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ABSTRACT: Virtual screening of large compound databases,
looking for potential ligands of a target protein, is a major tool
in computer-aided drug discovery. Throughout the years,
different techniques such as similarity searching, pharmaco-
phore matching, or molecular docking have been applied with
the aim of finding hit compounds showing appreciable affinity.
Molecular dynamics simulations in mixed solvents have been
shown to identify hot spots relevant for protein−drug
interaction, and implementations based on this knowledge
were developed to improve pharmacophore matching of small molecules, binding free-energy estimations, and docking
performance in terms of pose prediction. Here, we proved in a retrospective manner that cosolvent-derived pharmacophores
from molecular dynamics (solvent sites) improve the performance of docking-based virtual screening campaigns. We applied a
biased docking scheme based on solvent sites to nine relevant target proteins that have a set of known ligands or actives and
compounds that are, presumably, nonbinders (decoys). Our results show improvement in virtual screening performance
compared to traditional docking programs both at a global level, with up to 35% increase in areas under the receiver operating
characteristic curve, and in early stages, with up to a 7-fold increase in enrichment factors at 1%. However, the improvement in
pose prediction of actives was less profound. The presented application makes use of the AutoDock Bias method and is the only
cosolvent-derived pharmacophore technique that employs its knowledge both in the ligand conformational search algorithm
and the final affinity scoring for virtual screening purposes.

■ INTRODUCTION

Drug discovery is an expensive endeavor, costing between 0.16
and 1.8 billion dollars to introduce a new drug to the market.1

The need for new compounds and more efficient tools to
obtain them is illustrated by the outbreak of infectious
diseases,2 boosted by the emergence of drug resistance in
microorganisms such as Mycobacterium tuberculosis, Staph-
ylococcus aureus, or Klebsiella pneumoniae among others3,4 and
the need for better treatment of neglected diseases such as
malaria, dengue, or sleeping sickness.5 Furthermore, the
discovery of new molecular targets to treat complex diseases
such as cancer, autoimmune, and neurodegenerative diseases
also requires the development of new drug candidates and
pharmacological tools to elucidate their roles in physiological
and pathological contexts.
Virtual screening (VS) of large compound databases, looking

for potential ligands of a target protein, is a major tool in
computer-aided drug discovery. Its main purpose is to find hit
compounds with a certain affinity, usually around 1 μM, which
can then be further optimized to become lead compounds and
drug candidates faster, more efficiently, and at lower cost than

with experimental high-throughput screening campaigns.6

Briefly, VS consists in rapidly estimating the binding free-
energy of compounds to a given target by computational
means and choosing a subset of these compounds with higher
predicted affinities to be tested experimentally. A widespread
VS technique starts from the target protein structure in the so-
called docking methods and explicitly studies the interaction
between the protein and the compounds to be evaluated.
Docking-based VS is far from perfect, and there are several

issues that require improvement. Correct pose prediction is
still a difficult task and accurate free-energy estimations are a
major challenge, in part due to ignoring the flexibility of the
target and desolvation effects.7 Additional information about
the target of interest, for example, ligand interactions revealed
in a large number of cocrystal structures or similarity patterns
between known ligands, is sometimes available, and its
incorporation into VS campaigns can increase success rates.8

The improved performance of knowledge-based docking is
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highlighted by the different alternatives available in most
common docking programs. Glide9 and GOLD10 allow
hydrogen bonds and substructure-based constraints, whereas
Glide also permits metal restraints to enforce coordination
geometries. On the other hand, rDock11 and MOE12 are able
to constrain generated poses to satisfy pharmacophores and
thus bias the results toward important interactions and also
perform template guided (or tethered) docking. Finally,
DOCK613 has a conformational search option to bias the
sampling toward poses in accordance with a defined set of
known ligand structures. Besides docking methods, pharma-
cophore VS approaches evolved in parallel using either ligand
or target information but ignoring explicit protein−ligand
interaction.14

Molecular dynamics (MD) simulations of a protein in
explicit water or mixed solvents that mimic specific types of
ligand interactions have been increasingly used to analyze
protein binding sites and to reveal protein−ligand interaction
hot spots.15−17 MD allows studying the structure and dynamics
of water and cosolvent molecules which, as a consequence of
the shape and charge distribution of the protein surface, are
arranged inhomogeneously in the solvation shell. This gives
rise to solvent sites, that is, confined space regions close to the
protein surface where the probability of finding water or
cosolvent molecules is significantly higher than that of the bulk.
We have previously shown applications of solvent sites to
binding mode and binding free-energy predictions,18 especially
using ethanol as a probe that is able to capture in a single
molecule the hydrophobic, hydrogen bond donor and
hydrogen bond acceptor moieties that are common in drug-
like molecules.
On the basis of our work on ligand docking using

information from water and solvent sites,18−20 we have
recently developed AutoDock Bias21 for performing biased
docking with AutoDock422 program. The versatile definition of
the different types of biases in AutoDock Bias allows guided
docking toward pharmacophoric interactions in a straightfor-
ward way for hydrogen bond and hydrophobic/aromatic
interactions, and precise localization of any desired atom (e.g.,
metal) or group (e.g., substructure core of a congeneric ligand
series or for fragment growth) in a defined region of the target
protein, which may also be used as an anchor for covalent

docking studies. In the present work, we have retrospectively
tested the performance of AutoDock Bias using the
information from MD-derived solvent sites for its application
in VS campaigns. As previously stated, we chose ethanol as a
cosolvent, and once the ethanol sites were computed from the
corresponding MD simulations (see Computational Methods),
we implemented a biased docking scheme based on their
location, binding free energy, and dispersion. We selected nine
relevant target proteins that have a set of known ligands or
actives and compounds that, presumably, do not bind to the
protein (decoys). Our results show that supplementing the
docking conformational search algorithm and scoring function
for each target yielded improved VS performance both
globally, as seen in receiver operating characteristic (ROC)
curves and area under the ROC curve (AUC), and in early
enrichment, shown by semilogarithmic ROC curves, log AUC,
EF1%, EF10%, and Boltzmann-enhanced discrimination of ROC
(BEDROC) metrics.

