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Abstract

We present perturbative fluorine scanning, a computational fluorine scanning approach using 
free-energy perturbation. This method can be applied to molecular dynamics simulations of a 
single compound and make predictions for the best binders out of numerous fluorinated 
analogues. We tested the method on nine test systems: Renin, DPP4, Menin, P38, Factor Xa, 
CDK2, AKT, JAK2, and Androgen Receptor. The predictions were in excellent agreement with 
more rigorous alchemical free-energy calculations and in good agreement with experimental 
data for most of the test systems. However, the agreement with experiment was very poor in 
some of the test systems and this highlights the need for improved force fields in addition to 
accurate treatment of tautomeric and protonation states. The method is of particular interest 
due to the wide use of fluorine in medicinal chemistry to improve binding affinity and ADME 
properties. The promising results on this test case suggest that perturbative fluorine scanning 
will be a useful addition to the available arsenal of free-energy methods.
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Introduction

Fluorine scanning is a common technique in medicinal chemistry and involves systematic 
replacement of hydrogen with fluorine.1–6 It can improve binding affinity as well as ADME 
properties.7,8 A striking example of the potential is given by the application of fluorine scanning 
on factor Xa.9 The authors found that a modification from a hydrogen in compound 1 to a 
fluorine in compound 2 improved the binding affinity by approximately 55-fold (Figure 1).

Figure (1): Two factor Xa inhibitors and their Ki values.

One of the drawbacks of fluorine scanning is the requirement to test each hydrogen-to-fluorine 
mutation individually. For example, testing the aromatic hydrogen-to-fluorine mutations in 
compound 1 requires synthesizing and assaying 9 compounds and testing all of the hydrogen-
to-fluorine mutations requires synthesizing and assaying 16 compounds. Testing 
combinations of two hydrogen-to-fluorine mutations is an order of magnitude more 
challenging. Computational fluorine scanning using a molecular mechanics-Poisson-
Boltzmann/surface area (MMPBSA) method has been suggested in the past as a way to 
design molecules with improved binding affinity in silico.10 However, MMPBSA calculations 
use a simplified implicit solvent model and alchemical free-energy methods with explicit 
solvent are increasingly used in place of MMPBSA calculations. Alchemical methods are a 
class of computational methods that use molecular simulation to calculate free energy 
differences.11–13 They have garnered a lot of attention in recent years 14–19 and some 
benchmarks have shown that they outperform other computational methods.20 Free-energy 
perturbation (FEP)21 is one of the most commonly used methods to perform alchemical binding 
free energy calculations and is based on the Zwanzig equation.22,23 FEP can be used to 
calculate the absolute binding affinity of one molecule 24 or the relative binding free energy of 
two molecules.11,23,25,26 Commonly, the system of interest is studied using molecular dynamics 
(MD) simulation 27,28 and treated using a forcefield.29,30 One of the major drawbacks of 
alchemical methods is the significant computing resource required for each calculation. Thus, 
performing a computational fluorine scan for all possible single or pair hydrogen-to-fluorine 
mutations in compound 1 is computationally demanding. In this study, we develop a method 
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for computational fluorine scanning using the Zwanzig equation which we term perturbative 
fluorine scanning (PFS). A number of studies have considered the possibility of using 
unidirectional transformations from a central reference molecule to calculate relative binding 
free energies for a number of related molecules – this method has been termed single-step 
perturbation (SSP). In early work, van Gunsteren and co-workers developed and applied the 
method to hydration free energies.31 They also studied the limits of the method and found that 
it could be applied to relative binding affinities. 32,33 Other studies suggest that such an 
approach is reliable for modification of up to three atoms using thermodynamic integration.34 
Mackerell and co-workers have also used this approach, which they term single‐step free 
energy perturbation.35 Follow-up studies showed that combining SSP with a ligand grid free 
energy approach offers a 1000‐fold computational savings over traditional FEP for calculating 
the relative binding affinities once some upfront pre‐computations are complete.36  More 
recently, the method has been studied for bias 37 and applied to the efficient optimization of 
forcefields.38 We expand on this SSP approach to perform computational fluorine scanning by 
comparing predictions from PFS for nine test systems to experimental data and to traditional 
alchemical calculations using FEP.

