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ABSTRACT

Nowadays the development of new functional materials/chemical compounds using machine learning
(ML) techniques is a hot topic and includes several crucial steps, one of which is the choice of
chemical structure representation. Classical approach of rigorous feature engineering in ML typically
improves the performance of the predictive model, but at the same time, it narrows down the scope of
applicability and decreases the physical interpretability of predicted results. In this study, we present
graph convolutional neural networks (GCNN) as an architecture that allows to successfully predict the
properties of compounds from diverse domains of chemical space, using a minimal set of meaningful
descriptors. The applicability of GCNN models has been demonstrated by a wide range of chemical
domain-specific properties. Their performance is comparable to state-of-the-art techniques; however,
this architecture exempts from the need to carry out precise feature engineering.

1 Introduction

The design of new functional materials is associated with significant computational costs. The use of different
approximations substantially based on density functional theory[1, 2] (DFT) makes it possible to solve Schrödinger
equation numerically without critical loss of accuracy for calculation of ground-state properties. However, DFT
calculations are still disappointingly time-consuming for materials and molecular design, especially if we consider
their extensive use for large databases[3, 4, 5]. An alternative approach combines the quantitative structure-property
relationship (QSPR) modeling and ML techniques for materials property predictions based on their structure. This
method accelerates the calculation of properties by several orders of magnitude. Nevertheless, it remains unclear how
widely this approach can be applied and replace the DFT calculations.

It is well known that appropriate representation of considered structures plays a crucial role in property prediction
using machine learning[6, 7, 8, 9]. Design of input data, and so called feature engineering, represents a challenge.
In particular, a specific feature vector has to be constructed for each use case; the more specific the target property,
the more specific the feature vector should be. All these issues prevent the use of one unified approach for different
domains of chemical space.

Nevertheless, several attempts have been made to create universal models that do not require precise feature engineering.
The Gaussian process regression[10] and deep tensor neural networks[11] were used as basic algorithms. However, it
should be noted that the priority attention in these studies was paid to the prediction of the thermodynamic stability of
molecules/materials, i.e., their energy. State-of-the-art results have been achieved using graph-based neural networks[12]
on large datasets generated in a high-throughput manner (e.g., QM9 for molecules, Materials Project database for
inorganic crystals). At the same time, many physicochemical quantities cannot be obtained as a result of DFT
calculations. Data scarcity makes it very difficult to build highly efficient predictive models (including those based on
graph-based neural networks) in the case of small experimentally obtained datasets. Another issue of particular interest
is a generalization of such universal models to porous or low-dimensional materials, which represent an intermediate
case between molecular and crystalline systems from an atomic connectivity perspective. However, the above difficulties
have not been considered in detail.

This study is devoted to the development of a universal approach that would allow predicting the properties of
both molecules and materials with varied atomic connectivity, using simple, physically interpretable descriptors. A
graph-based convolutional neural network is considered here as a base architecture for universal property prediction.
Similar architectures were successfully used to predict the properties of structures from distinct domains of chemical
space[13, 14, 15]. To the best of our knowledge, this work also represents the first attempt to apply graph-based NNs
for the prediction of two-dimensional and porous materials’ properties. The limits of applicability of graph-based NNs,
as a flip side of their universality, are also clearly demonstrated.
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2 Methods

Convolutional neural networks (CNNs) are one of the most promising and fast-developing classes of machine learning
algorithms due to their exceptional performance in image, video and speech recognition tasks[16]. Ordinary CNNs
(strictly speaking, convolutional kernels) require input data to be on the regular grid. Unfortunately, most of the real use
cases deal with highly unordered data, which can be sometimes represented as a graph. Extension of convolutional
kernels to an irregular domain is a nontrivial task, thus in recent years the efforts of several scientific groups have focused
on its solution[17, 18]. A graph-based architecture of artificial neural networks is known as a graph convolutional
neural network (GCNN).

The attractive idea is to adapt and apply graph neural networks for materials property prediction since chemical
structures can be represented in the form of graphs with atoms for nodes and bonds for edges. Previously, this concept
was used mainly for organic molecules, and so far only a few studies have been devoted to their application for periodic
structures (inorganic crystals) property prediction[12, 15]. For the sake of universality, we propose to use only the
adjacency matrices and the set of most common properties of corresponding element/lattice site as input data for the
GCNN model. More detailed information on GCNN architecture is provided in Supporting Information.

Figure 1: General workflow of training process.

Two slightly different sets of descriptors for non-periodic and periodic structures were used to represent structures,
and each of them reflects the specificity of the above systems. For non-periodic structures (organic molecules), only
node-wise descriptors were used, and structural features were excluded entirely from consideration, which is opposite
to the case of periodic structures where those features were included (for more details see Supporting Information).

