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Ranking of Ligand Binding Kinetics Using a

Weighted Ensemble Approach and Comparison

with a Multiscale Milestoning Approach

Surl-Hee Ahn,∗ Benjamin R. Jagger,∗ and Rommie E. Amaro∗

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla,

CA 92093, U.S.A.

E-mail: s3ahn@ucsd.edu; bjagger@ucsd.edu; ramaro@ucsd.edu

Abstract

In order to improve lead optimization efforts in finding the right ligand, pharma-

ceutical industries need to know the ligand’s binding kinetics, such as binding and

unbinding rate constants, which often correlate with the ligand’s efficacy in vivo. To

predict binding kinetics efficiently, enhanced sampling methods, such as milestoning

and the weighted ensemble (WE) method, have been used in molecular dynamics (MD)

simulations of these systems. However, a comparison of these enhanced sampling meth-

ods in ranking ligands has not been done. Hence, a WE approach called the concurrent

adaptive sampling (CAS) algorithm that uses MD simulations was used to rank seven

ligands for β-cyclodextrin, a system in which a multiscale milestoning approach called

simulation enabled estimation of kinetic rates (SEEKR) was also used, which uses both

MD and Brownian dynamics simulations. Overall, the CAS algorithm can successfully

rank ligands using the unbinding rate constants koff’s and binding free energies ∆G’s,

as SEEKR did, with reduced computational cost that is about the same as SEEKR.

We compare the CAS algorithm simulations with different parameters and discuss the
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impact of parameters in ranking ligands and obtaining rate constant and binding free

energy estimates. We also discuss similarities and differences and advantages and dis-

advantages of SEEKR and the CAS algorithm for future use.

Introduction

For rational drug optimization, several thermodynamic and kinetic properties may need to

be computed a priori, such as binding free energies ∆G’s, binding rate constants kon’s, and

unbinding rate constants koff’s. These properties can indicate the proportion of drug bound

to the target and inform on drug binding and unbinding mechanisms, which can help us

gain a comprehensive understanding of the drug and its overall effectiveness.1–4 Although

most of these properties can be obtained experimentally, obtaining them for numerous drugs

or ligands for each target or receptor can be expensive in terms of time and resources.

In addition, detailed understanding of side chain movement and induced fit upon ligand

binding or unbinding may not be experimentally tractable. Hence, molecular dynamics

(MD) simulations can be helpful to test various ligands with different receptors efficiently.

Nonetheless, MD simulations are not without problems even without the force field issue.

Since MD simulations have to be run using femtosecond timesteps, running simulations can

be computationally costly if the ligand has a high binding affinity and its residence time

(defined to be 1/koff) is seconds to minutes or longer. To overcome this “timescale gap,”

several enhanced sampling and multiscale methods have been applied to various receptor-

ligand systems to compute relevant properties quickly,5–7 including the weighted ensemble

(WE) method,8–16 milestoning,17–19 metadynamics,20–24 Markov state models (MSMs),25–29

steered molecular dynamics (SMD),30–32 and accelerated molecular dynamics (aMD).33,34

Although different enhanced sampling methods have been applied for the same system,

e.g., trypsin (receptor) and benzamidine (ligand),10,18,22,27 there has not yet been a head-

to-head study where one enhanced sampling method was applied in ranking or classifying

several ligands and compared with another enhanced sampling method in terms of accuracy,
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convergence, and efficiency. This can be useful since it is often unclear which enhanced

sampling method to use for a given system. In addition, most enhanced sampling methods

have parameters that the user has to set a priori, which often can be tricky to set optimally.

Hence, it is also beneficial to run several of the same simulations with different parameters

and report and discuss observations so that we are aware of the impact of parameters.

In this paper, we report ligand ranking results for β-cyclodextrin, a cyclic oligosaccha-

ride compound from starch degradation that is often used as a model receptor, using a

WE approach called concurrent adaptive sampling (CAS) algorithm, which uses MD simula-

tions.35,36 The structure of β-cyclodextrin with its seven glucopyranose units and the seven

tested ligands are shown in Figure 1a, Figure 1b, and Figure 1c. β-cyclodextrin is com-

posed of 147 atoms and has a hydrophobic cavity that is 65 Å in diameter and a hydrophilic

rim with its hydroxyl groups.37 The reaction process with β-cyclodextrin and its ligand is

identified as a second order reaction process described by the following

R + L
kon⇀↽
koff

RL (1)

where R represents the receptor β-cyclodextrin, L represents the ligand, and RL represents

the receptor-ligand complex. kon represents the binding rate constant and koff represents the

unbinding rate constant. With kon and koff, the binding free energy ∆G can be computed

with the following

kon

koff

= Ce−∆G/RT (2)

where C is a factor equal to 1 with inverse concentration units, R represents the gas constant,

and T represents the temperature.

