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Abstract

Lipid membrane permeation of drug molecules was investigated with Heterogeneous Dielectric 

Generalized Born (HDGB) based models using solubility-diffusion theory and machine learning. 

Free energy profiles were obtained for neutral molecules by the standard HDGB and Dynamic 

HDGB (DHDGB) to account for the membrane deformation upon insertion of drugs. We also 

obtained hybrid free energy profiles where the neutralization of charged molecules was taken into 

account upon membrane insertion. The evaluation of the predictions was done against 

experimental permeability coefficients from Parallel Artificial Membrane Permeability Assays 

(PAMPA) and effects of partial charge sets, CGenFF, AM1-BCC and OPLS, on the performance 

of the predictions were discussed. (D)HDGB based models improved the predictions over the two-

state implicit membrane models and partial charge sets seemed to have a strong impact on the 

predictions. Machine learning increased the accuracy of the predictions although it could not 

outperform physics-based approach in terms of correlations.
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INTRODUCTION

When a drug is administered to a patient, the factors of absorption, distribution, metabolism, 

and excretion dictate how much of the drug will reach its target inside the body, thus 

determining its ultimate efficacy in the body. Regardless of the route of administration (such 

as intravenous, oral, sublingual, topical), most drugs will need to transverse lipid bilayer 

membranes during transport and to enter target cells. Intravenously administered drugs 

would need to pass through the vascular endothelium and drugs administered orally must 

pass through the epithelial cells of the gut and into the bloodstream to be delivered to their 

target sites as well. For most small and uncharged molecules, the predominant method of 

membrane permeation is simply passive diffusion driven by a concentration gradient.1 Thus, 

a critical metric for determining drug efficacy is the rate of permeation through lipid bilayer 

membranes.

A number of experimental methods exist for determining the membrane permeability of 

small molecules that are suitable in the process of drug candidate screening.2–4 One such 

method is the Parallel Artificial Membrane Permeability Assay (PAMPA)4 that utilizes an 

artificial membrane composed of a mixture of phospholipids embedded in a porous screen to 

create two compartments. In this method, a small molecule is added to one compartment and 

the rate of passive diffusion to the other compartment is measured. Cell-based systems for 

measuring the permeability coefficient such as Caco-22 and Mardin-Darby canine kidney 

(MDCK)3 cells are also commonly used.

Experimental determination of membrane permeabilities faces limitations when large 

libraries of molecules need to be screened and when new molecules are considered that have 

not been synthesized before. As an alternative, computational methods have been proposed 

based on quantitative structure-permeability relationship (QSPR) models5–10, applications of 

solubility-diffusion theory and related kinetic models11–13, as well as the direct extraction of 

rates from molecular dynamics (MD) simulations14,15. The advantages of the computational 

methods are that permeabilities can be estimated in principle for any compound and that 

high-throughput protocols are feasible given sufficient resources.

QSPR models utilize a set of training compounds with known permeabilities and derive 

mathematical relationships between the permeability and physiochemical properties of the 

compounds such as the number of hydrogen bond donors/acceptors,7–9 molecular and polar 

surface area,8, 9 molecular size,10 and lipophilicity.9 Although QSPR models are useful for 

filtering a large number of drug candidates, the accuracy of QSPR models is limited and 

such models do not perform well when a new set of drugs with different chemical properties 

is introduced.16 QSPR models work best when the sets of test and training compounds are 

fairly homogeneous.17 Additionally, Swift et a/.18 found that QSPR models have limited 

capacity to distinguish permeation rates for molecules that are closely related in structure.

Solubility-diffusion theory provides a fundamental framework for estimating the permeation 

of a given compound through a membrane bilayer.11,19 This theory relates the rate of 

permeation of a molecule to the resistance that it experiences in the membrane according to 

Eq. 1:20
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R = 1
Pm

= ∫
−d /2

d /2 dz
K(z)D(z) (1)

where R is the resistance to permeation, Pm is the permeability coefficient (a rate, usually 

described in terms of cm/s), K(z) and D(z) are partition and diffusion coefficients, 

respectively, both of which depend on the z position of the solute along the membrane 

normal, and d is the membrane thickness.

In principle, solubility-diffusion theory can be applied to any molecule and any type of 

membrane. Its accuracy in predicting permeabilities depends primarily on the models that 

are used to estimate the partitioning of a given small molecule into the membrane and its 

interaction with the lipid bilayer as it diffuses across the membrane. Different studies have 

explored the application of explicit and implicit representations of membrane environment 

within the solubility-diffusion framework.18,21–27 Generally, the idea is to determine 

membrane insertion free energy profiles along with estimates of intramembrane diffusion so 

that Eq. 1 can be applied.

The most detailed approach relies on explicit atomistic representations of the lipid bilayer. 

This has resulted in better agreement between computationally estimated permeation rates 

and experimental measurements compared to QSPR aproaches.21–23, 26–28 However, the 

accuracy of the force field, including the lipid and water parameters, are essential 

factors28–30. In addition, the computational costs of all-atom explicit simulations remain 

prohibitively high for applications to large sets of molecules.