■ RESULTS AND DISCUSSION

The results are organized as follows. We first present the VS
performance analysis of our biased docking method, AutoDock
Bias,21 using MD-derived solvent sites and compare it to
conventional docking programs (AutoDock422 and Vina23) on
nine different protein targets. Then, we move on to evaluate
the relative scoring and pose prediction of known active
molecules by the different docking methods to gain insight into
the origin of observed improvement with AutoDock Bias.
Finally, we outline the limitations of the proposed method and
compare it with similar approaches.
For each of the nine proteins, we run a set of three 20 ns

MD simulations in an aqueous solution of ethanol 20% v/v
and compute the ethanol interaction sites (see Computational
Methods). Interestingly, and confirming our previous study,18

these MD-derived ethanol sites match the known pharmaco-
phoric ligand interactions for these systems to a great extent.
Details for each protein are included in the Supporting
Information, and a graphical description is shown in Figure S1,
where ethanol sites are superimposed on representative
ligands. For their application in AutoDock Bias, both
hydrophilic and hydrophobic ethanol sites were identified on
each target binding/active site, ranging from one to five

Figure 1. Biased docking scheme. (1A) The protein target is subjected to MD in mixed solvents and (2) solvent sites are determined to be used as
docking biases. (1B) In parallel, active compounds against the target and their associated decoys are extracted from the DUD-E database24 or
generated accordingly*. (3) Actives and decoys are docked independently using the solvent sites biased method implemented in AutoDock Bias.
(4) Compounds are ranked by their docking score, and ROC-based measures such as AUC, log AUC, EF1%, EF10%, and BEDROC are calculated to
assess the suitability of the method for VS. *For targets not included in the DUD-E set, actives and decoys were retrieved as stated in
Computational Methods.
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interaction sites of each kind. Hydrophilic sites were used to
bias hydrogen-bond interactions according to their donor and/
or acceptor capacity, and hydrophobic sites were used to bias
hydrophobic interactions involving aromatic rings (see
Computational Methods for details).
We tested the high-throughput performance of AutoDock

Bias in VS campaigns in a retrospective manner. Seven of the
nine studied systems are relevant target proteins taken from
the DUD-E database.24 The two remaining systems, BRD4 and
galectin-3, were both subjected to the DUD-E protocol to
generate decoy molecules (http://dude.docking.org/
generate)24 and then added to the original set to enrich its
diversity. All targets, therefore, have a set of (a) known true
ligands called actives and (b) decoys or compounds that have
similar physical and chemical properties as the actives but,
presumably, do not bind to the target protein. After docking
actives and decoys to their target, a ranking of the compounds

was built based on their score, and ROC-derived measures
such as AUC, log AUC, EF1%, EF10%, and BEDROC were
calculated as defined in the Supporting Methods. The whole
process is outlined in Figure 1.

AutoDock Bias for VS. To quantify the ability of
AutoDock Bias and the standard docking methods to rank
active compounds in the first positions, that is, their VS
performance, we calculated different metrics that evaluate both
the overall performance (ROC curve and AUC) and the early
ligand enrichment (semilogarithmic ROC curve, log AUC,
enrichment factors, and BEDROC). The early ligand enrich-
ment is of particular interest because, in practice, only a small
subset of the original database, usually less than 10%, is
experimentally tested. Therefore, it is desired that the first 1 or
10% of the ranking is significantly enriched in true ligands that
can move on to the next stages of the drug-development
process.

Figure 2. ROC curves for the docking of actives and decoys against nine protein targets. Results obtained with standard AutoDock4 (blue) and
Vina (yellow) are compared with those obtained by AutoDock Bias using ethanol hydrophilic sites (red) and both ethanol hydrophilic and
hydrophobic sites (green). The gray straight line is expected for a random selection of compounds from the database. The informed p-values
correspond to the hypothesis test about the difference in AUC between the conventional method (AutoDock4) and AutoDock Bias (using ethanol
hydrophilic sites in red and ethanol hydrophilic and hydrophobic sites in green).
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Figures 2 and S2 show the ROC and semilogarithmic ROC
curves, respectively, for nine protein targets obtained with
different docking methods, two standard docking programs
(AutoDock4 in blue and Vina in yellow) and AutoDock Bias
using ethanol sites. For AutoDock Bias, the performance using
only hydrophilic ethanol sites and both hydrophilic and
hydrophobic ethanol sites is shown in red and green,
respectively. The expected behavior for a random extraction
of compounds is also depicted in gray for comparative
purposes. Table 1 shows the results obtained for ROC-derived
metrics corresponding to the same set of proteins and docking
methods.
The first general observation emerging from Figures 2 and

S2 and Table 1 is that conventional methods, AutoDock4 and
Vina, have very different performances depending on the tested
system, showing poor metrics for several of them. This occurs
both globally, as represented by ROC curves rising only

slightly above the line corresponding to a random extraction of
compounds from the database and AUC values below 0.70,
and also at an early stage, observed in semilogarithmic ROC
curves not far from the random curve and log AUC values
below 0.15. These arbitrary thresholds were derived from the
mean values for each metric considering conventional
methods. On three of the studied target systems, namely
Factor Xa, DHFR, and CDK2, conventional methods have
good (AUC > 0.70, log AUC > 0.15) to excellent (AUC >
0.80, log AUC > 0.25) performance, whereas on the other six,
poor metrics are obtained for either one or both methods.
Interestingly, both methods fail for the two systems that were
not retrieved from the DUD-E database (BRD4 and galectin-
3). The case of galectin-3 is particularly striking since
AutoDock4 shows a worse overall ranking than what would
be obtained by random selection, whereas the early enrichment
measured by log AUC is practically zero. This is in agreement