This particular system was previously tested with a multiscale milestoning approach

called simulation enabled estimation of kinetic rates (SEEKR), which uses both MD and

Brownian dynamics (BD) simulations.17–19 Ref. 19 reported SEEKR’s effectiveness in rank-

ing seven ligands for β-cyclodextrin and “best practices” for SEEKR for its future use. This
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paper’s reports will parallel those of Ref. 19 so that a direct comparison between the two en-

hanced sampling methods can be made. Pros and cons of each method will also be discussed

in case one method is more appropriate for a particular system over the other. Finally, the

CAS algorithm simulations with different parameters will be compared so that the effects

of parameters in ranking ligands and obtaining rate constant and binding free energy es-

timates will be apparent. A recent preprint38 reported “best practices” for using the WE

method to calculate kon, koff, and dissociation constant KD, including that increasing the

target number of walkers per macrostate nw generally increases the efficiency in obtaining

those properties. The preprint, however, mostly focused on different implementations of the

WE method, e.g., keeping track of past history and “recycling” trajectories depending on

whether reactant/product states are defined or not, and used efficiency as a measure of per-

formance. In addition, Ref. 39 had discussed about the importance of setting the simulation

time τ to be longer than the macrostate’s relaxation time before reaching steady state, but

it did not report results with different τ ’s. Furthermore, Ref. 40 reported general guidelines

for choosing WE method parameters optimally. This paper also discusses about setting the

target number of walkers nw and the simulation time τ optimally, but it also looks into

initial structure sampling interval τs and simulation time points t where we start analysis

of trajectories. This paper uses ranking results and deviations from experimental values as

measures of performance.

Methods

Concurrent adaptive sampling algorithm

The CAS algorithm is a WE approach that has several improvements over the original

implementation.41 For details on the original WE method, please refer to Ref. 41, and

for details on the CAS algorithm, please refer to Ref. 35. To briefly summarize the WE

method, it is an enhanced sampling method that can obtain both thermodynamic properties
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(a) (b)

(c)

Figure 1: Structure of β-cyclodextrin and seven tested ligands. (a) shows β-cyclodextrin’s
secondary face, whereas (b) shows β-cyclodextrin from side. (c) shows the seven tested
ligands for this study.
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like free energies and kinetic properties like rates and pathways.42 The WE method works

by running many short simulations or “walkers” that carry probabilities or weights and

replicating or merging them after every simulation so that the visited parts of the free energy

landscape are constantly sampled throughout the simulation. This aspect is crucial since

the simulation is able to reach high energy regions with its many walkers and constantly

sample those regions with the replicating/merging process (referred to as “resampling”) and

sample rare events as a result. In addition, the WE method does not add any statistical

bias to the system, so we are able to obtain thermodynamic and kinetic properties directly

from the simulation without having to use any post-processing methods. Furthermore, the

WE method has been successfully applied to protein-ligand systems with pharmacologically

relevant timescales8,10,13and proteins with folding times in the microsecond to second range

and yielded accurate dynamics.43

However, the WE method is not without problems so many variants have been devel-

oped. First, the original WE method is not able to handle high-dimensional spaces without

creating an intractable number of “macrostates” or small volume elements of the confor-

mational space. Hence, adaptive Voronoi cells have been used in several works35,44,45 so

that an intractable number of macrostates do not have to be created beforehand. Multi-

dimensional reaction coordinates have also been used in other works8,35,46,47 so that the

computational cost does not dramatically increase. This is useful for systems where we do

not know what the true reaction coordinates are. Moreover, there are variants that have

extra features that accelerate the sampling process. For instance, the WExplore method

divides up the conformational space hierarchically so that rare conformations and events

can be sampled efficiently.9,10,13,46,48 Additionally, the resampling of ensembles by variance

optimization (REVO) method creates walkers that maximize variance between them with-

out having defined macrostates, which reduces correlation.12,47 Finally, the CAS algorithm

uses “spectral clustering” that can focus its computational effort in sampling the process

going from A to B and vice versa, where A and B are pre-defined metastable states in the
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system.35

For the particular system that we study in this paper, however, the special features of

the CAS algorithm were not needed, so the CAS algorithm essentially reduced down to the

regular WE method. The only difference is in the resampling portion, where the walkers

end up with equal mean weights, which is proven to be optimal since it reduces statistical

errors.49 In addition, in order to use the CAS algorithm/WE method, a few parameters need

to be set a priori. However, since the SEEKR runs of β-cyclodextrin with its seven ligands

had some of the same parameters set a priori, such as the macrostate size (1.5 Å in diameter)

and reaction coordinate (center of mass distance between the receptor and the ligand), the

only parameters that needed to be set were target number of walkers per macrostate nw and

simulation time τ . The target number of walkers per macrostate nw should be set so that it

is large enough to constantly sample the visited macrostates. It is also important to set nw to

be large enough so that the macrostates reach relaxation faster.39 However, if nw is set to be

too large, then many replications can occur during resampling if walkers in the macrostate

are much less than nw. This causes correlation effects that can slow down convergence.50 As

for simulation time τ , it should not be set to be too long so that transitions are inadvertently

missed. However, τ would be ideally longer than the macrostate’s relaxation time so that

the system reaches relaxation faster and accurate rates are obtained more quickly, especially

if the initial states are far from steady state.39

Simulation enabled estimation of kinetic rates

SEEKR is a milestoning approach that uses MD simulations in regions where the receptor

and the ligand are close together, where atomistic detail is essential to accurately describe

the binding and unbinding. Computationally less expensive BD simulations are used in

regions where the receptor and ligand are far apart and the binding process is primarily

comprised of electrostatically steered diffusion. For details on milestoning, please refer to

