictions, 

which can then serve to prioritize compounds for further experimental testing20, 69,74. Next, when 

the models were trained on compounds with pIC50 values below 7 pIC50 units and applied to the 

remaining data. In this case the generated conformal predictors were found to be not valid 

(Figure S5). The lack of validity of these conformal predictors indicates that the exchangeability 

principle does not hold; i.e., the molecules in the training data are not representative of those to 

which the models are to be applied, which is true here given that the training data are inactive or 

marginally active, while the test data is taken from the highly active range. Hence the obtained 

confidence intervals do not provide reliable information about the errors of individual predictions. 

These results are of great importance for the current study in that they highlight that conformal 

prediction, as a method that has been shown to generate valid confidence intervals77, does not 

permit to generate reliable confidence intervals in cases where the available training data only 

encompasses inactive molecules and the goal is to find highly-potent molecules with an activity 

several orders of magnitude higher than the highest active molecule in the training set.  

Benchmarking the prospective discovery power of different virtual screening approaches 

To evaluate the prospective discovery power of the different virtual screening approaches 

considering all combinations of model parameters (factor levels), we designed a factorial design 

that we evaluated using a linear model (see Methods for details). The fitted linear model 

displayed an R2 value adjusted for the number of parameters of 0.52 (P < 10-15), and a standard 

error for the residuals of 269.2. This indicates that a substantial fraction of the variability in 

performance across the simulated iterative screening scenarios can be explained by the factors 

considered in the linear model, and hence, we can use it to better understand their relative 

performance in a statistically robust manner. Figures 2 and 3 show the average values of the 

‘Nb. molecules tested’ for all data sets across the levels of the factors Algorithm and pIC50 cut-
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offs. The values for the coefficients, namely slopes and intercept, and their P values are 

reported in Table S1. Overall, the residuals are randomly scattered for the region with higher 

density of “Nb. Molecules tested” values, i.e., 0-500 iterations, and become more dispersed for 

higher values (see Figure 4A). The distribution of the residuals around zero and the linear trend 

observed in the Q-Q plot indicates that the assumptions of normality and homoscedasticity of 

the linear model are fulfilled (Figure 4B-C). Thus, the choice of a linear model is adequate to 

study the relationship between the discovery power of the models and the parameters 

considered in the iterative virtual screening framework. 

Analysis of the interaction terms in the factorial analysis revealed a significant interaction 

between the factors Data set and Algorithm (P < 10-15), Data set and pIC50 cut-offs (P < 10-15), 

and Algorithm and pIC50 cut-offs (P < 10-15). The presence of interactions is illustrated by the 

non-parallel lines in Figures 2 and 3, and indicates that the discovery power of the algorithms 

explored here depends on both the data set modelled and the values of the factor pCI50 cut-off. 

Thus, the main effects alone cannot explain the variability in discovery power across algorithms. 

For instance, Ridge Regression permits to find the active molecule in the test set in fewer 

iterations than RF for data set COX-1 when the value of pCI50 cut-offs is ‘5; 8’ (green line; Figure 

2), whereas it requires more iterations when the value of pCI50 cut-offs is ‘5; 9’ (purple line; 

Figure 2).  

The difference in performance across algorithms shrinks for most data sets as the difference 

between the value of “Max inactives” and “Min inactives” decreases (factor pCI50 cut-offs). In 

fact, the performance of the algorithms is overall comparable when the difference between 

these two parameters is 1 pIC50 unit (magenta and light blue lines in Figures 2 and 3), and often 

comparable to random picking. We observe stronger variability across algorithms when the 

difference is 3 or 4 pIC50 units (purple, green, and grey lines in Figures 2 and 3). Notably, the 

number of iterations required to find the active molecule in the test set is significantly lower 

when using Ridge Regression for data sets Acetylcholinesterase, Androgen, and Dopamine 

(Figure 2), and data sets Opioid and Vanilloid (Figure 3). The similarity searching approach 

based on the Tanimoto similarity leads to comparable results across the values of N for most 

data sets, except for few cases, e.g., data set A2a (Tanimoto 5; purple line in Figure 2) or data 

set Caspase (Tanimoto 50; purple line in Figure 2).  
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More relevant is the fact that random selection of compounds requires a significantly smaller 

number of iterations than similarity searching and RF in multiple cases. For instance, similarity 

searching requires about two times more iterations than random picking, Ridge Regression and 

RF for data sets COX-1 (Figure 2) and Vanilloid (Figure 3), and about the same number of 

iterations as random picking for data sets Androgen, B-raf, and Dopamine (Figure 2). For some 

data sets, similarity searching required twice as many iterations than Ridge and linear 

regression (Figures 2 and 3). The active molecule in the case of the Vanilloid data set (Figure 3) 

was found after ~600 iterations on average, whereas similarity searching required ~900 

iterations. In summary, three trends are apparent from the data: (i) similarity searching and RF 

tend to perform a biased exploration in a similar area, either in chemical or activity space (or 

both), so they perform worst, (ii) random picking doesn’t extrapolate, but the sampling is not 

biased to any particular region in chemical or activity space, so this can be considered as the 

‘neutral option’ for selection; and (iii) regression methods (to an extent) can extrapolate, so they 

perform best. 