Table 1. Ligand Enrichment Measuresb

protein docking method AUC log AUC EF1% (%) EF10% (%) BEDROC

AmpC AutoDock4 0.71 0.12 2.1 39.6 0.19
Vina 0.58 0.05 0.0 18.8 0.12
AutoDock Bias (ethanol OH) 0.76 0.19 10.4 41.7 0.28
AutoDock Bias (ethanol OH + CH3) 0.79 0.26 14.6 58.3 0.41

BRD4 AutoDock4 0.72 0.13 6.5 25.4 0.18
Vina 0.61 0.07 4.8 23.4 0.14
AutoDock Bias (ethanol OH) 0.81 0.23 12.9 52.4 0.33
AutoDock Bias (ethanol OH + CH3) 0.81 0.22 12.5 51.6 0.32

CDK2 AutoDock4 0.76 0.20 13.9 43.0 0.30
Vina 0.71 0.15 8.9 33.3 0.23
AutoDock Bias (ethanol OH) 0.81 0.23 13.1 50.2 0.32
AutoDock Bias (ethanol OH + CH3) 0.81 0.25 17.5 51.1 0.36

DHFR AutoDock4 0.76 0.15 3.9 39.4 0.22
Vina 0.79 0.20 9.5 39.0 0.27
AutoDock Bias (ethanol OH) 0.86 0.30 14.7 64.5 0.43
AutoDock Bias (ethanol OH + CH3) 0.86 0.30 19.5 64.1 0.42

FXa AutoDock4 0.84 0.36 32.8 60.3 0.51
Vina 0.81 0.27 21.4 49.5 0.40
AutoDock Bias (ethanol OH) 0.88 0.42 39.3 70.4 0.58
AutoDock Bias (ethanol OH + CH3) 0.86 0.39 37.8 63.7 0.53

FGFr1 AutoDock4 0.70 0.19 16.5 39.6 0.29
Vina 0.68 0.09 5.0 16.5 0.13
AutoDock Bias (ethanol OH) 0.71 0.13 7.9 33.1 0.21
AutoDock Bias (ethanol OH + CH3) 0.71 0.17 10.8 39.6 0.27

Gal-3 AutoDock4 0.39 −0.01 2.7 8.1 0.08
Vina 0.62 0.06 5.1 12.8 0.10
AutoDock Bias (ethanol OH) 0.74 0.18 10.8 37.8 0.27
AutoDock Bias (ethanol OH + CH3) 0.74 0.18 13.5 37.8 0.29

HIVpr AutoDock4 0.67 0.09 3.0 26.9 0.15
Vina 0.74 0.15 5.6 36.6 0.22
AutoDock Bias (ethanol OH) 0.77 0.14 2.8 36.6 0.19
AutoDock Bias (ethanol OH + CH3) 0.81 0.20 7.1 48.7 0.28

PDE5A AutoDock4 0.60 0.08 4.5 23.6 0.15
Vina 0.63 0.09 6.5 19.1 0.14
AutoDock Bias (ethanol OH) 0.64 0.11 7.0 28.6 0.19
AutoDock Bias (ethanol OH + CH3) 0.65 0.11 7.5 24.6 0.17

mean (SD)a AutoDock4 0.68 (0.13) 0.15 (0.10) 9.5 (10.1) 34.0 (14.9) 0.23 (0.13)
Vina 0.69 (0.08) 0.13 (0.07) 7.4 (5.9) 27.7 (12.4) 0.19 (0.10)
AutoDock Bias (ethanol OH) 0.78 (0.07) 0.21 (0.10) 13.2 (10.4) 46.1 (14.3) 0.31 (0.13)
AutoDock Bias (ethanol OH + CH3) 0.78 (0.07) 0.23 (0.08) 15.6 (9.3) 48.8 (13.0) 0.34 (0.10)

aMean (standard deviation) for all systems. bValues highlighted in bold represent significant improvement in AUC and/or log AUC over standard
docking procedures (p < 0.05, see text).
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with previous observations of poor results for carbohydrate
docking.19 Overall, the comparative performance between both
conventional methods, especially at early enrichment, shows
that for most systems, AutoDock4 gives substantially better
results than Vina (AmpC, BRD4, CDK2, Factor Xa, FGFr1),
whereas for some others, the trend is reversed (DHFR,
galectin-3, HIV protease). Statistical differences between
AutoDock4 and Vina performances are shown in Table S1,
and a discussion in the context of a recent study25 that
concluded that Vina outperforms AutoDock4 using the
CASF2013 data set is presented in the Supporting Discussion.
On the contrary, AutoDock Bias achieves good performance

(AUC > 0.70, log AUC > 0.15) in five systems and excellent
performance (AUC > 0.80, log AUC > 0.25) in other three
systems. The only target where the performance of the biased
methods is still poor, albeit better than the conventional ones,
is phosphodiesterase 5A. Also, when using only ethanol
hydrophilic (ethanol −OH) sites as a bias, a low early
enrichment was achieved for FGFr1 and HIV protease. In
relative terms, both biased methods have superior performance
than conventional ones for all systems except FGFr1 at early
enrichment. The conformation of the active site of this flexible
kinase target26 is fixed in the DUD-E structure to the so-called
DFG-in state, which was the one sampled during the MD
simulations used to determine the ethanol sites. It seems that
the bias toward interactions in this particular conformation
strongly penalized DFG-out ligands (actives) that might be
present in the DUD-E dataset. This is expected since the DFG-
in and DFG-out conformations are structurally and energeti-
cally dissimilar.27 Finally, considering all targets, an increase in
mean results is obtained for all metrics with the biased
methods, although this has a limited value especially due to the
difference in performance between systems. In this regard, the
lower standard deviation values highlight that AutoDock Bias
performance using both hydrophilic (−OH) and hydrophobic
(−CH3) ethanol sites is more consistent between diverse
systems than conventional AutoDock4.
To statistically analyze the observed differences between