Implicit representations of the solvent and membrane are a compromise to increase the 

computational efficiency of the permeation calculations. An implicit model of the membrane 

can rapidly estimate the partitioning of a molecule into the membrane without the need for 

extensive sampling31. However, implicit models typically do not allow the extraction of 

diffusional properties which have to be estimated separately. A comprehensive study was 

performed by the Jacobson group that was built upon the solubility-diffusion theory to 

predict the permeability of a large set of Food and Drug Administration (FDA) approved 

drugs and other compounds.24 In that study, an implicit solvent representation based on the 

generalized Born (GB) method32 was used to estimate the partition coefficients of the drug-

like molecules between water and chloroform as an approximation of water-membrane 

partitioning. This work also included extensive conformational sampling to determine the 

lowest energy conformation of each permeant and changes in ionization state upon 

membrane insertion were considered. The resulting predictions correlated reasonably well 

with experimental permeabilities demonstrating that solubility-diffusion theory can be 

applied efficiently when coupled to an implicit model of the membrane layer. However, 

simple two-state models of the membrane environment have been critically discussed before 

by Marrink and Berendsen33 who instead suggested a four-region model to improve 

accuracy. Later studies by Swift et al.27 also commented on the possibility of 

oversimplification when the membrane is modeled simply by chloroform during the 

calculation of permeability coefficients.
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In this work, we revisit the calculation of membrane permeabilities using more advanced 

implicit membrane models to test whether such models can lead to improved permeability 

estimates for drug-like molecules. More specifically, we applied the Heterogeneous 

Dielectric Generalized Born (HDGB)34,35 model that describes the membrane via a 

continuously varying dielectric profile along the membrane normal along with a varying 

solvent accessible surface area (SASA)36 term to capture electrostatic and non-polar 

contributions to the water-membrane partitioning free energy. In addition to the standard 

HDGB model, we also tested the Dynamic HDGB (DHDGB)31 model that allows 

membrane deformations by coupling the standard HDGB model to a continuum model of 

elasticity.38 The DHDGB framework can capture the lowering of membrane insertion free 

energies due to the formation of water defects for polar or charged molecules. The 

membrane insertion profiles from the (D)HDGB models were then applied via the solubility-

diffusion framework to estimate permeability coefficients and tested on the same set of 

compounds that were previously studied by Leung et al.24 With the (D)HDGB-based 

insertion profiles, it was possible to improve the permeability estimates over the previous 

work by Leung et al.24 suggesting a benefit of the more advanced implicit membrane 

models. Finally, we also applied machine learning to test whether such methods can result in 

further improvements.

In the following, the methodology is described in more detail before results are presented 

and discussed.

METHODS

Estimation of membrane permeability coefficients

Membrane permeability coefficients (logPm values) were calculated based on the solubility 

diffusion model by calculating the integral in Eq. 1. In addition to this, we also used a 

simple-barrier approximation of the solubility-diffusion model according to the following 

expression introduced earlier39 that was also used by Leung et al. 24:

Pm =
KbarrierDbarrier

δbarrier
(2)

where the membrane is treated as an effective barrier with width δbarrier. Kbarrier is the 

partition coefficient of a permeant into the membrane, and Dbarrier is its diffusion coefficient 

across the membrane barrier.

For the calculation of permeability coefficients via Eq. 1, partition coefficient profiles, K(z), 
along the membrane normal were calculated from the free energy of membrane insertion 

profiles of the drug molecules using an implicit membrane model as described in more detail 

below. K(z) was calculated from the free energies as follows:

K(z) = exp( − ΔG(z)/RT) (3)
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where ΔG(z) is the free energy at the specific z position. Application of Eq. 1 also requires 

diffusion coefficient profiles as a function of z. Viscosity profiles η(z) were extracted from 

the diffusion values reported in the studies of Carpenter et al23 and Bemporad et al.21 

according to the Stokes-Einstein equation:

Dbarrier(Z) =
kBT

6πη(z)r (4)

where r is the radius of the permeant, kB is the Boltzmann constant, and T is the 

temperature. For z≥25 Å, the viscosity of bulk water was assumed with an experimental 

value of 0.0089 poise at 25°C40. We also considered a ‘high-barrier’ profile where the 

viscosity inside the bilayer was set to 1 poise, the value used by Leung et al.24 All three 

viscosity profiles are given in Table S1. Diffusion coefficient profiles were then calculated 

using Eq. 4 with the radius of the permeant obtained via a spherical shape approximation 

from its volume for each drug molecule. The molecular volumes were calculated using two 

different approaches: 1) A volume based on overlapping van der Waals spheres for each 

atom was calculated using the CELARMM package, version c41al41; 2) the 

hydrodynamically effective volume was determined using HYDROPRO, version 1042.

In the simplified version of the solubility-diffusion model given in Eq. 2 we calculated 

Kbarrier as follows:

Kbarrier = 10
ΔGbarrier / − 2.3RT (5)

where ΔGbarrier is further decomposed into the transfer free energy ΔGtr of a molecule in the 

conformation and charge state inside the membrane and the free energy ΔGstate for 

converting the state preferred in water to the membrane-bound state:

ΔGbarrier = ΔGtr + ΔGstate (6)

We generally assume that molecules are neutral inside the membrane and, therefore, at least 

for relatively small, rigid molecules, the main contribution to ΔGstate arises from the cost of 

neutralizing molecules that are charged in solution. ΔGstate terms were estimated using the 

Henderson-Hasselbalch equation based on pKa values of ionizable sites from experimental 

studies.43–62 We also tested the ΔGstate values reported by Leung et al.24 for the set of 

molecules considered here. Those values were obtained based on theoretical predictions and 

include an estimate of conformational reorganization free energies between water and 

cyclohexane as a mimic of the membrane environment. ΔGtr was extracted from membrane 

insertion profiles for the neutral molecules as described in more detail below. The effective 

width of the membrane barrier, δbarrier, was also calculated from the insertion profiles as 

described below.
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Finally, the rate of diffusion across the barrier, Dbarrier, was estimated based on the Stokes-

Einstein equation as given in Eq. 4 without any z-dependency, where the viscosity η was 

taken as 1 poise following the study by Leung et al24.