To carry out these fluorine scanning calculation with ease we have developed a tool, Fluorify, 
for executing the pipeline for these calculation automatically. This tool is freely available at 
https://github.com/adw62/Fluorify. Fluorify uses OpenMM 39 as both a molecular dynamics 
engine and library to create the modified alchemical systems. Fluorify will generate all of the 
required mutant ligands from an input wild type ligand; these mutants are automatically 
parameterized, built into complex systems, simulated and analysed. 

Methods

We consider the effect of hydrogen to fluorine mutations for the hydrogens attached to 
aromatic carbons of nine different protein ligand binding systems Table (1). The chemical 
structures of these ligands are shown in Figures (2), all mutated hydrogens are shown 
explicitly.
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Figure (2): Chemical structures depicting the wild type ligands in each system. (a) Renin 40, 
(b) DPP4 41, (c) Menin 42, (d) P38 43, (e) FXa 9, (f) CDK2 44, (g) AKT 45, (h) JAK2 46, (i) Androgen 
receptor 47. 
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Examining all of the systems we are considering here, Table (1) shows the experimental data 
that is available for hydrogen to fluorine mutations taken from the respective papers where 
these systems were investigated 9,40–47. ΔΔG values in Table (1) are calculated from  or IC50 𝐾𝑖

values in references, see references for experimental methodologies. These experimental 
works do not provide estimates of uncertainties.  It should be noted that manual preparation 
of the ligands in the complex PDBs was required. This manual preparation involved changing 
the ligand structure from that provided in the PDB to the structure for the start point of the 
experimental fluorine mutation examined. These changes are reflected in the chemical 
structure shown in Figure (2). In addition, DPP4 was modelled as a monomer rather than the 
dimer in the crystal structure.

Table (1): ΔΔG for hydrogen to fluorine mutations obtained experimentally. PDB and PDBIDs 
taken from the Protein Data Bank. 48 The second column denotes the system as specified by 
Figure (2). Third column shows hydrogen being mutated as  specified by Figure (2).

PDBID System Hydrogen Experimental ΔΔG (kcal/mol)

3OOT40 Renin (a) H22 -2.47

1RWQ41 DPP4 (b) H5 -2.31

DPP4 (b) H6 -2.31

DPP4 (b) H7 -2.31

DPP4 (b) H4 0.91

DPP4 (b) H8 0.91

4OG642 Menin (c) HAY -0.40

3S3I43 P38 (d) H1 -2.26

2RA09 FXa (e) H18 -2.37

2W1744 CDK2 (f) H18 -2.12

3MVH45 AKT (g) H23 -1.26

AKT (g) H22 -0.29

AKT (g) H25 -0.29

AKT (g) H26 -0.20

3IOK46 JAK2 (h) H24 -1.15

2NW447 Androgen receptor (i) H2 -1.11

It is worth noting that there are some symmetry considerations to take into account with PFS. 
Many of the hydrogens in the chemical structures shown in figures (2) are equivalent but a 
single fluorine substitution will break this symmetry and equivalence. However, for pairs of 
perturbations (or larger) there are additional symmetry considerations that, whilst not altering 
the predictions, may reduce the number of calculations needed. 

System Setup
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All FEP and PFS calculations performed in this work were made with Fluorify the details for 
each stage of these calculations are as follows. The co-crystal structure for the nine systems 
examined here are taken from the Protein Data Bank 48 with PDBIDs shown in Table (1). To 
prepare these systems non-standard residues were converted to their standard equivalents 
with pdbfixer 49. Selenomethionines were changed to methionines and missing sidechains 
were added using Schrödinger’s Preparation Wizard 50, which was also used to assign 
protonation state of all ionizable residues. All buffer solvents and ions were removed. The 
hydrogen atom positions were then built using tleap and forcefield parameters and partial 
charges were assigned from the AMBER ff14SB force field 51. Parameters for the inhibitors 
were generated using Antechamber 52 with AMBER GAFF 2 53 and AM1-BCC 54. These 
structures and parameters are then passed to YANK’s 55 0.23.7 automatic setup pipeline to 
build solvated ligand-protein and ligand systems. For solvation, TIP4P-EW 56 is used; at this 
stage a salt concentration of 150mM and any required counter-ions are added. In every case, 
the edge of the solvation box is 15 Å from any atom of the receptor and ligand. 