Ref. 51–56, and for details on SEEKR, please refer to Ref. 17–19. In essence, milestoning is
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a path-finding algorithm that mainly focuses on estimating kinetic properties, like pathways

and rates, quickly from state A to state B and vice versa. A reaction coordinate is chosen a

priori that measures the progress going from A to B and vice versa. Milestones are defined

as surfaces: S1(A), ..., Si−1, Si, Si+1, ..., Sn(B) from state A to state B. If the milestones are

defined as isosurfaces of the committor function as in “optimal” or “exact” milestoning, the

mean first passage times (MFPT) calculated are exact and milestones can be placed close

together for maximum computational efficiency.56,57 Otherwise, milestones must be spaced

sufficiently far apart to ensure that the system decorrelates between successive milestone

transitions and MFPTs calculated are approximate. If the milestones are too far apart,

however, then the method loses efficiency. For each milestone, a number of trajectories are

generated following the Boltzmann distribution. Then the trajectories in each milestone

are run independently in parallel until they reach the previous milestone Si−1 or the next

milestone Si+1. After a sufficient number of trajectories reach adjacent milestones, then the

probabilities going from Si to Sj within a given time t can be computed and overall kinetics

can be computed with a transition matrix. The unbinding rate constant koff is calculated as

the inverse of the MFPT from the bound state to the outermost MD milestone. From the

transition matrix, the stationary probabilities or equilibrium weights of each milestone can

also be computed, so thermodynamic properties can also be obtained from milestoning. The

binding rate constant kon is calculated using the BD simulations, following the Northrup-

Allison-McCammon (NAM) method.58 The MD transition matrix is combined with the BD

transition probabilities and used to determine the steady state flux through the bound state

milestone. This probability can be multiplied by the rate of the ligand touching a surface of

radius b (which is where the BD simulations are initiated) to determine kon. This approach

allows for quick and efficient sampling of a large portion of the association trajectory with

BD, an analytical solution for the rate of the ligand approaching from solution, and a more

detailed MD description to capture the final steps of binding.

Transition interface sampling (TIS)59–61 and forward flux sampling (FFS)62–64 are related
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path-sampling algorithms similar to milestoning. The two methods do not need to have

surfaces that are sufficiently separated so that the system loses correlation, so the methods

have less assumption and can be applied more generally compared to milestoning. Note that

FFS can only sample in one direction, however, which is mainly useful for non-equilibrium

systems where detailed balance does not hold and backward integration is not possible. The

two methods also require sequential processing of trajectories, whereas milestoning can run

trajectories in parallel. Since we are interested in computing both kon and koff for receptor-

ligand systems, TIS and milestoning would be more preferable for our particular problem.

Given that good milestones can be constructed relatively easily, then milestoning would be a

suitable method to use. Moreover, the milestoning approach SEEKR can assess convergence

of each milestone “on the fly” and extend or terminate trajectories accordingly. Hence, given

good milestones and BD simulations for far apart, diffusive regions, SEEKR is a suitable

method for computing kon’s and koff’s and ranking ligands, as demonstrated in Ref. 19.

Simulation protocol

β-cyclodextrin along with the seven tested ligands (three tighter binding ligands with slower

koff’s on the order of 106 (s−1): 1-naphthyl ethanol, 2-naphthyl ethanol, aspiring, and four

weaker binding ligands with faster koff’s on the order of 107−109 (s−1): methyl butyrate, tert-

butanol, 1-butanol, 1-propanol) were all simulated with NAMD 2.1265 with time step ∆t = 2

fs. Since the force field q4MD-CD66 is custom-made for cyclodextrins and agrees better with

experimental values19,37 compared to the generalized Amber force field (GAFF),67 q4MD-

CD was used for β-cyclodextrin and GAFF was used for the seven ligands. TIP3P explicit

solvent68 was used to solvate all of the seven different receptor-ligand systems. The LEaP

program from Amber 1669 was used to generate parameters and topologies for the seven

receptor-ligand systems. Most simulation parameters were identical to the ones in Ref. 19,

which is the SEEKR study on the same system, and Ref. 37, which is the brute force MD

simulation study on the same system.
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To initialize each receptor-ligand system, the SEEKR software package was used. As

done in SEEKR, the following steps were done for initialization.

1. Each system was set to have ten spherical macrostates with a diameter of 1.5 Å or a

radius of 0.75 Å, where the distance represented the center of mass distance between

the receptor and the ligand, which is the same as the milestones in SEEKR. The ten

macrostates ranged from 0.0− 1.5 Å, 1.5− 3.0 Å, ..., 12.0− 13.5 Å, and 13.5− 15.0 Å.

Since the current CAS algorithm software package does not have BD simulations inte-

grated with it, unlike SEEKR, the last macrostate 13.5 − 15.0 Å in reality held all of

the walkers where the receptor and the ligand were 13.5 Å or more separated.

2. Each receptor-ligand conformation was minimized for 5000 steps to allow for relaxation.

Only the solvent was allowed to be minimized since the receptor-ligand distances needed

to be kept.

3. Then each receptor-ligand conformation went through a series of 2 ps heating simula-

tions that gradually increased the temperature from 298 K to 350 K and then cooled

back to 298 K. Again, the receptor and the ligand were constrained during the simu-

lations.

4. To minimize the time to extract initial structures for the CAS algorithm simulation,

only 50 ns of NVT equilibrium simulation at 298 K with Langevin thermostat (damping

coefficient 5.0 ps−1) was run for each receptor-ligand conformation, instead of 200 ns

as done in SEEKR. Note that SEEKR had carried out NVE simulations whereas the

CAS algorithm carried out NVT simulations since stochastic dynamics are essential for

walkers to carry out dynamics without any bias. The dynamics in the NVT ensemble

should not be drastically different from those in the NVE ensemble, however. The

distance between the receptor and the ligand was constrained with 90 kcal/(mol · Å2)

harmonic force so that various structures with similar receptor-ligand distances could

be obtained for each macrostate. Since there were ten macrostates in total, the total
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equilibrium simulation time ended up to be 500 ns. The first 40 ns were disregarded

as equilibration time for each conformation, so only the last 10 ns were used to extract

initial structures for each macrostate.