Membrane insertion free energy profiles

Free energy insertion profiles were obtained using the HDGB and DHDGB implicit 

membrane models. We used the dielectric and non-polar profiles optimized for a 

dipalmitoyl-phosphatidylcholine (DPPC) lipid bilayer and other parameters of the GB 

models as described earlier34,35. Initial structures of the compounds were extracted from 

PubChem49 in their neutral forms. The PubChem structures are minimum energy structures 

that resulted from extensive sampling and clustering63. The initial structures were then 

minimized in vacuum using CHARMM over 200 steps with a conjugate gradient algorithm. 

The minimized structures were positioned initially at z=0, in the center of the membrane, 

and subsequently translated along the z direction in 1 Å increments until z=30 Å, 

corresponding to the bulk water phase. At each z position, the molecules were rotated 

around the x and y axes in 15° intervals to sample different orientations. For each position 

and orientation, energies were evaluated from the implicit membrane model and Boltzmann-

averaged to obtain the insertion free energy as a function of z along the membrane normal. 

With the DHDGB model, in addition to this protocol, the thickness of the upper membrane, 

where the molecule was inserted, was also optimized at each z position between 0 and 25 Å 

to find minimum energies with locally deformed membranes.37 In addition to obtaining 

profiles for the neutral compounds, extracting ΔGtr as described below and adding the 

precomputed ΔGstate values, we also considered an alternative approach where we 

simultaneously obtained profiles for charged (at pH=1.4) and neutral states of a given 

molecule. A hybrid profile was then generated that consisted of the minimum free energy 

from either profile after adding the cost of neutralization in aqueous solvent to the profile for 

the neutral form. CHARMM (version c41a1)41 was used to obtain the free energy profiles. 

The MMTSB Tool Set64 was utilized to efficiently perform the calculations on multiple 

molecules in parallel.

Since force field parameters were not readily available for most of the drug-like molecules 

studied here, the CGenFF program version 2.065–67 was used to obtain bonded and non-

bonded parameters. Bonded parameters were only used for local geometry optimization. The 

partial charges and the choice of atomic radii that define the molecular surface were used in 

determining the membrane insertion profiles via the implicit membrane models. In addition 

to the partial charges from CGenFF, we also obtained partial charges via the AmberTools16 

package68 using rapid AM1-BCC quantum chemistry calculations69, 70, and OPLS2005 

charges 71, 72 via the Ligprep module that is part of the Schrodinger Suite 2018-173. The 

OPLS charges match the charge set that was used in the previous work by Leung et al. 24. 

For all three charge sets, we used the atomic radii according to the Lennard-Jones σ 
parameter from CGenFF. In addition, we also tested the use of Bondi radii74 with AM1-

BCC charges as that combination of parameters can be obtained for new molecules without 

any commercial software.
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We considered multiple possibilities for extracting ΔGtr and δbarrier values from the 

membrane insertion profiles as summarized in Fig. 1. The most straightforward approach is 

to estimate ΔGtr as the difference between the energy in bulk water and in the center of the 

membrane (ΔG1 in Fig. 1). However, this estimate neglects that there may be a significant 

minimum at the water-membrane interface which may increase the energy for crossing the 

barrier. There could also be an additional barrier upon binding to the membrane as shown in 

the schematic profile shown in Fig. 1. To capture these features, different estimates were 

considered as summarized in Fig. 1. While ΔG2 and ΔG3 are alternate estimates of ΔGtr, the 

quantities ΔG4-9 capture only parts of the profiles and were used as additive factors in 

combination with ΔG2-3.

A simple approach for estimating δbarrier from a given profile may be to use the position of 

the membrane-water interface minimum as a measure of the width of the barrier (δ1) but 

other possibilities include the calculation of an effective width from different areas under the 

profile curve normalized by dividing by the height of the profile. Due to the symmetric 

nature of the membrane, the barrier should be twice as wide as the insertion profiles. 

Therefore, each area obtained via integration was multiplied by 2. Again, some of the δ 
quantities only capture part of the profile (δ6, δ7, δ8, and δ9) and those values were 

combined with other quantities to obtain estimates for the entire barrier (see also Table S2). 

The summary of all the combinations of ΔGtr and δbarrier terms tested is given in Table S2. 

We also used a constant δbarrier term of 18 Å since that value was used as an effective 

membrane thickness in previous studies24, 39. Various combinations of these terms were 

applied to estimate Pm using Eq. 2.

LogPm estimates via machine learning

In addition to direct estimates of logPm values according to Eq. 1 and Eq. 2, we tested the 

application of machine learning algorithms that were trained on the experimental data for a 

subset of molecules. We discretized the DHDGB profiles along z in 2 Å increments and 

directly used those values along with ΔGstate, Dbarrier, the molecular weight, and the 

molecular volume. Furthermore, we classified free energy profiles into different types (see 

Fig. 2) as a categorical feature so that a total of 20 features were input for each molecule. 

The classification of profiles into five classes was done based on energies in the water phase 

at z=30 (E30), in the bilayer center at z=0 (E0), and at the z-position where minimum energy 

is obtained (zmin) and summarized in Table 1.

We used the Tensorflow program75 and applied the deep neural network algorithm 

developed within this program based on the DNNLinearCombinedRegressor estimator. The 

Follow the Regularized Leader (FTRL) and The Adaptive Gradient Algorithm (Adagrad) 

optimizers were used for the linear and neural network parts of the model, respectively.76 

We applied the algorithm using four hidden layers with 100, 75, 50 and 25 nodes, 

respectively. The rectified linear unit (RELU) activation function was used for each hidden 

layer. The number of training epochs was set to 10,000, which was sufficient to achieve 

convergence in the correlations between predicted and experimental logPm values. A batch 

size of 4 was used, since the number of molecules considered here was relatively small. The 

loss of function was calculated against the experimental logPm values and the overall results 
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were evaluated in terms of root mean-squared errors (RMSE) and R2 correlations of linear 

regression curves of predicted versus experimental logPm values.