Molecular dynamics

All simulations were performed with OpenMM 7.3.0. 49 as follows. First OpenMM’s default 
minimizer was used to minimize all structures. Then equilibration was performed in the NPT 
ensemble for 500ps at 300k and 1atm using a Langevin integrator and Monte Carlo barostat. 
MD simulations were performed in the NPT ensemble using a time step of 2fs. Van der Waals 
interactions were truncated at 11.0 Å with switching at 9.0 Å. Electrostatics were modeled 
using particle mesh Ewald method with a cutoff of 11.0 Å. All other simulation parameters 
were left as default. We ran triplicate simulations of the non-fluorinated compound with the 
ligand in complex and in solution, for 50 ns. Snapshots were collected every 5 ps.

   
Perturbative Fluorine Scanning

During fluorine scanning, van der Waals, charge, bond and torsion parameters are assumed 
to change. Since this is a post analysis and the dynamics were collected from the system with 
wild-type bond parameters, the change in bonded parameters has no effect on dynamics of 
the molecules geometry. Whilst this should be negligible when considering the change in 
geometry of non-perturbed atoms this may not be true for the atoms perturbed from hydrogen 
to fluorine where the C-F bond should be longer than C-H. To aid convergence of the free 
energy calculation, we would like to include this change in bond length. We therefore use a 
hybrid topology approach where massless interaction sites at the position of all possible 
fluorine mutations are added. The positions of these fluorines is defined relative to the position 
of their parent hydrogen such that the C-F distance is always 1.24 times the C-H distance 57. 
During the simulation the Lennard-Jones, charge, bond and torsions parameters of these 
additional fluorine sites are turned off. When mutating to a fluorinated system the relevant 
hydrogen is turned off and fluorine Lennard-Jones and charge parameters are applied to the 
additional site, this is demonstrated in figure (3). The torsion parameters are mutated from the 
hydrogenated system to fluorinated system, but the torsions remain on the parent hydrogen 
and are not transferred to the virtual fluorine. This will have no effect on the energy as the 
angles remain the same. When simulating these systems, all hydrogen bonds are constrained, 
since the position of the fluorine is defined relative to the position of its parent hydrogen it is 
also implicitly constrained. We therefore make the assumption that the C-F bond oscillations 
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are negligible. To prevent the hybrid topologies from interacting, the additional fluorine is 
excluded from interacting with their parent hydrogens.

Figure (3) : Left panel Androgen inhibitor with all fluorines turned off. Right panel  Androgen 
inhibitor with H1 and H2 transformed to F1 and F2.

The following demonstrates how the free energy change is calculated. With Equation (1) 
showing the Zwanzig equation 22.

                    (1)𝛥𝐺𝑍𝑤𝑎𝑛𝑧𝑖𝑔 =  ― 𝑘𝑇𝑙𝑛( < 𝑒𝑥𝑝( ― (𝐸𝑚𝑢𝑡 ― 𝐸𝑤𝑡)/𝑘𝑇) > 𝑤𝑡)

 and  are the energies of the system using the Hamiltonians of the “wild type” 𝐸𝑤𝑡 𝐸𝑚𝑢𝑡

unperturbed system (wt) and the “mutant” perturbed system (mut). The wt subscript on the 
average of the exponential indicates that it is taken for samples in the wild type ensemble.  𝐸𝑤𝑡

and  are a sum of the non-bonded, bonded, and torsion energies as shown in Equations 𝐸𝑚𝑢𝑡

(2) and (3). 
                       (2)𝐸𝑚𝑢𝑡 =  𝐸𝑛𝑜𝑛 ― 𝑏𝑜𝑛𝑑𝑒𝑑

𝑚𝑢𝑡 + 𝐸𝑏𝑜𝑛𝑑𝑒𝑑
𝑚𝑢𝑡 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛

𝑚𝑢𝑡
                   (3)𝐸𝑤𝑡 =  𝐸𝑛𝑜𝑛 ― 𝑏𝑜𝑛𝑑𝑒𝑑

𝑤𝑡 + 𝐸𝑏𝑜𝑛𝑑𝑒𝑑
𝑤𝑡 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛

𝑤𝑡
Computationally  is the energy coming from the Lennard-Jones potential and 𝐸𝑛𝑜𝑛 ― 𝑏𝑜𝑛𝑑𝑒𝑑