conventional methods and AutoDock Bias, a one-tailed
hypothesis test was performed using bootstrap (see Supporting
Methods). The obtained p-values for the AUC are shown next
to the ROC curves (Figure 2) and for the log AUC next to the
semilogarithmic ROC curves (Figure S2) from which they are
derived, for both biased methods. Taking the typical value of
0.05 as the significance level for the test, the AUC and log
AUC values obtained using AutoDock Bias with both
hydrophilic and hydrophobic ethanol sites are significantly
higher than those of conventional AutoDock4 for seven out of
the nine systems. The systems where no significant improve-
ment (nor decline) was observed are FGFr1/AmpC for AUC
and FGFr1/FXa for log AUC. A similar enhancement is
achieved by the biased method with only ethanol −OH sites
for the AUC values, but the improved performance is reduced
to six out of nine targets for log AUC. The tests were
performed against AutoDock4 because it is the conventional
method that gave the best overall results and the one used as a
baseline for our energy modifications. Beyond the statistical
analysis of AUC and log AUC values, there are five targets
(AmpC, BRD4, DHFR, galectin-3, and HIV protease) for
which the improvement with AutoDock Bias using both types
of ethanol sites is evident both qualitatively, by the separation
between the corresponding ROC and semilogarithmic ROC
curves, and quantitatively, especially in terms of very early

enrichments: EF1% is 2−7 times higher than those obtained by
the conventional methods. For example, AmpC has ca. 7-fold
increase in its EF1% for AutoDock Bias. This means that if a
database is composed of 100 000 compounds out of which 100
are true ligands, we expect to experimentally obtain 2 hits if we
select compounds based on standard docking software, but
instead to get 15 hits if using AutoDock Bias, for every 999
confirmed nonbinders.
To summarize the overall performance of AutoDock Bias

using hydrophilic and hydrophobic ethanol sites compared to
that of conventional methods, regarding both global and early
enrichment, Figure 3 shows their corresponding difference in

AUC and BEDROC for all systems. The Δ(AUC) versus
Δ(BEDROC) plot displays improvement for AutoDock Bias in
practically all of the systems, as revealed by the points in the
(+,+) quadrant. Most systems have BEDROC differences
greater than 0.10, which, according to the statistical
interpretation of this parameter (see Supporting Methods),
are values of substantial improvement. As previously analyzed,
the only case in which AutoDock Bias does not attain better
early parameters than AutoDock4 is FGFr1, yielding a value of
BEDROC lower in 0.02 units and a drop of 5.7% in EF1%.
However, the loss of enrichment is quickly reversed at EF10%
and thereafter, and improvement is observed with respect to
Vina at all stages. Finally, the correlation for the increase in
both global and early metrics seen in Figure 3 indicates that a
general improvement is achieved with the biased method.
However, the rise in global enrichment appears somewhat
more moderate than the increase in early enrichment,
suggesting that the bias causes a substantial increase in the
score of some actives relative to decoys, but cannot fix grossly
incorrect predictions, for example, due to inadequate protein
conformation.

Scoring and Binding Mode of Actives. To analyze the
effect of the biased conformational search and scoring on the
docking of known binders, we compared it to conventional
docking methods regarding (a) the relative ranking of active
molecules and (b) the binding mode prediction of actives with
a known bound crystal structure (see Computational
Methods).
The rankings of active molecules obtained with standard

AutoDock4 and AutoDock Bias using both hydrophilic and
hydrophobic ethanol sites were compared by calculating the

Figure 3. Δ(AUC) vs Δ(BEDROC) between AutoDock Bias using
ethanol hydrophilic + hydrophobic sites and AutoDock4 (dots) or
Vina (crosses). Results are color coded according to each system.
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Kendall tau coefficients (Table S2). Eight out of nine systems
display a correlated order of active molecules in both rankings
(τ ≥ 0.5). Therefore, when using AutoDock Bias, a general rise
in the ranking of actives as a group with respect to decoys is
accomplished, whereas the order between actives themselves is
not significantly altered when compared to conventional
docking results. This highlights that the biased docking
method maintains the relative binding affinity predicted for
actual ligands by AutoDock4, whose scoring function was
calibrated with known binders, while better discriminating
between binders and nonbinders by enforcing specific target
important interactions.
We also compared actives docking pose with their

crystallized structure with the aim of discerning if better
ranking correlates with a more accurate pose prediction. Heavy
atom root-mean-square deviations (rmsds) between the
predicted pose for active molecules and the cocrystallized
conformation of the same compound or a similar one
(Tanimoto similarity index ≥ 0.85) are presented in Figure
4. In five of seven systems, there was an improvement in pose

prediction using AutoDock Bias: mild (5% more actives with
rmsd < 2 Å) for PDE5A and DHFR, moderate (10%) for
BRD4, and significant (45%) for FGFr1 and AmpC. However,
there is slightly worse prediction for CDK2 (−5%) and a
moderate one (−16%) for Factor Xa. Therefore, although
improving pose prediction in the majority of tested proteins,
AutoDock Bias performance remains system-dependent for
significantly improving binding mode calculations.
It can be seen from Figure 4 that there are several systems

with highly inaccurate binding mode predictions (rmsd > 4 Å).
In BRD4, the reason seems to be that the main driving force
for the binding is a single hydrogen bond interaction with
Asn140, aided by variable nondirectional hydrophobic
interactions. An additional difficulty for the docking is that
there are known interactions bridged by water molecules. The
poor pose prediction holds even with the biased method and is
related to the lack of solvent sitesexcept the ones near the
Asn140that would aid in positioning the ligands correctly in