5. Finally, the CAS algorithm simulation was run under the NVT ensemble at 298 K

with Langevin thermostat (damping coefficient 5.0 ps−1) for 3200 ns so that the total

simulation time, along with the equilibrium simulation time, will be ∼ 3.7 µs, as done

in SEEKR. Three independent CAS algorithm runs were run for each simulation so

that the reported error bars reflect the true uncertainty.

In the CAS algorithm simulation, the ten macrostates were fixed throughout the simula-

tion. For each CAS algorithm simulation, the initial structures were extracted either at every

100 or 200 ps from the last 10 ns of equilibrium simulation for each macrostate. The initial

structure sampling interval will be denoted as τs from hereinafter. All of the initial struc-

tures carried equal weights. If the initial structures were from the first five macrostates with

0.0 − 1.5 Å, ..., 6.0 − 7.5 Å, then those structures were colored as “blue.” Conversely, if the

initial structures were from the last five macrostates with 7.5−9.0 Å, ..., 13.5−15.0 Å, then

those structures were colored as “red.” The walkers would keep the colors that they started

out with until they reached a different state from their current state, i.e., “blue” would turn

“red” (unbound state) if the receptor-ligand distance was 13.5 Å or higher and “red” would

turn “blue” (bound state) if the receptor-ligand distance was 1.5 Å or lower. The definitions

for the bound and unbound states are the same as those used in SEEKR so that we could

directly compare results. Note that the initial assignment of colors could bias rates, but it

was done because it appeared to speed up convergence of rates in preliminary studies (data

not shown). Resampling was also done separately for each color so that there would be the

same number of walkers for each color in each macrostate. This coloring scheme was used

to calculate the flux going from bound to unbound and vice versa directly from the CAS

algorithm simulation, as done in several WE method works.35,36,42,70–72 The total simulation

time was calculated by the cumulative number of macrostates × target number of walkers
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per macrostate nw × simulation time τ . The target number of walkers per macrostate nw

was set to either 100 or 200. The simulation time τ was set to either 100 or 200 ps. The

parameters for each CAS algorithm simulation runs are listed in Table 1.

Table 1: Parameters for each CAS algorithm simulation runs

Condition Set # τs nw τ
1 100 ps 100 100 ps
2 100 ps 100 200 ps
3 100 ps 200 100 ps
4 200 ps 100 100 ps

Data analysis

The binding rate constants kon’s and unbinding rate constants koff’s, were calculated using

kon =
1

[solute] × average unbound time
(3)

koff =
1

average bound time
(4)

where [solute] represents the solute concentration, which is calculated for each receptor-ligand

system. This is the same as done in Ref. 37, which calculated the same β-cyclodextrin rate

constants with the seven tested ligands using brute force MD simulation. The average bound

and unbound times were calculated using the Hill relation,73 i.e., the average transition times

are equal to the inverses of the fluxes, respectively. We can use this relation because we

used colors to keep track of the walkers’ transitions and resampled each color separately.

Alternatively, we could have re-inserted the walkers that go from the bound state to the

unbound state and vice versa to reach steady state.39,74 The fluxes were calculated using

fluxbound to unbound =
1

n

n∑
i=1

1

τ

∑
weights of all blue walkers that turn red at step i∑

weights of all blue walkers at step i
(5)

fluxunbound to bound =
1

n

n∑
i=1

1

τ

∑
weights of all red walkers that turn blue at step i∑

weights of all red walkers at step i
(6)
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where n denotes the total number of simulation steps and τ denotes the simulation time.

However, for more accurate calculations of binding rate constants kon’s, the NAM method

should be implemented in the CAS algorithm in the future, as done in SEEKR and in

other WE works.41,75–77 The values for [solute] for each receptor-ligand system and details

on how it was calculated is in the SI. Note that the BD simulations in SEEKR were only

used to simulate the region where the receptor and the ligand were far apart from each

other, which is a reasonable approximation, and only came into play in calculating the kon’s.

The region where the receptor and the ligand were close to each other was simulated with

MD simulations in both the CAS algorithm and SEEKR. Hence, the koff’s from the CAS

algorithm and SEEKR can be directly compared with each other. The binding free energies

∆G’s were calculated using the calculated kon’s, koff’s, and Eq. 2 with T = 298 K.

The error bars for kon’s, koff’s, and ∆G’s are standard errors obtained from the three

independent CAS algorithm runs. The Kendall tau and Spearman rho correlation coefficients

were used to measure how well the CAS algorithm ranked the ligands in terms of kon’s, koff’s,

and ∆G’s compared to experiments. Both correlation coefficients range from -1 to 1 where

1 represents identical correlation (i.e., two rankings are the same), whereas -1 represents

fully different correlation (i.e., two rankings are completely the opposite). Kendall tau is

based on the numbers of concordant (same ranking) and discordant (opposite ranking) pairs,

whereas Spearman rho is based on deviations in rankings. The two correlation coefficients

and associated error bars were calculated using an in-house Python script that was used

in Ref. 19, which calculated the same β-cyclodextrin rate constants with the seven tested

ligands using SEEKR.