𝑤𝑡

electrostatics, calculated with PME, for the the wild type system and dynamics. To get 
, the wild type system is modified such that the Lennard-Jones and charge 𝐸𝑛𝑜𝑛 ― 𝑏𝑜𝑛𝑑𝑒𝑑

𝑚𝑢𝑡

parameters of the mutant system are assigned to the atoms of the wild type system.  is 𝐸𝑏𝑜𝑛𝑑𝑒𝑑
𝑤𝑡

the energy coming from the harmonic bonds of the wild type system and dynamics. Here to 
get  the bonds in the wild type system are assigned the parameters of the mutant 𝐸𝑏𝑜𝑛𝑑𝑒𝑑

𝑚𝑢𝑡

harmonic bonds. The modification of the bonds in this work makes no change to the total 
energy as both alchemical hydrogen and fluorine are constrained. The modification of the bond 
energy is included for generality, however, as it would be required in some mutations, an 
example of which would be pyridination.  is the energy coming from the periodic torsions 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛

𝑤𝑡

of the  wild type system and dynamics. Again, to get  the wild type system is modified 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛
𝑤𝑡

and  the mutant torsion parameters are assigned to the wild type periodic torsion. 

Equation (1) can then be applied to simulations of the unperturbed system in the bound and 
unbound states. Combining Δ  for the bound and unbound states yields an estimate of 𝐺𝑍𝑤𝑎𝑛𝑧𝑖𝑔

the ΔΔGbinding. This effectively involves performing a unidirectional alchemical transformation 
to each target molecule.

FEP
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To validate the PFS result, we compare it against standard alchemical relative binding free 
energy calculations using the MBAR 58 estimator. These FEP simulations used the same 
hybrid topology described previously for PFS. The code to perform these relative free energy 
calculation is included as part of the Fluorify package. We used a total of 12 equally spaced 
lambda windows in which Lennard-Jones, charge, and torsion parameters were interpolated 
simultaneously from the wild-type to the mutated state. All windows were sampled 
independently with 2 ns of Langevin dynamics. Giving a total of 24ns of sampling per mutant 
half of the 50ns used for all mutants of a ligand in PFS. All simulation conditions were identical 
to the PFS molecular dynamics calculation described above. The samples collected in each 
intermediate state were decorrelated based on an estimate of the statistical inefficiency of the 
reduced potentials time series before carrying out the MBAR analysis with the PyMBAR 
3.0.158. This FEP protocol is run automatically as part of the Fluorify package to check the 
ΔΔG for the top-ranked mutants as determined by PFS.

Results

We first analysed the convergence of PFS predictions as the simulation time increased. Figure 
(4) shows the ΔΔG predictions for the Factor Xa test case.
 

Figure (4) -  Convergence of the ΔΔG predictions for the hydrogen to fluorine mutations in the 
Factor Xa test case as the simulation time is increased, H labels shown in Figure (2). 
Calculations were performed at 1.0 ns, 2.5 ns and then from 5.0 ns to 50.0 ns in 5.0 ns 
increments. ΔΔGs reported as mean of three replicates with shaded area showing 95% 

confidence interval computed as mean ± t2⋅SEM, where t2 is the t-distribution statistic with two 
degrees of freedom, and SEM is the standard error of the mean computed from the sample 
standard deviation of the three independent replicate predictions.
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The results for each system are ΔΔGs calculated by PFS and FEP. ΔΔG is calculated for the 
top n mutants. n is taken to be either three or the rank (as determined by PFS) of the best 
experimental mutant. Such that PFS and FEP results are always collected for the best 
experimental mutant. Table (2) shows the results of these ΔΔG calculations. All computational 
values in Table (2) are the average of three calculations, unaveraged values for PFS are 
reported in Table (S1) along with ΔΔG values from PFS calculations for all possible aromatic 
hydrogen to fluorine mutations. The largest error determined by MBAR for any of the FEP 
results in Table (2) was 0.17 kcal/mol.

