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Abstract

Methods that survey protein surfaces for binding hotspots can help to evaluate tar-

get tractability and guide exploration of potential ligand binding regions. Fragment

Hotspot Maps builds upon interaction data mined from the CSD (Cambridge Struc-

tural Database) and exploits the idea of identifying hotspots using small chemical

fragments, which is now widely used to design new drug leads. Prior to this publica-

tion, Fragment Hotspot Maps was only publicly available through a web application.

To increase the accessibility of this algorithm we present the Hotspots API (Appli-

cation Programming Interface), a toolkit that offers programmatic access to the core

Fragment Hotspot Maps algorithm, thereby facilitating the interpretation and applica-

tion of the analysis. To demonstrate the package’s utility, we present a workflow which

automatically derives protein hydrogen-bond constraints for molecular docking with

GOLD. The Hotspots API is available from, https://dev.azure.com/ccdc/ccdc-open-

source/ git/hotspots, under the MIT license and is dependent upon the commercial

CSD Python API.

Introduction

In the context of protein-ligand interactions, the term ‘hotspot’ describes a region within a

pocket that contributes a disproportionately large amount to the overall binding energy.1

We previously described a hotspot as “the minimum binding site that will bind a fragment,

maintaining the fragment binding position once it has been elaborated”.2 Fragment exper-

iments can yield useful information about the tractability of a target,1 or be used to guide

structure-based drug design.3 It follows that the presence of a computationally determined

hotspot, can be used in the same way.4

There have been many computational approaches to map potential protein-ligand inter-

actions within pockets.5–7 Fragment Hotspot Maps,2 and other more recent methods,8–11 go

further by differentiating between the available interactions, highlighting the most preferen-
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tial.

Prior to this communication, the Fragment Hotspot Map method was only publicly avail-

able through a web application (http://fragment-hotspot-maps.ccdc.cam.ac.uk). While this

provided easy access to the method, it allowed only for visual inspection of the results, lim-

iting how the information could be used, particularly for large scale applications or as part

of existing structure-based drug design (SBDD) workflows.

Herein, we present the Hotspots API. For the general user, this provides direct access

to the calculation, enabling analysis of confidential structures and facilitating the integra-

tion of results with other SBDD methods. For these users, we provide example workflows

as “cookbook” examples in the API documentation which include tractability assessment,

pharmacophore searching and docking. As an example, we discuss how to use Fragment

Hotspot Maps to automatically generate GOLD12 docking constraints. For developers, the

open source code base offers a platform for collaboration and has enabled researchers from

several institutions to start projects to create new features and applications.

Fragment Hotspot Maps Background

Isostar and SuperStar

The Fragment Hotspot Maps approach builds on the previous work of IsoStar13 and Su-

perStar,6 released in 1999. In IsoStar, patterns of interactions are constructed by searching

for all structures containing a given pair of pre-defined functional groups, which are then

assessed to search for non-bonded contacts between the two groups (a central group and a

contact group). Each 3D hit is transformed such that the central groups are superimposed.

This leads to a scatterplot of contact group atomic positions around the central group (figure

1a). As detailed in the original SuperStar paper,6 scatterplots can be converted into grids

by calculating the observed density of a given probe atom at all grid points. The grid can

then be scaled to an absolute level: An ”average density” expected for a given central group,

contact group pair across all entries where a contact could occur is calculated. This is then
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used to divide all the observed densities at a given grid point. Plots are generated for 320

pre-defined central groups contacting 26 contact groups, covering a wide variety of chemical

fragments in the CSD and an example scatterplot and propensity grid are given in Figure

1a and 1b.

(a) (b) (c)

Figure 1: (a) An example IsoStar scatterplot (central group: peptide, contact group: un-
charged NH nitrogen). 1815 CSD entries are displayed with their central group superimposed
to reveal the spatial distribution of interacting uncharged NH nitrogens atoms. All atoms
not in the central or contact groups are hidden. (b) Scaled density of uncharged NH nitrogen
atoms around the peptide fragment (blue = less dense, red = more dense). (c) SuperStar
grid for Uncharged NH nitrogen atomic probe calculated for AKT1 (PDB: 4c33). Several
residues are labelled to highlight the central-contact pairings.