the whole binding site. On the contrary, the enhanced
formation of the hydrogen bond between Asn140 and the
ligands in the biased docking runs is enough to improve the VS
performance, as revealed by significant increases in AUC and
log AUC (Table 1). Unlike BRD4, DHFR constitutes a case
where improvement in VS performance by the biased method
is explained by better binding mode prediction. The conven-
tional method has problems with several similar active ligands
that repeatedly appear with their terminal fused aromatic rings
inverted in the binding site, dramatically changing the
interaction pattern (Figure S6A,B). The bias toward the
hydrogen bond interaction between Glu30 and the diamino-
pyrimidine ring (Figure S1D) corrects this issue for the biased
method. Last, there are problematic ligands whose poses
cannot be predicted by any of the methods and correspond to
structures of considerable size with around 14 torsions and 50
atoms excluding nonpolar hydrogens (Figure S6C). Finally, for
PDE5A and FGFr1, there is a pose prediction improvement
with the biased method, but as previously discussed, the
flexibility of both protein targets prevents from achieving better
predictions since the protein conformations from the DUD-E
set are substantially different from the holo structures found for
certain types of ligands from the active set. Interestingly, the
binding mode of ligands is certainly better captured by the
biased method for FGFr1, a system whose improvement in
enrichment parameters is quite poor (Table 1). We can
rationalize this result taking into account that all ligands with
rmsd below 2 Å are bound to the DFG-in protein
conformation in the corresponding crystal structure, which
matches the conformation selected from the DUD-E database
for the docking experiments. This points out again that
AutoDock Bias is probably incapable of assigning high scores
to ligands that bind the DFG-out conformation and are present
as actives in the test set.
Finally, it is interesting to dig deeper into the results for

Factor Xa that show worse pose predictions with AutoDock
Bias than with standard AutoDock4. This observation can be
explained by the lack of directionality of the hydrophobic/
aromatic pharmacophore derived from the MD, which is the
binding driving force for this system. This feature is unique to
Factor Xa since all other systems from the set have a robust
polar pharmacophore which provides directionality for ligands
(Figure S1). In this sense, it should be interesting to derive a
better bias for the aromatic moieties that also includes
directionality, for example, by using phenol as a cosolvent. In
conclusion, the improvement observed in the classification
between actives and decoys by the addition of the hydrophobic
bias is relevant for VS but needs additional adjustment since
ligand correct orientation is not well achieved when no
hydrogen bonding is included. As a final remark, several FXa
ligands bind benzamidine or other positively charged groups.
Ethanol being a neutral molecule was able to identify this
pharmacophoric hydrogen bond, but an ionic probe would
probably assign better energy prioritization and predict correct
poses for more ligands.

Discussion in Relation to Other Methods. Pharmaco-
phores obtained from the protein structure, with no previous
ligand-based knowledge, are versatile for the discovery of new
drugs since they can be employed in novel targets for which
limited information is available. Likewise, in the VS of large
amounts of compounds, they increase the probability that the
obtained hits have different chemical functionalities than the
ligands already tested for the target of interest. Moreover, the

Figure 4. Histograms for heavy atom rmsd between predicted poses
and crystallized conformations of ligands with Tanimoto similarity
index equal to or greater than 0.85. Results for standard AutoDock4
are shown in blue and for AutoDock Bias with hydrophilic and
hydrophobic ethanol sites in green.
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protein-derived pharmacophores obtained in this study
consider desolvation in an explicit way and protein flexibility
to a certain degree because they were obtained from
unrestrained MD simulations in mixed solvents.
To achieve more profound improvements with the

developed method, we must answer two central questions.
The first one is why some actives still do not appear in the
upper part of the ranking. A careful analysis of ligand
properties show that, in general, actives that are not retrieved
at early or middle stages are relatively small molecules
compared to those ranked higher (Figure S4). Although this
is expected given that docking score scales with the size of
compounds, AutoDock Bias seems less affected by the ligand
size effect on the ranking, as revealed by the Spearman’s
correlation coefficients closer to 0, than the conventional
method for seven of the nine systems (compare Figures S3 and
S4). The second question is why some decoys remain in the
upper portion of the ranking even when the biased method is
applied. We found that many highly ranked decoys adopt
excessively folded and seemingly entropically unfavorable
conformations that allow them to coincide with several solvent
sites and thus increase their estimated binding energy. This is
possible because the scoring function has a poor balance
between the interaction energy and conformational entropy.
On the other hand, we also observed that there are cases in
which the best-ranked decoys preferentially replace solvent
sites that are not coincident with ligand-derived pharmaco-
phoric sites when compared to best-ranked actives. In general,
potential areas for future improvement include the use of
additional solvent probes that capture other interaction types
(e.g., ionic groups) and taking advantage of the information
about displaceable/nondisplaceable water molecules that
already comes out of the MD simulation in mixed solvents.
Finally, it is interesting to compare our method with other

works using MD in mixed solvents in the context of VS.
MacKerell’s group pioneered the use of pharmacophore
models obtained by cosolvent MD for screening a large
number of compounds.28,29 In their approach, ligand features
are required to match all MD-derived pharmacophoric sites,
and the score arises from the rmsd between these paired
features, supplemented with free-energy grid calculations for
the ligand pose(s). The method is useful to filter compounds
that are not able to fulfill the pharmacophoric sites, but does
not aid in the conformational search itself. Indeed, it relies on
predefined ligand conformations that are not adjusted to the
target structure. Nonetheless, since there is no rigid receptor,
protein flexibility from MD simulations is totally accounted in

the pharmacophoric sites, and excluded space regions are
determined from the absence of probe localization during the
MD rather than from a given protein surface. On the other
hand, Uehara and Tanaka used cosolvent MD to generate an
ensemble of protein conformations for docking-based VS.30

The ensemble selection relies on clustering the conformations
according to binding site residues and ranking the clusters by
predocking known actives, considering the ones achieving
higher scores. Finally, ensemble docking is performed using
standard Vina. This approach is totally complementary with
our method since the final ensemble docking could be done
with AutoDock Bias using solvent sites extracted from the
same MD simulations required to obtain the target receptor
ensemble. To our knowledge, the AutoDock Bias implementa-
tion presented here is the only method where cosolvent-
derived information is used to modify the scoring function of a
docking program, both for conformational search and final
affinity estimation, with the aim of improving VS results.