Machine learning was applied repeatedly for 50 molecules taken randomly as the training 

set. For a given training set, 10 models were generated and the model with the highest R2 

value for the complete drug set was taken for that specific training set. This procedure was 

then repeated ten times with different randomly generated training sets to allow for a 

statistical evaluation of the results. The best model that gives the highest R2 with respect to 

experimental values is reported in more detail in the Appendix S1. The weight matrices and 

biases for each layer are given along with the formula for the calculation of the output.

The training sets used in machine learning were also used for multiple linear regression 

analysis to determine if deep learning has any advantage over much simpler multiple linear 

regression models. The Python statmodels module77 was used for generation of the 

regression models. We used the same input features (discretized DHDGB profiles, ΔGstate, 
Dbarrier, the molecular weight, and the molecular volume) with the machine learning 

calculations for the linear regression analysis to be able to directly compare machine 

learning and multiple linear regression approaches. The ordinary least squares method was 

used for estimating the regression coefficients.

Test sets

A total of 109 molecules with available experimental PAMPA permeability coefficients 

(logPm) were considered based on data from five different experimental studies (see 

structures in Figs. S1–S5).78–82 These molecules are either drugs or well-characterized small 

chemicals and they were also studied by Leung et al.,24 so that a direct comparison between 

their results and ours is possible. The three-dimensional coordinates of the drug molecules 

were obtained from the PubChem database49. The measured logPm values from these studies 

are reported in Table S3. In two studies, intrinsic permeability coefficients for uncharged 

species were reported that needed to be converted to pH dependent logPm values as detailed 

in those studies 78, 80. Some of the molecules were measured in multiple studies. In these 

cases, we calculated average logPm values over multiple experimental values. The evaluation 

of logPm predictions was based on comparison against the experimental logPm values via 

linear regression to obtain R2, slope, and intercept. In addition, RMSE values were obtained 

after applying an offset that minimized the RMSE values for each model. Statistical metrics 

for each model were calculated on the ten test sets that excluded the training sets used for 

machine learning to obtain statistical uncertainties and to allow for a consistent comparison 

with the machine learning results.

MemDrugPerm web service

A protocol for predicting membrane permeability coefficient based on AM1-BCC charges 

and Bondi radii was implemented as a web server (http://feiglab.org/memdrugperm) to make 

the method available for use by the broader community. The MemDrugPerm service accepts 

coordinate files of small molecules as an input, automatically determines charges, calculates 

profiles via HDGB or DHDGB and then estimates logPm according to Eq. 2. Typical runs 

take minutes for completion.
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RESULTS

We tested the computational prediction of lipid membrane permeabilities for small drug-like 

molecules from free energy of insertion profiles obtained by implicit membrane models. We 

focused this study on a set of 109 molecules, the majority of which are FDA-approved 

drugs, with logPm data available from PAMPA experiments. The same set of compounds 

was also used by Leung et al.24 so that a direct comparison with this earlier work can be 

made. As described in the Methods section, we estimated permeabilities based on solubility-

diffusion theory, either directly via Eq. 1 or using a simplified version where the membrane 

is treated as a simple barrier and Pm is obtained via Eq. 2. In addition, we also tested a 

machine learning approach using features of the insertion profiles and selected molecular 

properties as input but without making any assumptions about the specific functional form 

for estimating Pm.

Membrane insertion profiles

As detailed in the Methods section, membrane insertion profiles were obtained for all of the 

compounds with the HDGB and DHDGB implicit membrane models using CHARMM 

CGenFF, Amber AM1-BCC, and OPLS charge sets and atomic radii either derived from 

CHARMM Lennard-Jones or Bondi radii.

The membrane profiles for all of the compounds are shown in Figs. S6–S15. They can be 

classified into five major types (see Fig. 2). For the majority of compounds, membrane 

insertion is unfavorable, resulting in a significant barrier in the center of the membrane 

(classes 1, 2, and 4). A subset of compounds was more favorable inside the membrane than 

in water (classes 3 and 5). For most compounds except for the molecules in class 4 there was 

a small barrier upon membrane insertion and except for the small number of compounds in 

classes 4 and 5, the insertion profiles exhibited a free energy minimum in the membrane 

head-group region.

As a typical example, the insertion profiles for caffeine (class 1 or 2 depending on the model 

and charge set) are shown in Fig. 3. As expected, the estimated insertion free energies are 

significantly reduced with the DHDGB model over HDGB since DHDGB allows the 

deformation of the membrane to facilitate the diffusion of polar compounds. This is 

generally the case for the compounds with profiles in classes 1, 2, and 4 (see Figs. S6–S15). 

The example profiles for caffeine highlight furthermore that different charge sets can also 

result in significantly different insertion profiles. The choice of atomic radii only has also an 

effect as the insertion profiles with Bondi radii and AM1-BCC charges generally give larger 

barriers for the membrane insertion compared to the CHARMM Lennard-Jones radii and 

AM1-BCC charges. The significant quantitative variations either due to the choice of the 

implicit solvent model or the charge set have a direct impact on the accuracy of the logPm 

predictions as discussed below. Moreover, in some cases, even the qualitative profile 

classification varied as a function of the methodology (see Table S4).
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Prediction of logPm values by integration over the membrane insertion profiles

LogPm values were obtained by direct integration of the free energy and diffusion coefficient 

profiles following Eq. 1 based on the free energy profiles of neutral molecules obtained by 

the HDGB and DHDGB models. We also tested hybrid free energy profiles for charged 

compounds by taking into account the free energy profiles of neutral and charged molecules 

offset by ΔGstate based on the pKa as described in the Methods section. Diffusion coefficient 

profiles were obtained according to the three viscosity profiles given in Table S1 and Eq. 4 

(see Methods). In addition, we also tested setting D(z) simply to the estimated value in water 

for any value of z. Table 2 shows the results for the neutral free energy profile and Tables 3 

and 4 show the results for the hybrid free energy profiles generated using ΔGstate terms 

obtained using experimental pKa values and theoretical predictions from Leung et al., 
respectively. Individual logPm values using DHDGB profiles and high-barrier diffusion 

profiles are listed in Tables S5–7. Generally, good correlation is found between the estimated 

and experimental logPm values with R2 values ranging between 0.37 and 0.60 for linear 

regression fits. The slopes of the regression functions were generally larger than 1 and root 

mean-squared errors after adding a constant offset were at best 1.3, but typically larger. 