The kon’s and ∆G’s were also alternatively calculated using probabilities. According to

Ref. 45, the ratio of transition probabilities gives the ratio of equilibrium populations of two

regions, i.e.,

Nbound

Nunbound

=
punbound→bound

pbound→unbound

(7)

where N denotes the equilibrium population and p denotes the transition probability. The
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transition probabilities are given from the flux matrices that are written out at every sim-

ulation step in the CAS algorithm simulation. Hence, with Eq. 7, the ratio kon/koff can be

rewritten as

kon

koff

=
punbound→bound

pbound→unbound × [solute]
(8)

Hence, by using Eq. 8, which is another expression for Eq. 2, we can compute ∆G and if

we plug in the given koff values, which are more accurate and will be discussed in the next

sections, then alternative values for kon can be obtained.

Finally, the initial structures can bias the estimates of rate constants and free energies.71

Hence, three simulation time points (t = 0, 400, 800 ns) where we start analysis of trajectories

were tested to see how it affects the estimates of rate constants and free energies.

Results

The CAS algorithm gave comparable ranking results to SEEKR

and brute force MD simulations.

Similar to brute force MD simulations and SEEKR, the CAS algorithm failed to rank ligands

accurately with kon’s as seen in Figure 2a, which shows the best kon results from the CAS

algorithm simulations in terms of ranking and rate constant estimates. The other CAS

algorithm simulation results are reported in the SI. The kon’s are all one order of magnitude

larger than the experimental values, and the rankings have low or negative Kendall tau and

Spearman rho correlation coefficients as seen in Table 2. As stated in Ref. 19, the kon values

are all within half an order of magnitude, which makes ranking difficult for both experiments

and computational methods. Note that even though the kon’s were calculated differently in

the CAS algorithm and in SEEKR, the results are similar in terms of ranking and value

estimates.

However, the CAS algorithm successfully ranked ligands with koff’s and ∆G’s, which differ
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1 kcal or less for most cases, as seen in Figure 3a and Figure 4a, which show the best koff and

∆G results from the CAS algorithm simulations, respectively, in terms of ranking and rate

constant estimates. The other CAS algorithm simulation results are reported in the SI. The

koff’s and ∆G’s both also had high Kendall tau and Spearman rho correlation coefficients as

seen in Table 3 and Table 4. Like SEEKR, the CAS algorithm was also able to differentiate

between the three tighter binding ligands (aspirin, 1-naphthyl ethanol, 2-naphthyl ethanol)

from the four weaker binding ligands (methyl butyrate, tert-butanol, 1-butanol, 1-propanol),

which have at least one order of magnitude difference from each other in terms of koff. In

addition, since koff values for the seven ligands span over multiple orders of magnitude, it is

easier to rank ligands using koff, as stated in Ref. 19.

Moreover, the koff ranking converged after 1000 ns, as seen in Figure 3b. Hence, to get

accurate ligand ranking results using koff’s, then as little as < 2 µs of total simulation time

per ligand is needed using the CAS algorithm, which is similar to SEEKR. The koff ranking

for other runs converged at different times, ranging from 1000 ns to less than 2500 ns for the

seven runs that had the highest Kendall tau and Spearman rho correlation coefficients of

0.9 and 0.96, respectively which are reported in the SI. Similarly, the ∆G ranking converged

for all of the runs except for one (Condition Set #3 with t = 0 ns), which are reported in

the SI. On the other hand, the kon ranking did not converge for any of the runs, except

for two (Condition Set #2 with t = 0 ns and Condition Set #3 with t = 0 ns), which

are reported in the SI. When comparing the Kendall tau and Spearman rho correlation

coefficients, calculating the kon’s and ∆G’s with probabilities did not give better results as

seen in Figure 2b and Figure 4b. Hence, this alternative method for calculating kon’s and

∆G’s can be used but it is not guaranteed to yield better results.
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Figure 2: kon ranking results. (a) shows results from Condition Set #4 with t = 400 ns, and
(b) shows results from Condition Set #1 with t = 800 ns using probabilities. The error bars
are standard errors obtained from the three independent CAS algorithm runs.

Table 2: kon ranking results

Simulation method Kendall tau Spearman rho
Brute force MD 0 ± 0.28 −0.05 ± 0.37
SEEKR 0.14 ± 0.29 0.14 ± 0.38
CAS (#4 with t = 400 ns) 0.14 ± 0.22 0.18 ± 0.27
CAS (#1 with t = 800 ns using probabilities) 0.14 ± 0.29 0.18 ± 0.38

Table 3: koff ranking results

Simulation method Kendall tau Spearman rho
Brute force MD 1 ± 0.05 1 ± 0.03
SEEKR 0.81 ± 0.09 0.93 ± 0.05
CAS (#4 with t = 400 ns) 0.9 ± 0.06 0.96 ± 0.04