It should be noted that we purposely excluded from consideration linear combinations of the mentioned descriptors.
Such artificially generated quantities are widely used in conjunction with random forest/gradient boosting models, with
the subsequent selection of the most valuable features. In fact, this methodology is one of the variations of feature
engineering. However, as stated earlier, our goal was to build the simplest, most universal model, without the need to
use extensive sets of domain-specific features and their combinations.

To demonstrate the universality and limits of applicability of GCNN models we train models on multiple diverse
datasets, which are covering wide range of various parameters:

• Dimensionality – 0D (organic molecules), 2D (layered materials), 3D (all others).

• Structural diversity – high (porous materials), medium/low (all others).

• Compositional diversity – low (porous materials), medium/high (all others).

Molecules. Previously, similar graph-based neural networks demonstrated high accuracy of prediction of multiple
molecular properties related to different levels, including quantum mechanical, physical chemistry, biophysical and
macroscopic physiological properties[19]. Only a few datasets from the last three levels were used to confirm the
performance of GCNN models.
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Water solubility models were trained using a dataset[20] containing 1299 molecules with logS = – 5 taken as a cut-off
value for classification. We also trained a number of models for biological endpoints, including human ether-a-go-go-
related gene (hERG) inhibitors dataset[21] with 373 active and 433 inactive molecules; 175 active, 19 604 inactive
molecules from CDD Public datasets[22, 23, 24] (malaria); and dataset with 253 active, 69 inactive molecules that have
been scored for probe-likeness by medical chemists[25].

Inorganic crystals. Experimental determination of inorganic crystal properties is a complex task due to difficulties
with a monocrystalline synthesis. In this study, we used datasets with DFT calculated properties to train models.
Two sources of data were used: AFLOWlib[26] and JARVIS-DFT[27] databases. To train and validate models for
prediction of thermomechanical properties, datasets with 2748 and 770 compounds, respectively, were taken from
Isayev et al[28]. Six properties include the bulk modulus, shear modulus, Debye temperature, heat capacity at constant
pressure, heat capacity at constant volume, and the thermal expansion coefficient were calculated with the AEL–AGL
integrated framework[29]. Metal/insulator and magnetic/non-magnetic classification tasks were performed on 25468 and
25131 compounds, extracted from AFLOWlib and JARVIS-DFT databases, respectively. Optimized two-dimensional
structures and corresponding exfoliation energies for 601 compounds were extracted from JARVIS-DFT[30] database.
All calculations were provided with PBE and optB88 functionals.

Porous crystalline materials. To demonstrate the applicability of GCNN models for porous materials’ property
prediction we consider two domain-specific properties: the bulk and shear modulus of pure-silica zeolites from
IZA database and Xe/Kr infinite dilution selectivity of Computation-Ready, Experimental (CoRE) Metal-Organic
Frameworks (MOF).

To predict the bulk and shear moduli of pure silica zeolites we use a subset of the Database of Zeolite Structures
presented by Coudert[31]. Seven of 122 zeolite frameworks were excluded from consideration since errors occurred
during the generation of the corresponding structural descriptors (see Supporting information). B3LYP hybrid exchange-
correlation functional was used to obtain the elastic data, isotropic values of bulk and shear moduli were calculated
using Voigt-Ruess-Hill averages.

Xe/Kr adsorption data for all MOF structures (for which density derived electrostatic and chemical charges have been
obtained) was modeled via a classical force field (FF), namely, a universal force field[32]. To demonstrate the influence
of intrinsic flexibility on the Henry regime adsorption properties in CoRE MOF structures all calculations were carried
out both in a rigid and in a flexible approximation.

3 Results and discussion

Molecules. Like many other breakthroughs in chemoinformatics, the deep learning revolution in the field was mainly
caused by the needs of drug design[33, 34, 35, 36]. Graph-related neural networks are no exception. To date, they are
mainly used to predict molecular properties[14, 37]. Recently, several studies present the large-scale comparison of
various ML techniques, including graph-based neural networks, proving their high performance[19, 38]. Therefore, we
take into consideration only a few molecular datasets to prove the concept.

We compare the prediction performance of GCNN models against the prediction performance of the support vector
machine (SVM) and the feed-forward neural networks (FNN) models on four molecular datasets with ECFP6[39]
fingerprints. Following the original methodology[40], we test our models on an external test set (20% compounds from
initial set) with five-fold cross validation. The results are presented in Table 1. These two algorithms have been chosen
as the most efficient – 5-layer FNN and SVM (among all classic machine learning algorithms) rank above all other
presented ML methods[40].