Across all parameter variations, DHDGB resulted in significantly better performance than 

HDGB with higher correlation coefficients, slopes closer to 1, and smaller RMSE values. 

There were also clear trends with different charge sets. Overall, OPLS charges resulted in 

the highest correlations and smallest RMSE values, followed by estimates based on AM1-

BCC and CGenFF charges. There was also a significant effect of the radii used with the 

AM1-BCC charges. With Bondi radii, the performance was worse than with the CGenFF-

derived radii, especially when DHDGB was used to obtain profiles.

The use of hybrid profiles led to modest improvements in correlation, especially with 

DHDGB, but slopes and RMSE values were increased as well (see Tables 3 and 4). Using 

ΔGstate values from Leung et al. that take into account conformational changes resulted in 

slightly better predictions than the use of ΔGstate values estimated only based on pKa values 

for OPLS and AM1-BCC charges but not CGenFF charges.

The choice of the diffusion profile had only a small effect on the results. The high-barrier 

profile resulted in same R2 values but also slightly increased slopes and RMSE values, but 

the overall differences were small indicating that the exact shape of D(z) is not critical. Even 

assuming a constant diffusion value from water throughout the membrane did not make 

much of a difference.

Prediction of logPm values by simple barrier approximation

LogPm values were also determined according to Eq. 2 based on single values of Kbarrier, 
δbarrier. and Dbarrier. The values for Kbarrier and δbarrier were obtained based on the profiles 

(see Fig. 1) either with or without including ΔGstate values according to Eq. 6. The diffusion 

across the membrane, Dbarrier, was estimated either based on the molecular volume or the 

effective hydrodynamic volume. The individual Dbarrier and ΔGstate estimates for the 

molecules are given in Table S8. For the DHDGB profiles, different estimates for ΔGtr 

(ΔG1-9, see Fig. 1)) are given in Tables S9–S11 and the different estimates for δbarrier are 

given in Tables S12–S14.
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Many combinations of ΔGtr and δbarrier were explored (see Table S2) in the context of Eq. 2 

to predict logPm. Selected combinations leading to the highest correlations and lowest 

RMSE values with DHDGB are listed in Table S15. The best results were found when 

ΔGbarrier was calculated as ΔG1, i.e. the difference in energy between the center of the 

membrane and the water phase, and δbarrier as δ2, which corresponds to the area under the 

entire profile divided by the energy in the center of the membrane (see Fig. 1). We note that 

using a constant δbarrier term as in Leung et al. yields almost equal R2 values as with δ2, but 

the RMSE values are lower using δ2. The inclusion of ΔGstate estimates improved the 

correlations but led to increased RMSE values as in the direct integration according to Eq. 1. 

Slightly higher R2 values were obtained when Dbarrier was calculated using the volume 

obtained from CHARMM instead of the hydrodynamic volume from HYDROPRO.

The logPm values obtained with ΔGbarrier=ΔG1 δbarrier=δ2 are given in Tables S5–7 and 

were further analyzed. Table 5 summarizes the agreement between the predicted logPm 

values and the PAMPA data. The results are similar although overall somewhat worse than 

the estimates obtained by direct integration via Eq. 1. Again, the profiles from DHDGB give 

mostly better results than with HDGB and the best and worst agreement is found with the 

OPLS and CGenFF charges, respectively.

We also compared our results with the previous work by Leung et al.24 that was based on a 

two-state implicit model rather than z-dependent insertion profiles as in the present study. 

Comparing the results obtained with the OPLS charges, we obtain higher correlation 

coefficients, smaller slopes and lower RMSE values with HDGB and DHDGB. Since the 

model based on Eq. 2 was the same between our work and the work by Leung et al. this 

demonstrates that a more detailed implicit membrane formalism directly translates into 

better estimates of permeabilities.

Prediction of logPm values by machine learning

We applied machine learning algorithms for logPm predictions based on discretized profiles 

as input features as described in the Methods section, with the best resulting model then 

used to predict logPm values. Since we used part of the molecules as training data, we 

calculated R2, slope, and RMSE values only for the remaining molecules that were not 

included in the training set. This analysis was repeated for a number of different sets of 

molecules selected as training and test sets. The averages over test sets are reported in Fig. 4. 

Since we did not test machine learning with the AM1-BCC/Bondi combination, the 

corresponding results with DHDGB-based predictions are not shown here. In addition to the 

machine learning model, we applied a multiple linear regression model for the same training 

sets used in machine learning to be able to compare multiple linear fits with the deep 

learning models.

In terms of correlation coefficients, the model based on machine learning outperforms the 

estimates based on Eq. 2 and based on Eq. 1 without the hybrid profiles for the CGenFF and 

AM1-BCC charge sets but matches the results based on Eq. 1 with the hybrid profiles for 

those charge models. With OPLS charges, the correlations based on the machine learning 

model were not significantly improved over the estimates based on Eq. 2 and worse than the 

estimates based on Eq. 1. The machine learning model had significantly lower RMSE 
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values. However, lower RMSE values can also be obtained by simply applying a linear 

transformation of the logPm predictions which would not affect the correlation coefficients. 