SuperStar takes the appropriate central group distributions in IsoStar for a given contact

group and superimposes them onto protein residues to generate a composite distribution

that covers all the solvent exposed regions in a protein (or protein binding site) for that

contact group. Each composite distribution can be transformed into a contour surface using

counts of atoms within a given grid cube around the central group. This can in turn be

scaled using the methods outlined above. The outcome is a scaled map that represents the

relative likelihood of an interaction by a given contact group at all exposed locations in a

protein. An example SuperStar map, calculated for AKT1 (PDB: 4c33), is given in figure 1.
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Fragment Hotspot Maps Method

Several studies14–16 have described hotspot environments as enclosed, hydrophobic regions

that are capable of hydrogen bonding. Principally, Fragment Hotspot Maps seeks to prioritise

SuperStar’s cavity annotations that are located in these environments. To do this, grid-based

atomic propensity scores are generated by SuperStar for apolar (”Aromatic CH Carbon

atom”), donor (”Uncharged NH Nitrogen atom), and acceptor (”Carbonyl Oxygen atom”)

atomic probes. In order to introduce enclosure, these interaction maps are then weighted by

buriedness, so that more buried sites are favoured over less buried sites.17

Originally, the LIGSITE18 algorithm was used, however it was found that some SuperStar

grid points close to the pocket edge were incorrectly classified by LIGSITE as “clashing”,

meaning that key intermolecular interaction sites were not being detected. Therefore, access

to an alternative pocket detection method, Ghecom19 is provided. To maintain the same

scoring regime as LIGSITE, the Ghecom scores are reversed and scaled between 1 and 7 (1

less buried, 7 most buried).

The weighted interaction grids, are then sampled with pseudomolecular probes that re-

flect the nature of hotspot environments. Figure 2, depicts the default probes. In the latest

release, additional probes are available including different sized, shaped and charged groups

but these are currently unvalidated.

The polar probes contain a polar atom in the substituted position. The weighted in-

teraction grids are sampled by their corresponding probe. Probes are translated to all grid

points above a threshold (default=15) and are randomly rotated around the centre of ”sub-

stituted” atom. Sampling optimisations have allowed the number of rotational samples to

increase from 200 to 3000 rotations which leads to more consistent map scores. For each pose,

the probe atom scores are read from their corresponding grids using linear interpolation.

The probe scores are determined by calculating the geometric mean of the atom scores,

as shown in figure 2. The geometric mean ensures all poses that clash with the protein

are eliminated. Once scored, the sampled probes scores are assigned to an output grid. For
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Figure 2: The three probes used to generate acceptor (left), donor (middle) and apolar
(right) hotspot maps. Red atoms are treated as hydrogen bond acceptors, blue atoms as
hydrogen bond donors, and yellow as apolar. At the bottom, an example calculation is given
to show how the probe score is derived from the geometric mean of the atomic scores.

polar probes, the probe score is assigned only to the polar atom position in the corresponding

output grid, whilst for the apolar probes, the probe score is assigned to all atom positions.

The probe score is only assigned if it is greater than the existing grid point score.

Fragment Hotspot Map Output

Figure 3 shows an example Fragment Hotspot Map output for AKT1 (PDB: 3cqw) contoured

at score = 1 (figure 3a) and score = 17 (figure 3b). This demonstrates that, while all pockets

are sampled, the very highest scoring regions correspond to the hotspot.

Knowledge of these key interactions are normally determined through structure-activity

relationships (SAR) and other experimental data. Once highlighted, these key interactions

can be utilised by SBDD methods to improve performance.20 Predicting these key interac-

tions a priori allows the user to take advantage of this improved performance, starting from

the structure alone.
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(a) contour = 1 (b) contour = 17

Figure 3: A Fragment Hotspot Map calculated for AKT1 (PDB Code: 3cqw), showing apolar
(yellow), donor (blue) and acceptor (red) maps. Figure 3b shows the key backbone NH of
ALA230 displayed in ball and sticks, and a bound fragment aligned from a second protein
structure (PDB Code: 3mv5)

Application Examples

The Hotspots API has been applied in several different domains, as summarised in Fig-

ure 4. The API has been used to assess target tractability, and to generate pharam-

cophores for a give target structure. Cookbook examples are provided in the API documenta-

tion (https://dev.azure.com/ccdc/ccdc-open-source/ git/hotspots/documentation.pdf) that

demonstrate these use cases. In addition, the API can be used for automating the setting of

docking constraints. We elaborate on this example further here.

A Case Study: Automatically Generated Docking Constraints

For this example we use AKT1 (PDB: 3cqw), a member of the DUD-e diverse set, and screen

against the corresponding DUD-e ligands (423 ”actives” and 16576 ”decoys”).21

Modelling protein-ligand interactions through molecular docking is a routine technique

for pose prediction and virtual screening.22 Prior knowledge of important interactions with

the target protein can enhance docking performance using protein hydrogen-bonding con-

straints.23 Constraints can be used to reduce the search space to be explored or to filter
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Figure 4: An overview of the key functionality of the Hotspots API

solutions thereby impacting both speed and accuracy. When working on a novel target or

pocket, it may not be obvious which interactions should be prioritized via constraints. Roca

et al.24 performed docking with Glide25 on an allosteric site of AChE, identified by Fragment

Hotspot Maps. Visual inspection of the maps allowed them to filter molecules making key

interactions. Subsequent testing found some molecules to be functionally active inhibitors

and the docking and hotspot analysis suggests this is through allosteric binding. Further-

more, previous work26 has suggested Fragment Hotspot results can improve enrichment rates

in molecular docking, and that the weighting of the constraints can, in turn, effect the level

of improvement.