Table 1: Summary of performances (molecules-related tasks): GCNN models versus SVM and FNN models.

GCNN (this study) SVM[40] FNN[40]
ROC AUC Accuracy ROC AUC Accuracy ROC AUC Accuracy

solubility 0.97 0.96 0.93 0.90 0.93 0.93
hERG 0.85 0.78 0.86 0.80 0.84 0.80
malaria 0.93 0.99 0.90 0.97 0.97 0.99

probe-like 0.62 0.76 0.66 0.76 0.56 0.77

The most obvious tendency deals with data scarcity and class imbalance. GCNN models outperform or perform similarly
as other algorithms on well-balanced datasets (solubility and hERG). Nevertheless, GCNN models as a particular case
of graph-based models are not robust enough[19, 38] to perform well on highly imbalanced (malaria, active/inactive
ratio is 0.0089) and small datasets (322 samples in total).
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As an intermediate conclusion, we may denote GCNN as a convenient tool for the purposes of molecule QSPR
modelling. The accuracy of the approach is comparable with well-known and reliable methods, though it can’t be called
a breakthrough in regards to small organic molecules.

Inorganic crystals. AFLOWlib[26] and JARVIS-DFT[41] databases have already been used to develop ML models
for prediction of thermomechanical properties. In contrast to this study, the available machine-learning frameworks
are based on precise feature engineering and algorithms with high interpretability, such as gradient boosting decision
trees (GBDT). Following the original methodology[28], we test our models on an external test set (∼20% compounds
from initial set) with a five-fold cross validation. Table 2 contains the performance metrics for six regression models
that predict thermomechanical properties of bulk materials and exfoliation energy of potentially exfoliable 2D-layered
materials. In most cases, GBDT models slightly outperform GCNN models. Furthermore, we also develop two
predictive models for metal/insulator and magnetic/non-magnetic classification tasks. The area under the ROC curve
and accuracy for the two classification tasks obtained with GCNN/GBDT models were used to evaluate and compare
models. These models show similar accuracy with the area under the curve at 0.97/0.98[28] for metal/insulator and
0.94/0.96[41] for magnetic/non-magnetic classification tasks respectively.

Surprisingly, that GCNN models demonstrate sufficient accuracy not only for bulk materials property prediction but
also for initial screening of potentially exfoliable materials. Following the original methodology[41], we test our models
on an external test set (10% compounds from initial set) with five-fold cross validation. Our GCCN model has MAE
for exfoliation energy (37 meV/atom) that comparable with a MAE of GBDT model, is significantly less than the
threshold value for potentially exfoliable 2D-layered materials (200 meV/atom). Strictly speaking, only a few 2D
materials are true monolayers. Most of them contain several layers in the direction perpendicular to the free surface,
thus, the corresponding chemical graph used to predict exfoliation energy should be weighted, since the edges have an
unequal contribution to the surface/exfoliation energy. Nevertheless, it should be concluded that elemental descriptors
are sufficient for prediction of exfoliation energy with appropriate accuracy (3D Voronoi descriptors were excluded
from consideration).

Due to the high interpretability of GBDT models, it is possible to rank the features of importance for the predictive
model. According to Isavev et al [28], the most important features are combinations of element properties, while within
the framework of our GGNNs model, linear combinations of properties are not taken into account for the sake of model
simplicity. Additionally , we do not use some of the specific properties also included in the descriptor list (effective
atomic charge, chemical hardness, van der Waals radius, second and third ionization potentials). Moreover, structural
representation used by Choudhary[41] contains very specific features – charge-based and classical force-field inspired
descriptors, bond-angle and dihedral-angle distributions, etc. Thus, with a slight decrease of model performance, the
total length of feature vector decreases from 2494 and 1557 for Isayev’s and Choudhary’s GBDT models, respectively,
to 41 descriptors for our GCNN model.

Table 2: Summary of performances (materials-related tasks): GCNN models versus GBRT models.

GCNN (this study) GBDT[28]
MAE RMSE R2 MAE RMSE R2

Bulk modulus, GPa 15.21 24.61 0.91 12.00 21.13 0.93
Shear modulus, GPa 14.88 21.01 0.87 13.31 18.94 0.90

Debye temperature, K 50.97 71.21 0.91 42.92 64.04 0.93
Heat capacity at constant pressure, kb/atom 0.07 0.10 0.91 0.06 0.10 0.92
Heat capacity at constant volume, kb/atom 0.05 0.08 0.93 0.05 0.07 0.95

Thermal expansion coefficient, K−1 9.63×10−6 1,56×10−5 0.81 5.77×10−6 1.95×10−5 0.76
Exfoliation energy, meV/atom 36.5 69.4 0.22 37.3 – –

Porous crystalline materials. Recently, the bulk and shear moduli of pure-silica zeolites were calculated using five
classical interatomic potentials[42] (BKS[43], Catlow[44], Gale[45], Matsui[46], Sastre[47]). These results can serve
as a ground-state level to probe the accuracy of other approaches (using machine learning, in our case), due to the wide
applicability of classical model potentials for calculation of mechanical properties[48].

