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Abstract

Relative binding affinity prediction is a critical component in computer aided drug

design. Significant amount of effort has been dedicated to developing rapid and re-

liable in silico methods. However, robust assessment of their performance is still a

complicated issue, as it requires a performance measure applicable in the prospective

setting and more importantly a true null model that defines the expected performance

of random in an objective manner. Although many performance metrics, such as cor-

relation coefficient (r2), mean unsigned error (MUE), and room mean square error

(RMSE), are frequently used in the literature, a true and non-trivial null model has yet

been identified. To address this problem, here we introduce an interval estimate as an

additional measure, namely prediction interval (PI), which can be estimated from the

error distribution of the predictions. The benefits of using the interval estimate are

1) it provides the uncertainty range in the predicted activities, which is important in

prospective applications; 2) a true null model with well-defined PI can be established.

We provide one such example termed Gaussian Random Affinity Model (GRAM),

which is based on the empirical observation that the affinity change in a typical lead
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optimization effort has the tendency to distribute normally N (0, σ). Having an ana-

lytically defined PI that only depends on the variation in the activities, GRAM should

in principle allow us to compare the performance of relative binding affinity predic-

tion methods in a standard way, ultimately critical to measuring the progress made in

algorithm development.

Introduction

Ligand binding affinity prediction has been a long standing research focus in compu-

tational chemistry because of its practical applications in drug discovery. Of the many

objectives of a typical lead optimization, target binding is arguably one of the few that are

most amenable to explorations via first-principle approaches. The thermodynamics of in

vitro target-ligand binding can often be probed both experimentally and theoretically, and

there is often a direct correspondence between the two.

This pursuit has led to a variety of computational methods over the last few decades,

ranging from physics-based approaches to pure statistical models. Among the physics-

based approaches, techniques built on the foundation of statistical mechanics theories

appear promising, especially those that explicitly sample the configurational space of the

receptor and the ligand. Although it is still a considerable challenge to create a robust

computational method for binding affinity predictions with a broad domain of applica-

bility, rapid advances in computing power, accelerated sampling algorithms, and greater

coverage of force field parameters for drug-like molecules have fueled a renaissance of

molecular dynamics (MD) simulation-based approaches in recent years. For example,

Schrodinger Inc. applied their free energy perturbation approach (FEP+) to a broad

range of non-covalent protein targets and reported reasonable agreement with experi-

ment (mean unsigned error or MUE around 1 kcal/mol).1 The theoretical framework of

FEP was first introduced in the early 1950s by Zwanzig for studying the thermodynamic

properties of homogeneous condense-phase systems.2 Applying the theory to heteroge-
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neous molecular systems appeared much later and was pioneered by Berendsen, Mc-

Cammon, Jorgensen, and Kollman in the 1980s.3–8 In spite of the theoretical rigor of the

approach, there had been relatively low adoption of FEP by the pharmaceutical indus-

try, mainly due to time and complexity considerations. Hence, Schrodinger’s commercial

platform immediately generated a lot of interest, which subsequently led to independent

evaluations conducted by the industry practitioners. The key question that these evalua-

tions looked to address is whether the FEP technique in its current form can differentiate

itself from other physics-based methods that are less computationally demanding, albeit

often at the cost of theoretical rigor. This differentiation could be purely statistical (i.e. do

two methods differ from one another in some statistically significant way?) or based on

impact on decision-making (i.e. would demonstrably different decisions be reached using

one method relative to another?).9 9 This paper focuses on a question related to the for-

mer: whether any one specific method is significantly different from a reasonably chosen

null model.

The importance of having a proper statistical comparison to a null model has been

well recognized by the scientific community. However, there is no general consensus as

to how an appropriate null model for binding affinity prediction should be constructed.

In addition, methods are often compared without paying adequate attention to the sensi-

tivity of various performance metrics (e.g. Pearson correlation coefficient (r2), root mean

square error (RMSE), and mean unsigned error (MUE)) to the distribution of activities in

the test datasets.

This perspective outlines considerations over the choice of performance metrics and

highlights the importance of designing an appropriate null model for binding affinity pre-

diction. With the rationale described in detail below, prediction interval (PI) is proposed

as a companion performance metric to capture the uncertainty in individual prospective

predictions. It is shown that an appropriate null model for relative affinity prediction can

be established with non-trivial and analytically determined PI. This is contrary to other
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null models proposed in the scientific community, such as molecular weight or partition

coefficient (LogP), which are more or less arbitrarily selected and are neither truly ran-

dom, nor have well characterized performance. The prediction interval of our null model,

termed GRAM (Gaussian Random Affinity Model), only depends on the observed vari-

ability and distribution in the measured affinities of the test set, therefore providing a

robust and non-arbitrary baseline estimate of a zero-effort prediction.