■ CONCLUSIONS
In the present work, we demonstrate the potential of biased
docking using pharmacophores derived from MD in mixed
solvents (solvent sites) to increase the enrichment of true
ligands in VS campaigns. Significantly higher AUCs and log
AUCs were obtained with respect to conventional docking
methods, indicating improvement both in the global ranking of
compounds and, especially, in early stages. The latter
important issue is additionally reflected in ligand enrichments
at 1% which were multiplied by up to 7 times. The most
successful variant is to perform MD simulations in the ethanol-
water mixture, obtain both ethanol hydrophilic and hydro-
phobic interaction sites, and add this solvent information to
the docking protocol of AutoDock Bias.

■ COMPUTATIONAL METHODS
Protein and Ligand Dataset. Nine protein targets were

selected (Table 2) to test the performance of the biased
docking method for VS. They belong to different families, have
various functions, and represent a diverse set of targets relating
its protein−ligand interactions (Figure S1). The protein
structures for seven of the targets were obtained from the
DUD-E database,24 a repository of relevant target protein
structures, each bearing a set of true ligands or actives with an
experimentally measured affinity below 1 μM and nonbinders
or decoys, which are compounds with similar physicochemical
properties as the actives but a different topology based on two-
dimensional (2D) fingerprints. In addition to these focused

Table 2. Protein Set for VS Assessment

protein name function no. activesa no. decoysa PDB ID resolution (Å)

AmpC β-lactamase (AmpC) C−N hydrolase 48 2832 1l2s 1.94
bromodomain-containing protein 4b (BRD4) bromodomain 248 15 009 4zc9 0.99
cyclin-dependent kinase 2 (CDK2) kinase 474 27 830 1h00 1.60
dihydrofolate reductase (DHFR) reductase 231 17 170 3nxo 1.35
Factor Xa (FXa) protease 537 28 325 3kl6 1.45
fibroblast growth factor receptor 1 (FGFr1) kinase 139 8651 3c4f 2.07
galectin-3b (Gal-3) lectin 37 1694 1kjr 1.55
human immunodeficiency virus type 1 protease (HIVpr) protease 536 35 674 1xl2 1.50
phosphodiesterase 5A (PDE5A) esterase 398 27 521 1udt 2.30

aThe number of actives and decoys correspond to unique compounds. Different species (tautomers, protomers, and conformers) were docked for
each compound, thus increasing the total number of molecules. The final score for each compound corresponds to the most favorable score among
all its species. bSystems not included in the DUD-E dataset.
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decoys, molecules proved to be experimentally inactive
(affinity greater than 30 μM) were also added to the database
when that information was available. The DUD-E, together
with its predecessor DUD,31 has been proven useful for
benchmarking VS procedures.32 The two remaining systems
not present in the benchmarking database are BRD4, a
promising target for disrupting protein−protein interactions,
and galectin-3, a docking-challenging carbohydrate binding
protein with a binding site quite exposed to the solvent and
known ligands with increased complexity due to high number
of rotatable bonds. The structures of these two targets were
obtained from the PDB in the holo form with a resolution
lower than 2.5 Å and in a conformation that could
accommodate the greater number of cocrystallized ligands.
These resulted in PDB ID 4zc9 for BRD4 and 1kjr for galectin-
3. Subsequently, a procedure analogous to that of the DUD-E
was carried out. First, actives were recovered from Bind-
ingDB,33 BindingMOAD,34 and ChEMBL35 databases, only
considering compounds with experimentally measured Ki, Kd,
or IC50 lower than 1 μM against the corresponding target.
Then, a structural diversity filter was applied with DataWarrior
program,36 based on three-dimensional (3D) similarity
according to protein-binding pharmacophoric characteristics
(Flexophore similarity descriptor37). Finally, the decoys were
obtained from these actives through the DUD-E web tool
(http://dude.docking.org/generate),24 which recovers 50
decoys extracted from ZINC38 for each active protomer in
the SMILES format. SMILES for actives and decoys of BRD4
and galectin-3 are available in the Supporting Information. In
summary, the number of active ligands per system ranges from
37 to 537, while the number of decoys varies between 1694
and 35 674, so different sizes of databases were analyzed with
the method (Table 2).
Workflow and ROC Metrics. To evaluate the performance

of different docking methods in VS campaigns, we followed the
process outlined in Figure 1 for each target. After retrieving
actives and decoys, all compounds were docked against the
protein structure stated in Table 2 and Supporting Methods,
and a ranking was built according to their predicted affinity.
The predominance of active ligands in the first positions of the
ranking was quantified by the following metrics: ROC curve,
AUC, semilogarithmic ROC curve, adjusted area under the
semilogarithmic ROC curve (log AUC), enrichment factors at
1 and 10% (EF1% and EF10%), and BEDROC.39 The definition
of each metric is detailed in the Supporting Methods. This
process was repeated for each of the following docking
methods: conventional AutoDock4, conventional Vina,
AutoDock Bias using hydrophilic ethanol sites (ethanol
−OH), and AutoDock Bias using both hydrophilic and
hydrophobic ethanol sites (ethanol −OH + −CH3).
AutoDock422 and Vina23 were chosen for comparison because
they are the two most widely distributed freeware docking
programs and because our biased method is based on the
AutoDock4 scoring function.
The calculation of the different metrics from the rankings

was made with R.40 In particular, we use several functions from
the “ROCR” package41 to calculate ROC curves and AUCs,
the “pracma” package to obtain the log AUC through
integration using trapezoids, and the “pROC” package42 to
calculate the hypothesis test for the difference in AUC. The
hypothesis test for the difference in log AUC was programmed
in R following the guidelines included in the Supporting
Methods.