Table 4: ∆G ranking results

Simulation method Kendall tau Spearman rho
Brute force MD 0.87 ± 0.11 0.94 ± 0.06
SEEKR 0.73 ± 0.1 0.89 ± 0.06
CAS (#1 with t = 400 ns) 0.81 ± 0.08 0.93 ± 0.05
CAS (#4 with t = 400 ns using probabilities) 0.81 ± 0.09 0.93 ± 0.06
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Figure 3: koff ranking results. (a) shows results from Condition Set #4 with t = 400 ns. The
error bars are standard errors obtained from the three independent CAS algorithm runs. (b)
shows ranking convergence results from Condition Set #4 with t = 400 ns. The different
colored lines indicate different ligands (red: 1-butanol, yellow: 1-naphthyl ethanol, green:
1-propanol, blue: 2-naphthyl ethanol, magenta: aspirin, cyan: methyl butyrate, black: tert-
butanol) and the ligand with the lowest koff value gets the highest ranking of 1.
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Figure 4: ∆G ranking results. (a) shows results from Condition Set #1 with t = 400 ns,
and (b) shows results from Condition Set #4 with t = 400 ns using probabilities. The error
bars are standard errors obtained from the three independent CAS algorithm runs.
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The CAS algorithm yielded more accurate results for kon and koff

after getting rid of initial structure bias.

Since the initial structures can bias the results, as previously noted in other WE works,8,42,45,46,71

the rate constants and free energies were calculated at three different simulation time points

(t = 0, 400, 800 ns) where we start analysis of trajectories for each simulation, as mentioned

previously in the Data Analysis section. First, the simulation time points were picked for

each simulation that had the highest Kendall tau and Spearman rho correlation coefficients

for kon, koff, and ∆G. The results are summarized in Table 5. From Table 5, it is clear

that getting rid of initial structure bias is necessary to get the kon ranking as accurately as

possible, even though none of the simulations was successful at ranking ligands using kon.

Calculating koff and ∆G after some simulation time had passed also improved ranking results

for the most part.

Since most simulations had multiple simulation time points that gave the highest Kendall

tau and Spearman rho correlation coefficients of 0.9 and 0.96, respectively, for koff, the koff

estimates were compared with experimental values to rank which simulation time point was

the best in terms of rate constant estimates. Figure 5a summarizes the root-mean-square

deviations (RMSDs) from experimental values for the simulations with the simulation time

points that had the highest Kendall tau and Spearman rho correlation coefficients of 0.9 and

0.96, respectively, for koff. The RMSD was obtained from the difference between the averaged

values from three independent CAS algorithm simulations and the experimental values, so

no error bars were reported. Condition Set #3 had lower Kendall tau and Spearman rho

correlation coefficients of 0.81 and 0.89, respectively, so it was not included in Figure 5a.

For all simulations, having a simulation time point of t = 400 ns decreased the RMSD the

most as seen in Figure 5a. This indicated that getting rid of initial structure bias improved

koff estimates but it can be detrimental if we remove too much.

Similarly, the RMSDs from experimental ∆G values were calculated for the simulations

with the starting points that had the highest Kendall tau and Spearman rho correlation
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coefficients of 0.81 and 0.93, respectively, and are shown in Figure 5b. Again, the RMSD

was obtained from the difference between the averaged values from three independent CAS

algorithm simulations and the experimental values, so no error bars were reported. Condition

Set #3 had lower Kendall tau and Spearman rho correlation coefficients of 0.71 and 0.86,

respectively, so it was not included in Figure 5b. Similar to koff, getting rid of a moderate

amount of initial structure bias (t = 400 ns) decreased the RMSD for ∆G (Condition Set

#1). However, most simulations needed to have a higher simulation time point of t = 800

ns to rank ligands accurately in the first place using ∆G. This might be because ∆G’s are

calculated from the ratio of kon’s and koff’s, as stated in Eq. 2, and kon’s might need more

initial structure bias to be removed for accurate ranking and estimates.

Taken together, getting rid of initial structure bias improved ranking results and yielded

estimates closer to experimental values for koff and ∆G. This is further supported from each

ligand’s rate constant convergence results, as seen in Figure 6c and Figure 6d, where the

simulation time point t = 0 ns is shown to be the slowest at converging to experimental kon

and koff values. The rest of the ligand convergence results are reported in the SI. Although it

is a standard protocol to start analysis for the later portions of the WE method simulations,

as mentioned in previous WE works,8,42,45,46,71 these results further confirmed the importance

of the practice, specifically in terms of ranking ligands and obtaining accurate estimates.

Table 5: Simulation time points that had the highest correlation coefficients

Condition Set # t for kon (ns) t for koff (ns) t for ∆G (ns)
1 400, 800 0, 400, 800 400, 800
2 400, 800 400, 800 800
3 800 0, 400, 800 0, 400, 800
4 0, 400 400, 800 800
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Figure 5: Root-mean-square-deviations (RMSDs) results. (a) shows the RMSD results from
experimental koff values, and (b) shows the RMSD results from experimental ∆G values. The
RMSD was obtained from the difference between the averaged values from three independent
CAS algorithm simulations and the experimental values, so no error bars were reported.

The CAS algorithm yielded more accurate results after having less

correlated initial structures.

As stated previously, Condition Set #3 was the only simulation that did not have the highest

Kendall tau and Spearman rho correlation coefficients of 0.96 and 0.96, respectively, for koff,

out of the four types of simulations. Similarly, Condition Set #3 was also the only simulation

that did not have the highest Kendall tau and Spearman rho correlation coefficients of 0.81

and 0.89, respectively, for ∆G. Condition Set #3 was the only simulation with the larger

target number of walkers nw = 200 compared to nw = 100 for the rest of the simulations.

Since the initial structure sampling interval τs was 100 ps for Condition Set #3, which

resulted in 100 initial structures for each macrostate (using 10 ns of brute force simulation

data), having nw = 200 resulted in duplicating most of the initial structures. This produced

correlated samples, which resulted in less accurate ranking results.