Table (2): PFS, FEP and experimental ΔΔGs for all test cases, in kcal/mol. PFS and FEP 
predictions are reported as the mean ΔΔGs of three replicates with 95% confidence interval 

reported between square brackets computed as mean ± t2⋅SEM, where t2 is the t-distribution 
statistic with two degrees of freedom, and SEM is the standard error of the mean computed 
from the sample standard deviation of the three independent replicate predictions. Symmetry 
related positions are indicated by †.

System/Hydrogen PFS ΔΔG [kcal/mol] FEP ΔΔG [kcal/mol] EXP ΔΔG [kcal/mol]

(a) Renin

H22 -1.8 [-2.4, -1.2] -1.4 [-1.8, -0.9] -2.47

H25 -1.6 [-2.1, -1.0] -1.5 [-2.3, -0.8]

H15 -0.6 [-1.0, -0.1] -0.4 [-1.1, 0.4]

(b) DPP4

H13 -1.2 [-3.6, 1.3] -0.8 [-2.1, 0.6]

H16 -0.5 [-1.7, 0.8] -0.2 [-1.7, 1.2]

H7 -0.3 [-1.0, 0.4] -0.2 [-0.8, 0.4] -2.31†

H5 -0.2 [-0.6, 0.1] -0.4 [-0.7, 0.0] -2.31†

H4 -0.2 [-0.6, 0.2] 0.2 [-0.6, 1.1] 0.91†

H6 -0.2 [-0.3, 0.0] -0.2 [-0.3, -0.1] -2.31

H8 -0.1 [-1.5, 1.3] 0.0 [-0.7, 0.6] 0.91†

(c) Menin

HAY -1.5 [-2.0, -1.0] -1.4 [-2.3, -0.5] -0.40

HAI -1.3 [-1.6, -0.9] -0.7 [-1.2, -0.3]

HAL -0.9 [-1.1, -0.6] -0.8 [-1.0, -0.5]

(d) P38

H1 -2.2 [-2.8, -1.6] -2.2 [-2.7, -1.6] -2.26

H19 -1.9 [-2.1, -1.6] -1.6 [-1.7, -1.4]

H16 -0.6 [-0.9, -0.3] -0.3 [-0.5, -0.1]

(e) Fxa
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H18 -2.3 [-2.5, -2.0] -2.2 [-2.3, -2.1] -2.37

H29 -1.4 [-1.9, -1.0] -0.6 [-1.2, -0.1]

H9 -0.9 [-1.2, -0.6] -0.8 [-1.3, -0.4]

(f) CDK2

H33 -1.0 [-1.4, -0.5] -0.6 [-1.4, 0.1]

H14 -0.3 [-1.2, 0.6] -0.4 [-1.6, 0.8]

H18 -0.2 [-0.9, 0.5] 0.1 [-0.5, 0.7] -2.12

(g) AKT

H22 -2.2 [-2.6, -1.8] -0.9 [-2.3, 0.4] -0.29†

H25 -1.3 [-2.1, -0.5] -0.8 [-1.0, -0.6] -0.29†

H26 -1.2 [-2.2, -0.3] -1.9 [-2.3, -1.6] -0.20

H23 -0.7 [-1.1, -0.3] -0.5 [-0.8, -0.1] -1.26

(h) JAK2

H24 -2.0 [-2.4, -1.6] -2.1 [-2.7, -1.5] -1.15

H27 -1.4 [-2.2, -0.6] -1.2 [-1.7, -0.6]

H14 -1.0 [-1.3, -0.7] -0.8 [-1.4, -0.2]

(i) Androgen receptor

H2 -2.5 [-3.7, -1.3] -2.5 [-2.8, -2.1] -1.11

H7 -0.3 [-0.4, -0.2] -0.27 [-0.32, -0.21]

H5 3.5 [2.9, 4.0] 3.5 [2.9, 4.1]

Overall PFS demonstrated excellent agreement with FEP with a mean unsigned difference of 
0.3 [0.2,0.4] kcal/mol, where the 95% confidence square between square brackets was 
estimated with the bias-corrected and accelerated bootstrap method. PFS also shows good 
agreement with experiment in most systems with a mean unsigned error of 1.2 [0.9,1.5] 
kcal/mol and this is comparable to the mean unsigned difference of FEP and experiment,  1.1 
[0.8,1.5]. To examine the agreement of these methods more closely the correlation of their 
results should be inspected. The correlation between PFS and FEP is good as seen in Figure 
(5) where fitting a trend line yields a  value of 0.9 [0.6,1.0]. This correlation is favourably 𝑅2

impacted by the uppermost top right data point and excluding this data point  would be 0.8 𝑅2

[0.6 1.0]
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Figure (5): Plot for ΔΔG for fluorine mutants for calculations from perturbative fluorine scanning 
(PFS) and FEP for all data points in Table (2). ΔΔGs are reported as the means with error 
bars as 95% t-based confidence interval computed from the three independent replicate 
calculations.