Influence of chemical diversity on iterative screening 

We next sought to determine whether the chemical similarity between the molecules in the 

training and test sets could explain the notable differences in performance of the studied virtual 

screening approaches across data sets. To this aim, we computed the Tanimoto similarity for 

each compound with a pIC50 value < 6 against all other compounds in the data set with an 

activity > 6 pIC50 units; Figures S6-10). This analysis revealed that RF performs worse than 

random where the molecules with pIC50 values < 4 and those with values in the 6-8 range are 

highly similar (see data sets COX-2 and Dihydrofolate; Figure S9). As a more general trend, it is 

important to highlight that the chemical space of inactives (e.g., pIC50 < 6) and medium actives 

(e.g., pIC50 in the 6-8 range) may or not be similar, but the chemical space of highly actives 

usually is. Medium actives can bridge to the highly actives in cases where they are midway in 

chemical space from both actives and inactives. However, in cases where there is a gap in 

chemical space between actives and inactives, only regression might provide a bridge due to 

their extrapolation power.   

Further analysis of specific examples revealed that low scaffold diversity in the training set often 

underlies the lower performance of similarity searching and RF as compared to random 
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selection. The enrichment for specific chemical moieties in the training data might lead to 

overfitting, as the presence of few chemotypes favours the selection of highly similar 

compounds to these, which in turn, often display similar activities to the low-active molecules in 

the training set. This might represent a trap for the algorithms, hampering the discovery of other 

scaffolds displaying high activity. A clear example of this phenomenon occurs in the Vanilloid 

data set (Figure 5) where 7 out of the most active 18 molecules in the training set (defined as 

compounds with pIC50 values < 6) share a common 2-(3-fluoro-4-methylsulfonylaminophenyl) 

propenamide scaffold (Figure 5A). Notably, this scaffold is not present in the most active 

molecules in the data set (Figure 5B). Figure 5C shows that the top ranked molecules in the test 

set by similarity searching (i.e., molecules with pIC50 value between 6 and 8 in this example) 

contain that scaffold, although with different substituents. These series of compounds were 

reported in a study of 2-(3-fluoro-4-methylsulfonylaminophenyl) propenamide derivatives79. 

Hence, the abundance of 2-(3-fluoro-4-methylsulfonylaminophenyl) propenamide derivatives in 

the training data makes similarity searching select compounds from a confined area in chemical 

space, thus hampering the discovery of the active compounds, and leading to lower 

performance than random picking (purple line in Figure 3). 

The overrepresentation of a scaffold in the training data might be however beneficial when 

activity cliffs are present, i.e., small structural modifications lead to marked changes in activity79–

83. In such cases, the highly active molecules in the data set would be very similar to the 

inactives in the training set, and hence, it would be easy to discover them based on the 

similarity of their fingerprints. To evaluate this in our data, we computed the average difference 

in activity for molecules with identical fingerprints, and for those with fingerprints differing in an 

increasingly higher number of bits (Figure 6). We find compounds leading to exactly the same 

fingerprint and whose activities differ by > 4 pIC50 units (Figures 6 and 7). These generally 

correspond to molecules that differ in the length of an alkyl chain linking two rings. For instance, 

the activity of compound CHEMBL3098275 (pIC50: 4.0) is 4 orders of magnitude lower than that 

of compound CHEMBL3586191 (pIC50: 8.44) in the Estrogen data set. The only difference 

between these two is the length of the alkyl chain. We note that the fingerprints for these two 

compounds are the same because the substructures that form the alkyl link map to the same 

position in the fingerprint. We observe that the presence of activity cliffs affects the relative 

performance of the virtual screening approaches considered. For instance, RF and similarity 

searching (Tanimoto 1) outperform other methods in the case of the Estrogen data set, 
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especially when the initial training data encompasses compounds with pIC50 values < 5 (purple 

squares in Figure 3; Estrogen data set).  

Overall, these examples illustrate that low chemical diversity in the initial set of training 

molecules might lead to overfitting in cases where the active molecules are structurally 

dissimilar, thus requiring additional iterations to escape the local minimum in chemical space, 

and find structurally novel chemistry. However, in cases where activity cliffs are present 

similarity searching and RF permit to reach active molecules faster. Given that ~58% of data 

points in ChEMBL were obtained from the literature (967,242 unique compounds; 5,635,084 

bioactivities in ChEMBL 2284), it is thus advisable to investigate the presence of analogue series 

on a per data set basis to account for the potential overfitting of similarity searching if the goal is 

to find novel scaffolds. Nevertheless, in cases where a small change might lead to increased 

activity, the overrepresentation of a given chemical scaffold in the training data might be 

beneficial. It is important to note that the presence of highly similar compounds, even if they 

show diverse bioactivities depending on small substituents (see the examples in Figure 7), 

might be a convenient strategy in optimization, but not in early drug discovery phases, where a 

wide sampling of the chemical space to find novel scaffolds is sought after. 