This is further supported from each ligand’s rate constant convergence results, as seen in

Figure 6a and Figure 6b, where Condition Set #3 is shown to be the slowest at converging

to experimental kon and koff values. Similarly, Figure 6e and Figure 6f show that doubling
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Figure 6: 1-butanol convergence results. (a) shows kon results with t = 0 ns for all Condition
Sets, and (b) shows koff results with t = 0 ns for all Condition Sets. (c) shows kon results
for Condition Set #1, and (d) shows koff results for Condition Set #1. (e) shows kon results
with t = 0 ns and different nw, and (f) shows koff results with t = 0 ns and different nw.
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Figure 7: 1-butanol convergence results. (a) shows kon results with t = 0 ns and different τ ,
and (b) shows koff results with t = 0 ns and different τ . (c) shows kon results with t = 0 ns
and different τs, and (d) shows koff results with t = 0 ns and different τs.
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nw from 100 to 200 causes slower convergence for both kon and koff, since we start with 100

initial structures for each macrostate in the first place. These results are consistent with

those of Ref. 50. The rest of the ligand convergence results are reported in the SI.

Moreover, Condition Set #4, which was the only simulation that had τs = 200 ps,

instead of τs = 100 ps for the rest of the simulations, yielded the lowest RMSD results

for both koff and ∆G compared to the rest of the simulations at the same simulation time

point (t = 0, 400, 800 ns) for analysis of trajectories, as seen in Figure 5a and Figure 5b.

Since Condition Set #4 had a longer τs, the initial structures were less correlated, which

enabled Condition Set #4 to obtain more accurate rate constant and free energy estimates

compared to the rest of the simulations. However, note that the benefit of having a longer τs

is not apparent in the ligand convergence results, as seen in Figure 7c and Figure 7c, which

show similar rate of convergence for both τs = 100 ps (Condition Set #1) and τs = 200 ps

(Condition Set #4). Taken together, having less correlated initial structures is crucial for

accurate ranking and rate constant and free energy estimates.

The CAS algorithm should sample transitions more frequently by

having shorter simulation times.

Although Ref. 39 noted that the simulation time τ should be longer than the macrostate’s

relaxation time before reaching steady state, we found that Condition Set #2, which was the

only simulation that had a longer simulation time τ = 200 ps compared to the rest of the

simulations that had τ = 100 ps, did not yield better results in terms of ranking and rate

constant and free energy estimates. Hence, 100 ps was probably sufficiently longer than the

macrostate’s relaxation time and 200 ps was probably too long so that some transitions were

inadvertently missed. Additionally, Condition Set #2 was the only simulation that needed

to get rid of initial structure bias for all three calculated properties (kon, koff, and ∆G). This

might have been due to less frequent resampling, which could have helped to correct initial

structure bias for Condition Set #2. However, τ did not have an effect on convergence, as
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seen in Figure 7a and Figure 7b. This is not entirely surprising, however, since τ just needs

to be longer than the macrostate’s relaxation time to obtain accurate rate constant and free

energy estimates.39 Otherwise, τ serves as a “checking point” for the simulation.

Discussion

The CAS algorithm showed comparable results to those of SEEKR. This is not entirely sur-

prising since both enhanced sampling methods share many similarities. Both methods work

by running many short simulations in parallel, which significantly lowers the computational

cost compared to brute force MD simulations. Both methods can also simultaneously sample

binding rate constants kon’s and unbinding rate constants koff’s and yield results that fall

within an order of magnitude of actual values. The results also have small error bars by

sampling along the milestones/macrostates at a high rate, which can be controlled by ex-

tending the simulation until the desired accuracy and/or convergence is reached. Moreover,

both methods require little a priori knowledge about the receptor-ligand system since bind-

ing and unbinding are determined from the chosen reaction coordinate, which in this case

was the distance between the receptor and the ligand (a good, natural choice for studying

receptor-ligand systems). But because of this requirement, the choice of reaction coordinate

is critical for both methods, which can be difficult for more complex systems. In addition, in

order to obtain accurate rate constants, both methods need the initial structures to be from

near-equilibrium distributions. This is especially true for SEEKR, which spent most of its

simulation time generating initial structures before running the actual milestoning step. The

CAS algorithm, on the other hand, spent most of its time running the actual WE method

step.

Although SEEKR used both MD and BD simulations whereas the CAS algorithm only

used MD simulations, both methods yielded results in reasonable agreement with each other.

In SEEKR, BD simulations were only used to calculate kon, and MD transition statistics were
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only used to calculate koff, with the assumption that once the ligand is sufficiently far from

the receptor (last MD milestone), then the ligand is considered to be unbound. Hence, koff’s

are directly comparable as they came from MD simulations in both methods, aside from the

fact that the CAS algorithm simulations were in the NVT ensemble and SEEKR simulations

were in the NVE ensemble, which should not be drastically different from each other. As for

kon’s, the CAS algorithm used the inverse of the average unbound time, which was calculated

using the Hill relation. In contrast, SEEKR used the NAM method, which allowed for an

analytical treatment of the association process from bulk, combined with the BD binding

probability for the outer milestone and the MD binding probability for the inner milestones.