Describing Error in Predictions

Ideally, a single performance metric would be used to quantify the agreement between

our predictions and experimental observations. In reality, multiple performance metrics

are typically employed, especially when the overall agreement of the prediction with ex-

periment is far from perfect. In the case of binding affinity predictions, correlation coeffi-

cient (such as Pearson’s r and Spearman’s rank correlation coefficient), MUE, and RMSE

are widely used in the literature. Among them, Pearson correlation coefficient (r2) is a

particularly poor metric for two well documented reasons. Firstly, r2 is sensitive to sam-

ple size and sample variance or dynamic range. This is straightforward to understand in

that a larger dynamic range in the dataset or a bimodal distribution in the observations

tend to produce larger r2, even though this may not have anything to do with the un-

derlying physics or technique used. Secondly, the slope and intercept of the regression

line from which r2 is determined often have large confidence intervals when predicting

binding affinities, since the correlation with experiment is often medium-to-low and can

vary condiserably by targets and chemical series.

In a prospective scenario where predicted affinity or affinity changes are used to in-

form design, it is important to understand confident in the predictions. To a medicinal

chemist, his or her key interest is the confidence with which a particular calculation pre-

dicts the outcome of the next experiment or set of experiments.
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To account for the uncertainty in a prediction explicitly, it is necessary to focus on the

spread of error produced over a sufficiently large sample. Formally, this is captured by

prediction interval (PI), which is an empirical estimate of a range in which a percentage of

all prediction errors have been observed. Mathematically, PI is defined as the following,10

PI = ±t(α/2,n−2)

√√√√MSE

(
1 +

1
n
+

(x − x̄)2

Σ (xi − x̄)2

)

where MSE is the mean square error, t(α/2,n−2) is the Student t-multiplier for significance

level α, and n is the sample size. For a large sample, the error for which is approximately

normally distributed, the prediction interval at the 95% confidence level is roughly 2 ×

RMSE and it does not vary significantly over the entire activity range, which means a

stable estimate of the upper and lower bounds of individual prospective predictions.

As an initial example, we examined the performance of FEP+ for a set of 37 Smyd3

compounds via 57 free energy perturbations, and compared the predictions with the ex-

perimental pIC50s (Figure 1). The MUE, RMSE, and Pearson correlation coefficient (r2)

are 0.8 kcal/mol, 1.0 kcal/mol, and 0.54, respectively. We chose to analyze the error in the

predicted relative affinities rather than the affinities derived from a reference compound

for two reasons – a) the relative affinities are the direct outcome of FEP+ calculations; b)

empirically, the relative affinities for a set of congeneric compounds approximately cen-

ter around 0. Figure 2 shows the histogram of the prediction error with a bin width of 1

kcal/mol, from which the prediction interval for any confidence levels can be estimated.

For instance, roughly 95% of the predictions fall in the range of [-2.2, 2.2] kcal/mol or

[-1.6, 1.6] pIC50 units. Therefore, the prediction interval for FEP+ at the 95% confidence

level is estimated to be 2.2 kcal/mol or 1.6 log units from the Smyd3 set. This estimate ap-

pears to be robust across multiple targets used in a large scale internal evaluation of FEP+

at GSK. Over 251 compounds (8 distinct targets including Smyd3) that were tested both

experimentally and with FEP+, 11 predictions (or 95.6%) were found to differ from the ex-
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periment by more than 2.0 kcal/mol (Figure 3). This level of performance is qualitatively

similar to what was reported by Wang et al.1,11

Proper Null Model for Affinity Predictions

A null model is a generative process based on either a known or a hypothetical statis-

tical distribution of phenomenon being studied. This generative process is contructed

such as it removes as best as possible any components that may contribute to the phe-

nomenon or the mechanism behind. Null model gained popularity in ecology and bio-

geography in the early 1980s to measure the significance of the observed patterns in eco-

logical and biogeographical data, such as taxonomic ratios, biodiversity measure, species

co-occurrence, and community assembly rules.12 In recent years null hypothesis testing

has become more prevalent in the computational chemistry and computer-aided drug de-

sign community, for example, in the prediction of protein-ligand binding affinities, which

is important for reducign the number of design-make-test cycles in lead optimization.