In terms of agreement with experimental data, errors are greater than 2.0 kcal/mol in only 
three cases (all for DPP4). Overall poor correlation is seen, however, because the 
experimental range for ΔΔG, 0.4 kcal/mol - 2.47kcal/mol, is small. Table (3) shows the 
correlation , mean unsigned difference and RMSD between the PFS, FEP and experimental 𝑅2

data.

Table (3) - Correlation , mean unsigned difference, and RMSD between the PFS, FEP and 𝑅2

experimental data for all data points in Table (2). 95% confidence intervals were estimated 
with the bias-corrected and accelerated bootstrap method and are reported between square 
brackets.
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Comparison 𝑅2

Mean Unsigned 
Difference 
[kcal/mol] RMSD [kcal/mol]

PFS vs FEP 0.9 [0.6,1.0] 0.3 [0.2,0.4] 0.4 [0.2,0.5]

FEP vs EXP 0.0 [0.0,0.3] 1.1 [0.8,1.5] 1.3 [1.0,1.6]

PFS vs EXP 0.0 [0.0,0.2] 1.2 [0.9,1.5] 1.3 [1.0,1.6]

Despite these poor correlations, both PFS and FEP have a reasonable accuracy in terms of 
mean unsigned difference. 

Looking at each test case individually we see that PFS is a reasonably good predictor of the 
the mutant highlighted by experiment work. For systems Renin, Menin, P38, FXa, JAK2 and 
Androgen receptor PFS correctly predicts the mutant highlighted by experiment work. System 
DPP4 was more challenging, the top mutants, H5, H6 and H7 all have the same free energy. 
PFS ranks one of the best mutants, H7, as 3rd and incorrectly calculated the best mutant as 
H13 and second best as H16. FEP does better, again incorrectly ranking the best mutant as 
H13 but ranking two of the best experimental mutations H5 and H7 as second and third 
respectively. Whilst PFS and FEP are well agreed (within 1 kcal/mol) for this test case neither 
of these methods predict the best experimental mutant correctly. This may be due to the 
system preparation, modelling the DPP4 monomer rather than the dimer. Additionally it can 
be seen from Figure (2b) that H13 and H16 are on a phenyl already selected as favourable 
for chlorination and this may explain why PFS indicates these positions over the best position 
determined by experiment. For system CDK2, PFS fails to predict the top mutant however this 
failure is mirrored in FEP. The predictions made by PFS and FEP for the ΔΔG of the top 
experimental mutant agree within 1 kcal/mol. However neither are within 1 kcal/mol of the 
experimental ΔΔG. PFS and FEP select H33 as the best position for fluorination. It can be 
seen in Figure (2(f)) that H33 is close to a position already selected as favourable for 
fluorination and this might explain why it selected over the position highlighted in the 
experimental work.