Workflow

It is possible to setup and run GOLD docking calculations using the CSD Python API,

including the addition of constraints. Several constraint types are available, but here we
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focus on the protein hydrogen bond constraint, which applies a penalty to any ligand poses

that do not hydrogen bond to the chosen protein atom.

Nine GOLD docking calculations were run with all the combinations of search efficiencies

(1, 10 and 100) and constraint weights (0, 10, 100). A single protein hydrogen bond constraint

is determined automatically using the following workflow:

• Use CSD Python API to setup GOLD, with all other settings set to default (section

3.3, Hotspot API documentation)

• Calculate Fragment Hotspot Maps for the docking receptor

• Score protein atoms using their complementary map. Using the backbone NH shown

in figure 3b as an example, the score is read from the red acceptor map using the vector

of the NH bond

• Set a protein hydrogen bond constraint on the highest scoring polar atom, in this case

the backbone NH of ALA230 at the kinase hinge

• Run GOLD dockings

Results

As can be seen from Figure 5 and Table 1, applying H-bond constraints based on hotspot

maps improves the retrieval performance for this example. The most significant effect is on

retrieval speed. GOLD can be run using different search efficiencies which control the degree

of sampling in the genetic algorithm. By using automated constraints, one can outperform

100% search efficiency results in 1% search efficiency settings; a speed improvement of more

than an order of magnitude. While this work showcases this use case, we will undertake

further work in future to evaluate the benefit more generally across a wider range of targets.
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Figure 5: (Top) Receiver operating characteristic (ROC) curves and (bottom) box plots
showing time per molecule for comparing constraint weights of 0 (green), 10 (orange) and
100 (blue) for search efficiencies of 1% (left), 10% (middle) and 100%.

Table 1: A summary of the 9 docking calculations performed. For each combination of
search efficiency and constraint weight the rank statistics are provided to demonstrate ef-
fect on virtual screening performance. Area under the ROC curve (AUC) is a metric to
evaluate performance across the whole dataset whereas enrichment factor and boltzmann-
enhanced discrimination of ROC27 (BEDROC) focus upon early enrichment making them
highly relevant to virtual screening tasks.

GOLD Settings Enrichment Statistics
Search Efficiency Weight AUC EF1% EF5% EF10% BEDROCα=16 BEDROCα=8

1 0 0.65 5.2 3.74 2.98 0.23 0.32
1 10 0.76 10.64 6.95 4.7 0.38 0.48
1 100 0.8 12.53 7.33 5.04 0.41 0.51
10 0 0.7 5.2 4.35 3.4 0.26 0.37
10 10 0.78 11.35 7.61 5.22 0.42 0.51
10 100 0.82 13 7.85 5.39 0.44 0.54
100 0 0.74 6.15 5.82 4.33 0.33 0.43
100 10 0.8 11.35 7.8 5.32 0.42 0.52
100 100 0.82 12.77 7.85 5.27 0.42 0.52
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Conclusion

The Hotspots API is a Python package that extends functionality offered by the CSD Python

API to enable access to the Fragment Hotspot Maps algorithm and provides support for ap-

plying the results. The API enables users to start with no prior knowledge of their biological

system and identify critical intermolecular interactions. We demonstrate how the results can

be automatically used in molecular docking with GOLD. Cookbook examples (tractability

and pharmacophore generation) are also available for other applications in the API documen-

tation. (https://dev.azure.com/ccdc/ccdc-open-source/ git/hotspots/documentation.pdf).

This functionality is available through one package and can be deployed with minimal code

required from the user and therefore offers a powerful resource for early drug design.

Furthermore, this package provides the building blocks and framework for collaborative

approaches to tackle more complex problems in structure-based design such as predicting

selectivity profiles and guiding fragment elaboration.

Availability and Dependencies

This Python 3 package is available for download from https://dev.azure.com/ccdc/ccdc-

open-source/ git/hotspots/ under an open-source license. The software depends on the CSD

Python API which is part of CCDC’s CSD-Discovery package which is available under a

commercial license. The software can be evaluated by arrangement with CCDC.

Other dependencies (open-source) and versions are available in the repository and we

recommend installing within a conda environment created from the environment.yaml file

provided in the repository.
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