Null model and null hypothesis are closely related, but different concepts. The latter is a

general statement or default position that is either accepted or rejected during test, while

the former focus on identifying any hidden bias in null hypothesis testing that may in-

troduce the risk of accepting a false null hypothesis or vice verse. By the definition used

in ecological and biogeographical context,13 a null model for binding affinity or relative

affinity is a statistical process for generating random activities from a known or hypothet-

ical distribution. The random aspect of a null model is often not taken into account, as it is

easy to misinterpret it as zero- or little-effort model, and therefore it is common that a va-

riety of simple measures have been used as substitutes, including a simple constant,14 the

number of heavy atoms,14 molecular weight (MW), partition coefficient (LogP), or other

calculated molecular properties.15 MW or LogP may have utilities as convenient com-

parator models for casual juxtapositions with non-trivial affinity predictions, but they are
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not valid null models and their expected performance is not well defined – they are not

suitable for being used as the standard reference for comparative studies. Their use as

null models has also been criticized elsewhere.16

To design a proper null model, it is necessary to have the knowledge on the statis-

tical distribution of binding affinities. Clearly, this cannot be obtained experimentally

without the risk of introducing sample bias and has to be addressed theoretically. The

only attempt of this kind so far was based on the energy landscape theory developed for

describing protein folding problems and an analytical model for molecular interactions.

Zheng and Wang17 proposed a universal law that governs the distribution of affinities in

biomolecular recognition, which was described as Gaussian near the mean and exponen-

tial near the tail. Whether this is a universal theory or not, the Gaussian-like distribution is

largely consistent with our observations from medicinal chemistry campaigns at GSK – 1)

the distribution of binding affinities (103 compounds) generated over the course of a fully

executed program is roughly Gaussian around the mean; 2) the distribution of affinity

evolution for compounds separated over a suitable period of time (e.g. 3-4 weeks) dur-

ing an active lead optimization is approximately a Gaussian function centered around 0.

For example, we plotted the histogram of pIC50s for about 386 CD73 compounds synthe-

sized over a period of a few months (Figure 4) as well as the histogram of pIC50 evolution

between newer compounds and older compounds (Figure 5). This, particularly the lat-

ter observation, may be the consequence of the shape of the SAR landscape as well as

the chemistry exploration strategy adopted, which is usually conservative exploitation

combined with occasional exploration. With this characteristic distribution of binding

affinities and relative binding affinities, a random process for generating relative binding

affinities can be proposed as such,

∆∆GGRAM ∼ N (0, σGRAM)
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where ∆∆G denotes the relative free energy difference between a pair of compounds,

N (0, σGRAM) denotes a normal distribution function whose mean is 0 and the standard

deviation is σGRAM. Assuming a normal distribution in observed relative affinities, N (0, σobs.),

the error of this random prediction, which we call Gaussian Random Affinity Model or

GRAM, is also normally distributed, N
(

0,
√

σ2
GRAM + σ2

obs.

)
. The prediction interval at a

given confidence level (e.g. 95%) is then exactly determined,

PI95
GRAM = 2

√
σ2

GRAM + σ2
obs.

and the RMSE of the model is simply
√

σ2
GRAM + σ2

obs.. For a dataset whoseσobs. is 1.76

kcal/mol, such as the Smyd3 example above, the PI95 and RMSE for the GRAM model

that draws from the same distribution (i.e. σGRAM = σobs.) is then approximately 5.0

kcal/mol and 2.5 kcal/mol, respectively. The performance of GRAM is fully determined

by the variance in the dataset, therefore removing any arbitrary aspect in the assessment

of in silico affinity prediction methods.

Concluding Remarks

Robust prediction of the binding affinities of new compounds is important to the effi-

ciency and the quality of medicinal chemistry campaigns. Despite the importance of these

predictions in rational drug discovery and their strong theoretical foundations, achiev-

ing chemical accuracy of binding affinity measurements has been difficult despite of the

intense research over the past decades. Part of the reason is the access to high-quality

experimental data. In recent years there has been a strong push led by both the industry

and the academic communities to share industry data,18 including compound structures,

binding affinities, and the structures of drug-target complexes, which would facilitate

methodology development and evaluation. CSAR and D3R/SAMPL blind challenges

are two most notable examples of such community-driven efforts, in which several phar-
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maceutical companies including GSK have contributed structural and binding affinities

measurements from their internal drug discovery programs.19–21 Improving data avail-

ability is an important but first step toward better binding predictions. To objectively

compare the quality of predictions across different protein targets and datasets, robust

performance metrics and appropriate null model analysis must also be carefully consid-

ered.