Although we have considered a wide range of data sets and explored an ample set of 

parameter settings, we note that our study has several limitations. The data sets used here, 

despite being diverse in terms of target biology and size, combine heterogeneous IC50 data 

obtained under uncontrolled experimental settings, and cover a biased set of the chemical 

space, as medicinal chemistry publications often report SAR studies on analogue series. This 

lack of structural diversity underlies the difference in performance across algorithms in specific 

cases. For instance, careful analysis of the Vanilloid data set revealed that the low scaffold 

diversity in the training set, due to the presence of tens of 2-(3-fluoro-4-

methylsulfonylaminophenyl) derivatives, significantly decreases the efficiency of RF and 

similarity searching to discover the active molecule in the test set (Figures 3 and 5). Hence, the 

results obtained here might not perfectly translate to an industrial setting, as higher-quality 

proprietary bioactivity data are generally obtained using normalized experimental conditions, 

chemical libraries are often less biased towards particular chemical families than ChEMBL data, 

and encompass more chemically diverse molecules. One should also note that there are 

fundamental biological differences across druggable targets, and hence, these should also 
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guide whenever possible the design of the most suitable iterative screening approach. Despite 

these limitations, we believe that the trends reported here are strong enough to challenge the 

role of similarity searching as a baseline method for the discovery of highly-potent compounds 

from an initial set of inactives. Our results suggest that using linear models might help reduce 

resources by 50% in some well-defined scenarios, and thus, make the drug discovery process 

more efficient. 

Multi-target iterative virtual screening  

So far, we have considered the activity on one protein target as the only criterion to find an 

active compound. However, in real-world drug discovery settings it is essential to consider 

compound activity on other targets to avoid unwanted side-effects, to the extent the in vitro data 

recapitulate in vivo effects5. Hence, we designed three multiparameter optimization virtual 

screening experiments, each based on a different metric (see Methods for details), using the 

data sets COX-1 and COX-2, as these are the only two data sets that share a large number of 

compounds in ChEMBL (version 23), namely 1,07085. COX-1 is constitutively expressed serving 

as the source of housekeeping prostaglandins, whereas the expression of COX-2 increases in 

pathophysiological situations such as acute pain, inflammation or cancer86–88. Hence, selective 

COX-2 inhibitors are used to treat pain and inflammation, while avoiding COX-1 mediated side 

effects (e.g., stomach bleeding)89. 

Here, we used two parameters, activity on COX-1 and COX-2, to concomitantly rank the 

compounds in the test set. Instead of finding one highly active molecule in the test set, the aim 

is to find one of the three specific target compounds we selected, each of which satisfies one of 

the following sets of criteria (indicated with red dots in Figure 8): (i) pIC50 on COX-1 > 9 and 

pIC50 on COX-2 > 10 (i.e., dual activity against both isoforms of the COX enzyme); (ii) pIC50 on 

COX-1 > 8 and pIC50 on COX-2 < 5; and (iii) pIC50 on COX-1 < 9 and pIC50 on COX-2 > 8.7. We 

found that for each of the three target compounds we could find a combination of metric and 

algorithm that performed significantly better than random picking (P <0.05, t-test). Specifically, 

the difference in the number of iterations between random picking and the best algorithm-metric 

combination was 148, 212, and 187 iterations for target compounds 1, 2 and 3, respectively 

(Table 2). By averaging the results across targets we find that the “Euclidean” and “CDF” 

metrics outperform “Addition” (P < 0.01), although the effect size is low, namely 22 iterations. 
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Overall, these results indicate that the multi-parameter optimization methods proposed here can 

also be used for multi-target drug design. Future studies on data sets encompassing 

compounds with annotated activities across multiple targets will be needed to more 

comprehensively evaluate the performance of these metrics and algorithms to perform 

multiparameter compound optimization. 

Table 2  Number of iterations (mean +/- standard error; n=100) required to find one of the three 

target compounds using the multiparameter optimization strategy designed for COX-1 and 

COX-2.  