Table 3 contains performance metrics for force field models as mentioned above, based on five state-of-the-art interatomic
potentials. Besides, the gradient boosting regressor (GBR) model was also used to predict the mechanical properties
of zeolites from the same dataset[49]. Following the original methodology[49], we test our models using three-fold
internal cross validation. The values of the bulk K and shear G moduli obtained with GBR and GCNN models are also
provided in Table 3.

The GCNN model significantly outperforms all force field models, but the accuracy of the GBR model is slightly better.
According to Evans et al[49], the local descriptors (in particular, Si–O–Si angles and parameters related to the Si–O
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bonds) are the most crucial features for the prediction of mechanical properties. Due to the peculiarities of graph-based
structure representation, it is not a trivial task to implement the descriptors associated with the statistical distribution for
bonds and angles between atoms as node-wise features. Also, as an alternative approach, the secondary building blocks
can be used as the vertices of the chemical graph instead of atoms. This insight is to be addressed in coming studies.

Table 3: Summary of performances (porous materials-related tasks): GCNN models versus GBR model and conventional
model potentials.

RMSE, K RMSE, G
GCNN 13.14 6.40

GBR[49] 10.00 4.74
BKS[42] 22.7 36.1

Catlow[42] 18.8 11.7
Gale[42] 20.0 12.6

Matsui[42] 16.8 29.4
Sastre[42] 18.1 14.1

RMSE, Sf RMSE, Sr

GCNN 3.98 5.32

Furthermore, Database of Zeolite Structures is a typical example of small materials dataset, and, in a sense, it is similar
to the previously discussed probe-like dataset. Data scarcity imposes principal limits on the level of accuracy of ML
models regardless of structure representation. Only advanced techniques, such as incorporating the crude estimation of
property (CEP) in the feature vector[50], can significantly improve the performance of implemented models.

Table 3 also contains performance metrics of GCNN models predicted infinite dilution selectivity of Xe/Kr in rigid Sr

and flexible Sf approximations. As in the previous case, GCNN models have low accuracy in prediction of porous
materials’ properties as opposed to other subdomains of chemical space. The models for prediction of infinite dilution
selectivity in flexible mode show even better performance, but due to the low accuracy of both models the result is
not significant. Nevertheless, considering the ratio between the range of selectivity values and corresponding RMSE,
GCNN models enable at least a meaningful qualitative comparison of most promising candidates for adsorption-related
applications. Furthermore, graph-based representation is suitable for modeling of strong interatomic interactions, at
the same time it is well known that van der Waals interactions play a significant role in MOFs and similar classes of
porous materials. Also, the interaction of atoms only with the first coordination sphere were taken into account for
GCNN (see Supporting information). This restriction reduces the time required for training the model but also makes it
challenging to consider long-range forces. This approach can be compared to using a short cutoff radius in the Bayesian
GPR framework[10].

In contrast to the properties of crystalline materials, a network of pores primarily determines the properties of porous
materials associated with adsorption. As has been shown, even only-structural descriptors that ignore entirely chemical
diversity are suitable for the clustering of porous materials[51]. Given the specifics of these properties, pore-centered
descriptors, instead of atom-centered ones, used successfully to predict the properties of crystalline materials, seem to
be a more appropriate choice.

4 Conclusions

In this study, we have shown that GCNN architecture with a minimal set of interpretable descriptors could be a universal
tool for fast initial screening and search of perspective materials from the various subdomains of chemical space. Its
performance was tested with a broad set of chemical domain-specific properties, including biological activity for organic
molecules, thermomechanical properties for inorganic crystals, exfoliation energy for potentially exfoliable materials,
elastic moduli and infinite dilution selectivity of Xe/Kr for porous materials. Except for the last subdomain, the GCNN
models demonstrate excellent accuracy, which is comparable with the best known approaches. However, even for
the domain of porous materials GCNN models can be applied for an initial search of advanced materials for specific
applications. GCNN models are still vulnerable to the effects of data scarcity and class imbalance data, but at the same
time, graph-based NNs demonstrate state-of-the-art performance on well-balanced datasets with a sufficient number of
samples.
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