The inner milestones were still treated with MD, however, so the free energy landscape for

this region is comparable between the two methods. The BD simulations were only used

for the outer milestones, with the assumption that the atomistic forces of MD were not

needed (no short range interactions and distances are larger than the MD cutoff distance),

to reduce sampling costs in a region where MD may not be necessary. Hence, the free energy

landscape for the outer milestones is different between the two methods. Depending on

which interactions are critical for a particular system (e.g., electrostatic complementarity of

the ligand and the receptor, conformational changes needed for binding), BD may produce

higher or lower kon’s compared to MD. Nonetheless, the calculated kon’s were in reasonable

agreement with each other as seen in the Results section, with both methods and brute force

MD simulations overestimating kon’s by one order of magnitude compared to experimental

values. Moreover, since both methods failed to rank ligands accurately using kon’s, most of

the Results section focused on koff’s and ∆G’s, which were mostly determined by koff values

since the magnitudes were larger than kon values. As a result, the difference in how the kon’s

were calculated did not significantly impact the comparison of the two methods.

When choosing which method to use to obtain binding rate constants kon’s and unbinding

rate constants koff’s for receptor-ligand systems, the choice will not matter too much in terms

of accuracy and performance. However, if we are somewhat familiar with the receptor-ligand
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system, SEEKR will be more suitable because the computational cost is lower than that of

the CAS algorithm. With SEEKR, convergence of each milestone can be monitored and

simulations can be run or terminated accordingly “on the fly.” The CAS algorithm, on

the other hand, needs to run all simulations for each macrostate since it requires global

convergence of macrostates. However, in order to obtain accurate results from SEEKR, the

milestones need to be sufficiently separated so that the system loses memory when it reaches

the next milestone, which either requires a bit of knowledge about the receptor-ligand system

or confirming the decorrelation of trajectories after an initial short amount of simulation on

each milestone.

On the other hand, we do not need to worry about losing accuracy due to how the

macrostates are constructed for the CAS algorithm. This is because the Markov assumption

is not used44 and transition pathways are directly computed by each walker keeping track

of its past history. Performance (i.e., convergence and efficiency), however, will heavily be

affected by how the macrostates are constructed. For instance, if the macrostates are too

big, then the walkers will struggle to transition to another macrostate. If the macrostates

are too small, then the computational cost will be higher than necessary. Fortunately,

performance can be easily improved by letting the CAS algorithm construct macrostates

adaptively and/or changing the size of the macrostates in the middle of the simulation.

This was not done in this paper, since reasonable macrostates were known a priori through

previous work using SEEKR,19 but this could have easily been done if the CAS algorithm

had difficulty in sampling transitions. In contrast, because SEEKR terminates trajectories

upon crossing a milestone, changing the spacing of the milestones, or a subset of milestones,

would require new simulations to be run to sample these transitions.

26



Conclusions

To find the optimal drug or ligand for a particular target or receptor, pharmaceutical in-

dustries need to rank a number of ligands with its kinetic (binding rate constants kon’s and

unbinding rate constants koff’s) and thermodynamic (binding free energies ∆G’s) proper-

ties. In order to obtain these properties in a timely and cost efficient manner, the various

receptor-ligand systems should be simulated with enhanced sampling methods. SEEKR, a

multiscale milestoning approach that uses both MD and BD simulations, is one enhanced

sampling method that demonstrated its effectiveness in tackling this issue. We showed that

another method, the CAS algorithm, a WE method approach that uses MD simulations,

is another effective enhanced sampling method that shows comparable results to those of

SEEKR. Both enhanced sampling methods needed 3.7 − 3.8 µs per ligand (or as little as

< 2 µs for some ligands) to obtain accurate rankings compared to 4.5 − 11 µs per ligand

using regular MD simulations.37 As with any other enhanced sampling method that has

parameters that need to be set a priori, the CAS algorithm showed variability in terms of

accuracy and performance depending on the parameters. Hence, we compared simulations

with different parameters and discussed the impact of parameters in ranking ligands and ob-

taining rate constant and binding free energy estimates using the CAS algorithm. In general,

getting rid of initial structure bias and correlated initial structures ensured more accurate

results. Additionally, having shorter simulation times so that transitions are sampled more

frequently ensured more accurate results. Finally, we discussed similarities and differences

of SEEKR and the CAS algorithm and when to use each method for the receptor-ligand

system of interest.
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(21) Söderhjelm, P.; Tribello, G. A.; Parrinello, M. Locating binding poses in protein-ligand

systems using reconnaissance metadynamics. Proc. Natl. Acad. Sci. 2012, 109, 5170–

5175.

30



(22) Tiwary, P.; Limongelli, V.; Salvalaglio, M.; Parrinello, M. Kinetics of protein–ligand

unbinding: Predicting pathways, rates, and rate-limiting steps. Proc. Natl. Acad. Sci.

2015, 112, E386–E391.

(23) Brotzakis, Z. F.; Limongelli, V.; Parrinello, M. Accelerating the calculation of protein–

ligand binding free energy and residence times using dynamically optimized collective

variables. J. Chem. Theory Comput. 2018, 15, 743–750.

(24) Haldar, S.; Comitani, F.; Saladino, G.; Woods, C.; van der Kamp, M. W.; Mulhol-

land, A. J.; Gervasio, F. L. A multiscale simulation approach to modeling drug–protein

binding kinetics. J. Chem. Theory Comput. 2018, 14, 6093–6101.

(25) Held, M.; Metzner, P.; Prinz, J.-H.; Noé, F. Mechanisms of protein-ligand association
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