Conclusion
  
We have developed a new methodology for calculating relative binding affinities, which we 
term perturbative fluorine scanning. For a typical small molecule inhibitor, PFS applied to 
molecular dynamics simulations of a single molecule has the potential to combinatorially 
assess all possible fluorination sites yielding millions of predictions. These predictions can 
then be further assessed using more rigorous approaches and would be particularly useful in 
medicinal chemistry, providing insight for which analogs to synthesize. The results in Figure 
(4) suggest that the molecular dynamics simulations need to be run for at least 30.0 ns (or 
with multiple replicates) to reach converged predictions. This is likely due to the poor overlap 
between the two end states. This could be resolved by identifying mutants with poor overlap 
and running additional MD simulations in the mutant ensemble, such that a bi-directional 
estimator 59 could be applied. This would, however, incur additional computational cost. In its 
current state, using only one directional calculations, PFS consumes far less computational 
resources compared to traditional FEP approaches. For example, the FEP calculations in this 
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work used 24.0 ns of sampling for a single mutant whereas PFS used 50.0 ns of sampling for 
all possible mutants (For the FXa test case this is 11 single hydrogens, 55 pairs of hydrogens 
and increasingly more for additional mutations). As a point of reference the FXa case has 
99,000 and 13,000 atoms in the complex and solvent systems respectively. Run in parallel 
(see SI for parallelization strategy) across 4 NVIDIA P100 GPUs using OpenMM 7.3.0 49 and 
CUDA 8.0 it takes approximately 8.5 hours to collect 50ns for both the complex and solvent 
systems. Using the methods outlined above PFS analysis then takes 1 hour to calculate ΔΔG 
for all 11 mutant ligands. Comparatively with the same hardware and software full FEP takes 
4 hours to compute ΔΔG for one mutant ligand. This improved computational speed allows for 
more sampling in the PFS method, additionally all of the sampling in PFS is taken from 
physical states, rather than alchemical intermediates in FEP. More sampling and longer 
classical trajectories should provide a more thorough exploration of phase space compared to 
FEP, particularly with reference to moderate conformational events on the order of 10’s ns 
which may be missed in short FEP lambda windows. The PFS method is simple and could 
easily be improved by enhanced sampling techniques such as replica exchange 60 or solute 
tempering. 61 It represents one of few  alchemical free energy  methods 62  that can be used 
as a design tool, informing the user of which are the best mutations to make, rather than a tool 
to assess specific ideas.

The change in binding affinity for a wide range of hydrogen to fluorine mutations has been 
investigated computationally. Two computational methods were applied: FEP and PFS. It was 
demonstrated that FEP and PFS are in excellent agreement. However, the correlation 
between the computational methods and experiment for the ΔΔG calculations was not good. 
This poor correlation could come from many potential sources, such as systematic errors in 
the force fields or differences between computational and experimental systems. For example 
DPP4 has the worst accuracy, compared to experiment, of any system investigated in this 
work and this may stem from simulating it as a monomer compared to its dimer biological unit. 
Another potential source of error could be the fluorination making a significant change to the 
protonation, tautomeric, or conformational states of the ligand, an effect which we do not 
account for here. Finally, differences in mass between fluorine and hydrogen are not 
accounted for in either our FEP or PFS protocols and this may lead to differences in dynamics. 
However, it will not affect the energies or free energies. This poor correlation does not raise a 
major concern regarding the PFS method since it is similar for both FEP and PFS. Additionally, 
the mean unsigned error for both methods remains low at 1.1 [0.8,1.5] kcal/mol and 1.2 
[0.9,1.5] kcal/mol for FEP and PFS respectively and this is very close to 1.0 kcal/mol which 
has been suggested as the acceptable error for free energy calculations. Where PFS performs 
well is in reproducing FEP results (both ΔΔG values and rankings) with good correlation,  = 𝑅2

0.9 [0.6,1.0] and high accuracy, mean unsigned difference = 0.3 [0.2,0.4] kcal/mol at a fraction 
of the computational cost. Combining this method with a more accurate forcefield could yield 
a very useful tool. With many efforts continually undertaken to improve forcefield accuracy 64-
66. The scope could also be expanded significantly by considering additional mutations such 
as chlorination, aromatic C to N and methylation. These changes, either alone or in 
combination, can be considered from single simulations of the bound and unbound states. 
With improved force fields, this method represents a powerful tool to explore chemical space 
in an efficient and accurate way. In this work we have focused on hydrogen to fluorine changes 
which are particularly attractive in a medicinal chemistry context due to the potential for fluorine 
to act as a metabolic block in addition to a source of increased binding affinity 63. We envisage 
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the use of PFS to identify hydrogen to fluorine changes predicted to increase binding affinity 
in addition to hydrogen to fluorine changes predicted to improve ADME properties whilst 
maintaining binding affinity.

Supporting Information Available: Table (S1) containing ΔΔGs for all hydrogen to fluorine 
mutations highlighted in Figure (2), calculated by PFS. Figures (S1 - S9) presenting RMSD 
plots for all complex systems. Details of computational parallelization strategies used in this 
work are also provided.
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