For example, for the estimates with DHDGB for OPLS charges based on Eq. 1, a simple 

linear transformation that scales the values so that the slope in the regression analysis with 

respect to the PAMPA data becomes 1 results in RMSE values of 0.76, similar to the values 

obtained from the machine learning. Multiple linear regression models give R2 correlations 

smaller than machine learning models suggesting that machine learning with deep 

components has advantages over the linear model.

The advantage of machine learning protocols is that no a priori model is required. It is 

remarkable that the performance achieved via machine learning is similar to a direct 

implementation of Eq. 1 but, perhaps somewhat disappointingly, we did not find that the 

machine learning model could significantly outperform the best direct estimates based on 

Eq. 1.

DISCUSSION AND CONCLUSIONS

In this study, we applied HDGB based implicit membrane models and their combination 

with solubility-diffusion theory and machine learning to predict membrane permeabilities of 

drug molecules. The results were evaluated against the experimental PAMPA logPm values 

in terms of R2 correlations and RMSE values. The general finding is that the HDGB-based 

models result in improved predictions over previous efforts based on a two-state water/

chloroform model that was used in the work of Leung et al. We also find that including 

membrane deformations via the DHDGB model leads to consistent further improvements as 

it is expected to better represent the insertion profiles of polar molecules. The availability of 

insertion profiles instead of single-value water-membrane partition coefficients allowed us 

furthermore to directly apply the integral form of the solubility-diffusion theory instead of 

the simpler barrier approximation. This also resulted in further improvements, especially 

when the hybrid profiles were applied that take into account changes in protonation states 

when charge molecules are inserted into the membrane.

The use of DHDGB resulted in overall improvements not just because of the more accurate 

physics but also because it allowed a compensation of overestimated charges. An example is 

given in Fig. 5 for sulfasalazine where the HDGB insertion free energies were much higher 

with CGenFF and AM1-BCC than for OPLS charges. DHDGB profiles in all of the cases 

were much more similar to each other and resulted in estimated logPm values much closer to 

the experimental data. This explains why the use of DHDGB resulted in overall larger 

improvements for estimates based on CGenFF and AM1-BCC charge sets where the initial 

correlations with HDGB were significantly lower than with the OPLS charges.

Even with DHDGB, there are differences with different charge sets. Overall, OPLS gives the 

highest R2 correlations, although all three charge sets give similar RMSE values with respect 

to the experimental values. This suggests that the choice of partial charges has an impact on 

the calculations and further improvements in the prediction of permeabilities may depend 

primarily on better charges. To understand the differences in the partial charges better, we 

illustrate in Fig. 6 three examples of drugs that have large differences in partial charges 
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between CGenFF and OPLS and as a result differ significantly in their free energy of 

membrane insertion profiles. Polar regions especially around nitrogen atoms gave the largest 

differences in partial charges between the two charge sets. There is a general tendency for 

CGenFF to overestimate the hydrophilicity for these three drugs and as a result, OPLS gave 

better predictions. Additional analysis of the CGenFF parameters and the charge penalties 

that the CGenFF program outputs shows a correlation between the penalties and the 

differences of the predictions and experimental values (see Fig. S16–18). The highest 

penalties were given for the polar regions, reflecting the overestimation of polarity that 

caused the larger negative differences for the logPm values. While knowing that charges may 

be inaccurate is helpful, it remains a significant challenge to actually improve the accurate 

estimation of partial charges, especially in a high-throughput context where large numbers of 

molecules need to be screened.

The HDGB and DHDGB models were optimized based on a DPPC membrane while the 

experimental logPm values are based on the PAMPA experiments with different lipid 

compositions, namely brain membrane81, gastrointestinal track lipids78–80 or lecithin from 

egg yolk82. All of these membranes have fatty acid compositions with mostly unsaturated 

lipids with 18 or fewer carbons83–85. The direct comparison with PAMPA experiments is 

fundamentally problematic because PAMPA does not directly measure permeation across 

pure lipid bilayers. Instead, in PAMPA experiments, lipids are dissolved in organic solvent 

and may form a heterogeneous mixture of bilayers, liposomes, and micelles. Nevertheless, 

under the premise that PAMPA experiments do approximate pure bilayers, we explored 

whether an adjustment of the membrane thickness in the implicit membrane model could 

lead to better agreement with the PAMPA-based logPm values. Membranes formed by the 

lipids used in the PAMPA experiments are expected to result in slightly thinner than pure 

DPPC bilayers86. Therefore, we tested implicit membranes with different thicknesses by 

simply assuming that the shape of the insertion profiles would remain the same and that the 

profiles would be shifted along z in either direction with the value at z=0 either repeated (for 

a wider membrane) or deleted (for a thinner membrane). Based on the modified profiles, we 

recalculated logPm values using Eq. 1 (see Table 6). We found that increasing the width 

leads to increasing RMSE values, whereas a decreased width reduced RMSE values. The 

better agreement with the thinner profiles is consistent with the, on average, shorter lipids 

used in the PAMPA experiments compared to DPPC bilayers. The analysis demonstrates 

more generally that the computational logPm estimates are sensitive to the membrane 

thickness and that it may be possible in the future to provide different permeability estimates 

for different membrane types with appropriately reparametrized (D)HDGB models.