A null model in its true sense needs to reflect the outcome of a random process that

samples from the underlying statistical distribution of interest. For binding affinity, the

true distribution is of course not known. However, a Gaussian or Gaussian-like distri-

bution is a good approximation and this is supported by both theoretical estimate and

empirical observations. In the case of relative binding affinities, the distribution mainly

depends on the standard deviation (σ) as the mean is often close to 0 in our experience.

For the purpose of assessing affinity prediction methods, knowing the detail of this dis-

tribution function is actually not necessary because it is usually possible to construct such

a dataset so that the distribution of the selected affinities is approximately Gaussian. This

then allows us to design a simple but true null model (GRAM) that generates binding

affinities from N(0, σ). Unlike other models (constant, simple molecular properties, etc.)

casually employed, GRAM has an analytically determined, non-trivial PI and RMSE that

depend on a single parameter σ or the variability in the affinity distribution – reducing σ

leads to reduced PI and RMSE or better performance of the null model. In blind affinity

prediction challenges, the variability in the contributed affinity data is often not managed

purposefully. The general practice has been making sure that the dynamic range within

the datasets is sufficiently large, usually 2 to 4 log units, which may not be always fea-

sible. This makes it difficult to compare the quality of predictions (or methods) done on

different datasets. By explicitly taking data variability into account, GRAM not only al-

lows such comparisons to be made, but also relaxes the dynamic range requirement and

potentially makes more industry datasets eligible.
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It is also worth noting that prediction interval is a more informative performance met-

ric for assessing the quality of affinity predictions in prospective situations. The popular

performance metrics such as correlation coefficients, RMSE, and MUE do not provide

direct guidance on how good the next prediction is. On the contrary, PI offers a range

where the experimental affinity is likely to be found with a certain level of confidence.

The estimated upper and lower boundaries, or the best and worst scenarios due to a pro-

posed chemical modification, can be meaningful for chemistry planning. Based on our

internal evaluation, FEP+ is evidently a more accurate and robust method for relative

affinity predictions than GRAM and possibly other simpler scoring functions used in the

industry. Driving down RMSE to 1.0 kcal/mol is a significant achievement for the field

as a whole. However, the PI95 of FEP+, roughly 2 kcal/mol (or more than 25% of the

dynamic range in the Smyd3 example), suggests the need for further improvements and

the size of the gap to close for the goal of achieving chemical accuracy. The experimental

variability in highly reproducible potency measurements can be obtained from a control

compound used. For CD73, the estimated standard deviation in the measured pIC50s is

0.15 log units or 0.2 kcal/mol (N = 87, Figure 6). Assuming this is a constant over the

entire pIC50 scale, the standard deviation in the measured relative affinities is roughly

0.3 kcal/mol. Figure 7 illustrates a simulated scenario of chemical-accuracy predictions,

where we added a normally distributed random error, Err ∼ N(0, 0.3), to the observed

relative affinities in the Smyd3 dataset. This may serve as a useful reference and an inspi-

ration for future methodology development.
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Figure 1: The comparison of the FEP+ predicted relative binding affinities of 57 pairs
of Smyd3 compounds (∆∆GFEP) and the corresponding experimental measurements
(∆∆Gobs). The MUE, RMSE, and Pearson correlation coefficient (r2) are 0.8 kcal/mol, 1.0
kcal/mol, and 0.54, respectively. A set of lines (y = x, solid, y = x ± 1, short dash, and
y = x ± 2, dotted) are included for visual guidance.
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Figure 2: The histogram of prediction errors (∆∆Gobs − ∆∆GFEP) with a bin width of 1
kcal/mol.
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Figure 3: The comparision of the FEP+ predicted binding affinities (∆GFEP) and the ex-
perimental observations (∆Gobs) over 8 protein targets.
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Figure 4: The histogram of the measured pIC50s (Rapid Fire Mass Spectroscopy) for 386
CD73 compounds with a bin width of 0.86 log units.
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Figure 5: The histogram of potency (pIC50) evolution in 386 CD73 compounds over 30
days with a bin width of 1.5 log units.
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Figure 6: The histogram of measured pIC50s for a control compound used in the CD73
program (N = 87) with a bin width of 0.15 log units.
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Figure 7: The comparison of the simulated prediction results obtained by adding a nor-
mally distributed random error (Err ∼ N(0, 0.3)) to ∆∆Gobs to illustrate what the agree-
ment may be, if the RMSE of future prediction method is as low as 0.3 kcal/mol. The
Pearson correlation coefficient (r2) is 0.96 for this particular run.
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