MD in Mixed Solvents. The MD simulations in aqueous
ethanol for AmpC, CDK2, DHFR, Factor Xa, FGF receptor 1,
and PDE5A were previously performed and described.18

BRD4, galectin-3, and HIV protease were simulated following
the same protocol. Initial structures were downloaded from the
PDB database43 (PDB IDs 4zc9 for BRD4, 1kjr for galectin-3,
and 1xl2 for HIVpr). All nonstructural ions and solvent and
ligand molecules were removed. Missing side chains and
hydrogen atoms were added using the LEaP module from
Amber package (version 16).44 Standard protonation state at
physiological pH was assigned to all ionizable residues, except
for HIV protease that was simulated with Asp124 protonated.
The structures were then solvated with a truncated octahedral
box of ethanol 20%V/V extending at least 10 Å from any
protein atom using MDMix program.15 TIP3P model was used
for water molecules, and forcefield parameters for ethanol were
assigned as previously reported.18 Amber ff14SB forcefield was
used for protein residues. All MD simulations were performed
with the PMEMD implementation of SANDER for GPU from
Amber 16.45 Details on ethanol concentration and simulation
protocol can be found in the Supporting Methods.

MD-Derived Solvent Sites. The MD-derived solvent sites
(ethanol sites) were obtained as explained in our previous
work.18 Briefly, ethanol sites are defined as space regions
adjacent to the protein surface where the probability of finding
a probe atom of this cosolvent is higher than that in the bulk.
We obtained both types of ethanol sites: hydrophilic sites in
regions where the −OH resides for a significant amount of
time during the MD simulation and hydrophobic sites in
regions where the terminal −CH3 had a considerable
occupancy. The preference of the ethanol probe for being in
the solvent site with respect to the bulk is given by the free
energy of the site defined in eq 1

G RT
N

N
ln solvent site

bulk
Δ = −

(1)

where Nsolvent site is the number of times a probe atom is found
inside the solvent site during the MD simulation and Nbulk is
the number of times a probe atom is found in the bulk inside a
sphere with the same volume of the solvent site (arbitrarily
taken as 1 Å3). Besides its free energy, a solvent site is also
described by its coordinates, that is, the center of mass of the
probe atoms defining the site and its radius or dispersion
parameter, that is, the radius necessary to get a sphere
containing 90% of the probe atoms defining the site.
Ethanol sites were obtained exclusively for the binding (or

active) site of each target. For each protein, the binding pocket
was defined using all protein−ligand cocrystal structures
available in the PDB, having a resolution below 2.5 Å and a
reported binding affinity (Kd, Ki or IC50) below 1 mM. All
protein residues that had at least one atom within 4 Å from any
ligand atom in at least one structure were considered part of
the pocket. To select the cosolvent pharmacophoric points
(solvent sites) for the VS application, we first identified all
possible solvent sites in the binding pocket. Then, we kept
those with ΔG of binding above 0.95 kcal/mol (ΔG < −0.95
kcal/mol, a threshold representing a probe-finding probability
at least 5 times higher than the one in bulk, eq 1). Similar
cutoffs have been used in previous studies for deriving
pharmacophore profiles.15,28 Finally, solvent sites clashing
with the particular protein structure selected for docking, as a
consequence of the receptor flexibility during the MD, were
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removed. The distance cutoff between a solvent site and any
protein heavy atom below which the solvent site was discarded
was set at 2.1 Å for hydrophilic sites and 2.9 Å for hydrophobic
sites (a 0.5 Å tolerance from the minimum values for hydrogen
bonds and aliphatic/aromatic interactions, respectively,
reviewed by Bissantz et al.46). As a final remark, the solvent
sites overlapping the NADP cofactor from DHFR were also
removed because the cofactor was retained for the docking as if
it was part of the receptor.
Conventional and Biased Docking. Protein, Ligand,

and Grid Preparation for Docking. Protein structures were
obtained from the DUD-E database for seven systems (AmpC,
CDK2, DHFR, Factor Xa, FGF receptor 1, HIV protease, and
PDE5A) and directly from the PDB for BRD4 (4zc9) and
galectin-3 (1kjr). They were checked and protonated when
needed with Maestro47 and then converted to PDBQT with
AutoDockTools22 (prepare_receptor4.py). Structural details
can be found in the Supporting Methods. Each receptor was
kept rigid for docking. Structural ligand files were obtained
from the DUD-E database in the SDF format and converted to
PDBQT format with Open Babel.48 For the systems not
present in the DUD-E database, the 3D structures of the
compounds were generated with LigPrep49 from the previously
obtained SMILES (see “Protein and Ligand Dataset”),
considering stereoisomers, tautomers, and ring conformers.
For building the grid that defined the docking site for each

target, all protein−ligand crystallographic complexes available
from the PDB, with resolution below 2.5 Å and a reported
binding affinity (Kd, Ki or IC50) below 1 mM, were used. For
systems with less information, such as galectin-3, all complexes
from the PDB were retrieved. The structures were aligned
according to the binding site residues to the protein structure
selected for docking (see above). The grid defining the binding
pocket was centered in the geometric center of all aligned
ligand atoms and extended to reach a rectangular prism with an
edge distance equal to 2 times the maximum distance between
any two ligand atoms in each direction (x,y,z). The spacing
between grid points was set at 0.375 Å. All receptor structure
files (PDBQT) are provided as Supporting Content, and
docking grids position and dimensions are available in Table
S3.
AutoDock4 and Vina. On the one hand, conventional