Different lipid contents and concentrations of lipids are known to cause variations in 

experimental logPm values from PAMPA87. Table S3 shows that the experimental values for 

the same drugs from different experiments vary and average experimental logPm values have 

uncertainties between 0.1-0.8. One way to correct for the systematic differences is to correct 

logPm values of one data set with respect to another data set, simply by applying a linear 

transformation based on the equation of y = ax + b. We did so using the largest Fujikawa et 
al. set as the reference and rescaling the data sets from Avdeef et al. (a = 0.15; b = −4.06), 

Balimane et al. (a = 1.15; b = 0.79) and Di et al. (a = 1.22; b = 1.94) with respect to the 

Fujikawa set based on a regression analysis for shared compounds. The Bermejo et al. set 
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has only one common drug with Fujikawa, therefore we used the original logPm values of 

that set without scaling. Using the scaled logPm values as a reference, we revaluated the 

predicted logPm values obtained by integration of the profiles from DHDGB model and 

using OPLS charge set (see Table 7). We find an increased correlation for both neutral and 

hybrid profiles. This suggests that computational logPm predictions may be improved further 

by fully understanding how PAMPA-based logPm predictions depend on lipid contents and 

concentration and, ultimately, how such experiments relate to passive diffusion across 

biological bilayers.

Alternatively, QSPR models could be applied to predict logPm permeabilities. The general 

idea of QSPR modeling is to fit simple mathematical models based on physicochemical 

descriptors to reproduce known logPm values for a given training set and then apply such 

models to new compounds. The assumption underlying QSPR modeling is that the 

combination of molecular descriptors can implicitly capture the factors giving rise to logPm 

values but without invoking a particular physical theory that links molecular features to 

permeability. In contrast, the approach taken here directly estimates the energetics and 

kinetics of molecules diffusing through a lipid bilayer so that solubility-diffusion theory can 

be applied to calculate logPm values.

For different sets of compounds, QSPR models were reported giving R2 correlations as high 

as 0.5 to 0.87, 10, 88. However, in these studies, the training and test sets were fairly similar. 

For the diverse set of compounds studied here, Leung et al., evaluated the correlation of 

experimental logPm values with individual physiochemical descriptors such as molecular 

weight, volume, or polar surface area (PSA)24. In addition, the QSPR-type regression-based 

models QPlogPo/w (octanol/water partition coefficients), QPPCaco (predicted Caco-2) and 

QPPMDCK (predicted MDCK) were tested. The finding was that individual physiochemical 

descriptors generally failed to be correlated significantly with the experimental logPm 

values, except for PSA (R2=0.29), whereas the trained QSPR models showed overall 

correlations ranging from 0.19 to 0.23 for the complete data set considered here based on the 

values reported in the study by Leung et al24. As discussed before 24, this suggests that the 

physics-based models applied here offer greater transferability in predicting logPm values for 

a wider range of compounds.

The protocol presented here starts with a single conformation (obtained from PubChem) and 

applies a deterministic protocol for obtaining membrane insertion profiles from which logPm 

values are then estimated. Therefore, there are no statistical uncertainties for the reported 

insertion profiles. Because no extensive sampling is involved, the protocol presented here is 

computationally efficient and can be applied to a large number of molecules. However, we 

neglect the conformational dynamics of the studied molecules and, in particular, potential 

differences in conformational sampling between the aqueous and membrane phases. Full-

scale molecular dynamics simulations of small molecule diffusion across lipid bilayers are 

possible and could provide a full account of conformational dynamics 21. However, the costs 

of such an approach would be prohibitive in the context of a practical protocol for the rapid 

estimation of logPm values. At the same time, the overall contribution of conformational 

dynamics may actually be quite small according to the study by Leung et al.24

Brocke et al. Page 14

J Chem Inf Model. Author manuscript; available in PMC 2020 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In summary, we present an improved method for the estimation of membrane permeabilities 

of drug-like molecules. Overall, the highest correlation with the experimental logPm values 

was obtained by directly evaluating the integral from solubility-diffusion theory in Eq. 1 

based on the hybrid profiles obtained with the DHDGB model and the OPLS partial charge 

set. The method is physics-based as it builds on solubility-diffusion theory using implicit 

membrane-based insertion free energy profiles. The method is generally applicable to a wide 

variety of molecules and sufficiently fast for handling large sets of molecules. A web server 

implementation is available for public use. A critical feature remains the estimation of 

partial charges where future efforts should be focused.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

Adagrad Adaptive Gradient Algorithm

CHARMM Chemistry at Harvard Molecular Mechanics

DHDGB dynamic heterogeneous dielectric generalized Born

DPPC Dipalmitoyl-phosphatidylcholine

FDA Food and Drug Administration

FTRL Follow the regularized leader

GB generalized Born

HDGB heterogeneous dielectric generalized Born

MDCK Mardin-Darby canine kidney

MMTSB Multiscale Modeling Tools in Structural Biology

PAMPA Parallel Artificial Membrane Permeability Assay

QSPR quantitative structure-permeability relationship

RELU Rectified Linear Unit; RMSE Root Mean Squared Error
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SASA Solvent-Accessible Surface Area
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Figure 1. 
Alternate estimates of ΔGtr (A) and δbarrier (B) from insertion free energy profiles along the 

membrane normal. Energy values at specific points of the curve are referred to as ‘E’ values 

and areas under the curve are ‘I’ quantities. Emax is the maximum energy, Emin is the 

minimum energy, Eavg is the average energy over a range of z positions, Elocmax is the 

energy at the local maximum upon reaching the membrane surface from the position where 

Emin is observed, and Elocmin is the energy at the local minimum between the position of 

Elocmax and bulk water. If any of these barriers is not observed, then δbarrier was set to a 

small value chosen as 1 Å since it is the resolution of our free energy profiles.
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Figure 2. 
Classification of profiles of free energy of membrane insertion as described in Table 1.
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Figure 3. 
Representative membrane insertion profiles for caffeine with HDGB (solid lines) and 

DHDGB (dashed lines) with atomic radii from the CHARMM Lennard-Jones parameters 

and CGenFF (red), AM1-BCC (green), and OPLS (blue) charge sets as well as Bondi radii 

and AM1-BCC charges (purple).
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Figure 4. 
Summary of the overall evaluation of models with different charge sets. DHDGB profiles 

were used for Eq. 1 and 2 predictions and for machine learning and multiple linear 

regression models. R2, slope, intercept, RMSE, and offset values as in Table 2.
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Figure 5. 
Correlation plots of predicted logPm values for HDGB and DHDGB models calculated by 

Eq. 2 and used with partial charges from CGenFF, AM1-BCC and OPLS. The linear 

regression equations are given for HDGB (red) and DHDGB (blue) inside the plot frames. 