 Ridge Euc. Ridge Addition Ridge CDF Random 

Target compound 1 353.1 +/- 9.0 427.5+/-8.2 362.4+/-8.9 435 
Target compound 2 277.1 +/- 9.3 303.9+/-9.0 278.5+/-9.3 435 
Target compound 3 407.1 +/- 8.0 370.1+/-8.5 396.8+/-8.1 435 

 RF Euc. RF Addition RF CDF 435 
Target compound 1 360.4+/-28.9 287.2+/-29.4 372.7+/-29.4 435 
Target compound 2 222.6+/-29.0 250.9+/-27.5 223.5+/-28.9 435 
Target compound 3 261.3+/-25.1 248.7+/-26.0 251.5+/-25.5 435 
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Conclusions 

In this contribution, we have shown that RF and similarity searching often show comparable 

performance to random picking in the discovery of novel bioactive molecules. In addition, we 

show that linear and Ridge Regression often enable the discovery of highly-potent molecules 

~2-3 faster than RF and similarity searching. In summary, (i) similarity searching and RF are 

confined to the original training space and do not extrapolate compound activities; (ii) regression 

methods can extrapolate, even if not always very predictive, into the desired direction, and 

enable the discovery of active molecules faster, and (iii) random picking is the baseline method 

and is not biased either way. The importance of these results are enormous given the strong 

reliance on similarity searching of a number of drug discovery campaigns to tackle the task of 

finding active molecules from an initial set of low-potent compounds. 
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Figures 

Figure 1  Framework for the simulation of a prospective screening campaign to find highly-
active molecules from a set of inactive/low-active compounds.  (A) For each data set, an initial 
training set is assembled using the compounds with a pIC50 value smaller than the value of the 
parameter “Max inactives”. The initial test set is composed of compounds with a pIC50 value 
higher than the value of the parameter “Max inactives” and smaller than that of the parameter 
“Min actives”, and one molecule randomly chosen with a pIC50 value greater than the value of 
“Min actives”. (B) First, the initial training data is used to select C molecules (1 in this study) 
from the test set. If this molecule has an activity higher than that of the parameter “Min actives”, 
the process is stopped. If not, the selected molecule is added to the training set and the process 
is repeated till the active molecule is found. 
 
Figure 2  Mean Nb. molecules tested for 15 out of the 25 data sets considered averaged across 
250 simulations. Each colored line corresponds to the combination of Max inactive and Min 
inactive values used in the virtual iterative screening framework shown in Figure 1. The shape 
of the points indicates the difference between the values of the parameters Max inactives and 
Min inactives. The y-axis indicates the average number of iterations (n=250) required to find the 
active molecule in the test set. Overall, the most efficient algorithm corresponds to that requiring 
the lowest average number of iterations to find the active molecule in the test set. As can be 
observed by the presence of non-parallel lines (i.e., interactions), the most efficient algorithm 
varies depending on the parameter values used.  

Figure 3  Mean Nb. molecules tested for 10 out of the 25 data sets considered averaged across 
250 simulations. Similar to Figure 2. 

Figure 4  Verification of the assumptions of the linear model. (A) Heteroscedasticity of the 
residuals. Fitted “Nb molecules tested” values against the residuals. Overall, the residuals are 
centered around zero and, roughly, present a comparable dispersion across the range of the 
dependent variable, indicating that the assumption of the heteroscedasticity of the residuals is 
fulfilled. The assumption of the normality of the residuals, assessed with the distribution of the 
residuals (B) and a quantile−quantile (Q-Q) plot (C). The residuals follow a Gaussian distribution 
with zero mean. This indicates that the assumption of the normality of the residuals is fulfilled. 

Figure 5  Example of the effect of the chemical diversity in the training data on the discovery 
power of similarity searching. (Top panel) The 20 molecules in the training set (Vanilloid data 
set) with the highest pIC50 values are shown. The value for the parameter ‘Max inactives’ was 
set to 6 pIC50 units. (Middle panel) Top 18 most active molecules in the Vanilloid data set. 
(Bottom panel) The 18 molecules in the test set with the highest similarity to the top molecules 
in the training set (top panel) are shown. The red circles highlight the substructure that is 
overrepresented in the training data set and that leads to overfitting in this case. 

Figure 6  Average activity difference for compounds whose fingerprints differ in the number of 
bits indicated in the x-axis. It can be seen that for some data sets the average pIC50 difference 
for compounds leading to the same fingerprint is > 1 pIC50 units. This high pIC50 difference for 
structurally similar compounds indicates the presence of activity cliffs in the data sets. 
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Figure 7  Examples of compound pairs with identical fingerprints but showing markedly different 
pIC50 values on the same target are shown (activity cliffs). These examples illustrate that small 
structural differences can lead to differences in activity of more than 4 pIC50 units. The presence 
of activity cliffs determines which algorithm performs best to find active molecules: regression 
methods when activity cliffs are present, and RF and similarity searching in the absence of 
activity cliffs. 

Figure 8  Bioactivities for the 1,070 compounds present in both the COX-1 and COX-2 data 
sets. The three structures correspond to the three target compounds used in the multi-target 
iterative screening simulations. 
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