docking experiments were performed with AutoDock422

program (version 4.2.6). Briefly, based on the protein
structure, the energy maps were computed as usual inside
the grid. One hundred independent docking runs were
performed, and the resulting poses were clustered according
to the ligand heavy atom rmsd using a cutoff of 2 Å, thus
defining a population for each cluster. The Lamarckian genetic
algorithm was applied with a maximum of 27 000 generations
or 2 500 000 energy evaluations. On the other hand, when
using Vina23 for the docking runs, the parameters of the default
search algorithm were used, and nine binding modes were
generated for each ligand. The energy maps were calculated
internally during the docking experiment using the same
position and dimensions as for AutoDock4.
AutoDock Bias with Solvent Sites. The solvent site-biased

docking method has been described in detail in our previous
work.18 Here, we only use solvent sites obtained from MD
simulations in ethanol as a cosolvent because of the specificity
and precision of the probe and the binding mode results
previously shown.18 To adapt the ethanol sites obtained from a
flexible MD simulation to the rigid structure used in docking

experiments, a positional correction for the hydrophilic sites
was made according to their hydrogen bond donor and/or
acceptor capacity. The coordinates of the hydrophilic ethanol
sites were translated to the ideal location of the hydrogen bond
formed according to the conformation of the interactor group
of the protein, following the guidelines of Boobbyer et al.50 on
which AutoDock4 scoring function is also based. Thus,
acceptor sites remained located at ideal positions for heavy
atoms and donor sites at those for H atoms. A single solvent
site was chosen for each protein interactor atom, that is, not
more than one solvent site of the same type can interact with
the same protein atom. Then, AutoDock4 grid maps were
modified such that O/N acceptor atoms from the ligand have
an energy reward in the corrected location of acceptor ethanol
sites while ligand H donor atoms have it in the corrected
location of donor ethanol sites. In addition, aromatic ring
centers from the ligand have an energy reward in the regions
where hydrophobic ethanol sites were established (no
positional correction was done because of lack of well-
established directionality for these interactions). The rationale
for guiding aromatic rings to hydrophobic sites derived from a
nonaromatic probe comes from the finding made by Barril’s
group,15 which showed that the terminal C of ethanol was able
to reproduce ligand aromatic interactions with the same
specificity as aliphatic ones. This was further supported by our
previous work,18 where we showed that ethanol has a
sensitivity around 70% for ligand hydrophobic interactions
and that, even though it does not have aromatic properties, has
a slight preference for reproducing interactions of ligand
aromatic rings compared to aliphatic rings or side chains.
The magnitude of the energy reward applied to the modified

maps is directly related to the free energy of the ethanol sites
according to eq 2

G G G e
i

N x x y y z z

rbias ori
1

i

( ) ( ) ( )i i i

i

2 2 2

2∑Δ = Δ + Δ ×
=

−
− + − + −

(2)

where ΔGbias is the resulting modified score, ΔGori is the
original AutoDock4 score, ΔGi is the free energy of the i-th
solvent site, (x,y,z) are the grid point coordinates, (xi,yi,zi), and
ri are the coordinates and radius of the i-th solvent site, and the
sum extends over the total number N of ethanol sites. Modified
OA/NA/HD energy maps built by AutoDock Bias are then
used in the same way and in place of conventional AutoDock4
maps. For the aromatic bias, a new map was built using eq 2
with ΔGori = 0 and affecting a dummy atom type located in the
center of ligand aromatic rings. The rest of docking parameters
were kept as with conventional AutoDock4 runs for sake of
comparison.

Final Score. As it is common with AutoDock4, we used a
combined scoring scheme. The consistency of a particular
solution in repeated and independent docking calculations was
evaluated by gathering the different predicted poses according
to the rmsd of their atom coordinates, thus defining a
population parameter that counts equivalent poses. Then, the
scoring criterion used for each docked ligand consisted in
retaining the pose with the lowest free energy of binding
among those with a population equal or greater than 20% (if
the population resulted in less than 20% for all poses, then the
lowest global energy was taken). Finally, a ranking of
compounds was generated according to the final score
obtained in this way. For the same compound, only the
protomer, conformer, tautomer, or stereoisomer with the most
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favorable energy score was considered after applying the
criterion just discussed. For Vina, the better ranked binding
mode was merely taken with it associated score.
Binding Mode Prediction. Regarding pose prediction

assessment, for each target, cocrystallized ligands with a
Tanimoto similarity index equal to or above 0.85 against any of
the actives of that target were retrieved from the PDB (see
Supporting Methods for notes on the selected similarity
threshold). The computation of similarity was done directly on
the PDB server, using the extended connectivity fingerprint
method from ChemAxon JChem. Target proteins were filtered
by UniProt ID with sequence identity above 90% from the
reference structure selected for docking. For each correspond-
ing pair (docked active pose/crystallized ligand conformation),
the protein structures were aligned according to the binding
site, the maximum common substructure (MCS) between the
ligands was found, and their heavy atom rmsd was computed
using the RDKit.51 When many MCSs alignments and/or
crystallized ligands were available, the reported rmsd is the
minimum of them. Crystallized ligands outside the docking
grid were left out of the analysis. The procedure was performed
for conventional and biased docking results and comprised 19
ligands for AmpC, 86 for BRD4, 92 for CDK2, 19 for DHFR,
84 for Factor Xa, 9 for FGFr1, and 25 for PDE5A. Galectin-3
lacks a proper number of cocrystallized ligands similar enough
to the active molecules (it has only three crystallized ligands on
the PDB which have binding data on ChEMBL, one of the
databases used to build the active molecules set), and HIV
protease structure from the DUD-E database differs enough
from several other PDB entries, making the alignment
unfeasible.
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