At the right, the free energy profiles of sulfasalazine are shown.
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Figure 6. 
Structures of alfentanil, diltiazem and imidacloprid and differences in their free energy 

profiles from CGenFF and OPLS charges obtained by HDGB. The circles in the structures 

illustrate the differences in the partial charges between CGenFF and OPLS; larger circles 

mean larger differences.
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Table 1.

Classification criteria of free energy profiles.

Class Criterion

1 E30 < E0; E30 > 1.0 kcal/mol or E30 / E0 > 0.1

2 E30 < E0; E0 < 1.0 kcal/mol; E30 / E0 < 0.1; zmin < 25 Å.

3 E30 > E0; E0 > 0.2 kcal/mol

4 E30 < E0; E30 < 1.0 kcal/mol; E30 / E0 < 0.1; zmin > 25 Å.

5 E30 > E0; E0 < 0.2 kcal/mol

E30 is the energy in the water phase at z=30, E0 is the energy in the bilayer at z=0 and zmin is the z-position where minimum energy is obtained.
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Table 5.

Evaluation of the logPm predictions based on barrier approximation using Eq. 2 in comparison with values 

reported by Leung et al.24 for the same drug sets.

R2 S I RMSE Offset

HDGB

CGenFF 0.39 ±0.02 2.18 ±0.13 6.17 ±0.50 2.87 ±0.17 −0.41 ±0.19

AM1-BCC 0.43 ±0.01 2.68 ±0.16 6.89 ±0.55 3.38 ±0.22 1.28 ±0.31

AM1-BCC-Bondi 0.42 ±0.02 2.89 ±0.28 6.65 ±0.97 3.70 ±0.37 2.54 ±0.41

OPLS 0.50 ±0.01 2.32 ±0.10 7.74 ±0.37 2.54 ±0.11 −1.32 ±0.14

DHDGB

CGenFF 0.40 ±0.03 1.73 ±0.08 4.69 ±0.38 2.14 ±0.02 −1.16 ±0.08

AM1-BCC 0.45 ±0.02 1.82 ±0.05 4.02 ±0.35 2.09 ±0.03 −0.03 ±0.20

AM1-BCC-Bondi 0.42 ±0.02 1.76 ±0.08 2.91 ±0.37 2.12 ±0.04 0.82 ±0.08

OPLS 0.51 ±0.02 1.97 ±0.07 6.55 ±0.32 2.07 ±0.03 −1.82 ±0.11

Two-State (Leung et al.)

OPLS 0.47 ±0.02 3.13 ±0.12 3.25 ±0.58 3.75 ±0.08 7.11 ±0.16

Based on ΔGbarrier=ΔG1 δbarrier=δ2 and including ΔGstate values given by Leung et al.; R2, slope (S), intercept (I), RMSE, and offset values as 

in Table 2.
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Table 6.

Evaluation of logPm predictions for different insertion profiles widths with DHDGB and OPLS charges

Profile width change [Å] R2 Slope Intercept RMSE Offset

Neutral Profile

−1 0.55 ±0.02 1.25 ±0.04 3.87 ±0.20 1.10 ±0.02 −2.64 ±0.04

0 0.56 ±0.01 1.46 ±0.05 4.62 ±0.23 1.31 ±0.03 −2.37 ±0.05

+1 0.57 ±0.01 1.53 ±0.05 4.83 ±0.23 1.37 ±0.03 −2.25 ±0.06

Hybrid Profile (ΔGstate from experimental pKa)

−1 0.57 ±0.02 1.71 ±0.03 5.27 ±0.15 1.58 ±0.02 −1.81 ±0.05

0 0.57 ±0.02 1.94 ±0.04 6.02 ±0.18 1.84 ±0.02 −1.46 ±0.07

+1 0.57 ±0.02 2.00 ±0.04 6.18 ±0.19 1.92 ±0.02 −1.31 ±0.08

Hybrid Profile (ΔGstate from Leung et al.)

−1 0.60 ±0.02 1.69 ±0.05 5.31 ±0.21 1.48 ±0.03 −1.96 ±0.06

0 0.60 ±0.02 1.93 ±0.06 6.14 ±0.25 1.75 ±0.04 −1.61 ±0.08

+1 0.60 ±0.02 1.99 ±0.06 6.31 ±0.26 1.83 ±0.04 −1.46 ±0.09

Insertion profiles were extended assuming a constant value ΔG(z=0) in the center of the membrane; R2, slope (S), intercept (I), RMSE, and offset 
values as in Table 2.
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Table 7.

Evaluation of logPm predictions for corrected logPm PAMPA values with respect to Fujikawa el al. for 

DHDGB and OPLS charges

Profile width change [Å] R2 Slope Intercept RMSE Offset

Neutral Profile 0.60±0.02 1.62±0.06 5.20±0.26 1.30±0.04 −2.27±0.06

Hybrid Profile
(ΔGstate from experimental pKa)

0.62±0.01 2.17±0.04 6.87±0.18 1.84±0.02 −1.33±0.08

Hybrid Profile
(ΔGstate from Leung et al.) 0.66±0.01 2.18±0.05 7.06±0.20 1.74±0.04 −1.49±0.08

R2, slope (S), intercept (I), RMSE, and offset values as in Table 2.
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