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Abstract
After a brief discussion of the structural trends which appear with increasing number of atoms

in B cages, a one-to one correspondence between the connectivity of B cages and C cage structures

will be proposed. The electronic level spectra of both systems from Hartree-Fock calculations

is given and discussed. The relation of curvature introduced into an originally planar graphitic

fragment to pentagonal ’defects’ such as are present in buckminsterfullerene is also briefly treated.

A study of the structure and electronic properties of B nanotubes will then be introduced. We

start by presenting a solution of the free-electron network approach for a ’model boron’ planar lat-

tice with local coordination number 6. In particular the dispersion relation E(k) for the π−electron

bands, together with the corresponding electronic Density Of States (DOS), will be exhibited. This

is then used within the zone folding scheme to obtain information about the electronic DOS of

different nanotubes obtained by folding this model boron sheet.

To obtain the self-consistent potential in which the valence electrons move in a nanotube, ’the

March model’ in its original form was invoked and results are reported for a carbon nanotube.

Finally, heterostructures, such as BN cages and fluorinated buckminsterfullerene, will be briefly

treated, the new feature here being electronegativity difference.
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I. BACKGROUND AND OUTLINE

The continuing usefulness of models of π−electrons in conjugated systems, for example
that of Hückel [1], testifies to the importance of geometry and connectivity in determining
electronic structure. There has, indeed, been renewed interest in this area, due to the
potential for technology of nanostructures [2].

Therefore, in the present study of C and B cages, and the corresponding nanotubes, we
shall not hesitate in presenting the simplest possible approaches to electronic structure of the
π−electrons when these highlight the importance of topology and connectivity. However,
it will also prove useful in the course of the discussion, to refer briefly to calculations of
Hartree-Fock quality that have been carried out on a variety of B [3] and C [4] cages.

The outline of the present study is then as follows. Section II below exposes, essentially
via Euler’s theorem, a one-to-one correspondence between the connectivity of C and B
cages. For example, C60 naturally leads to a B32 cage. Considerable similarities between the
electronic level spectra of both systems are reported. Also briefly discussed is the matter of
pentagonal ’defects’ and the approximate relation to curvature of originally planar graphitic
fragments. This is illustrated by reference to the recent Hartree-Fock calculations on B
cages of intermediate size already mentioned.

This discussion involving planar fragments, leads into Section III which presents a study
of the structure and the electronic properties of boron nanotubes obtained by folding planar
sheets of boron atoms. We utilize a (quantum) model akin to Kirchoff’s laws of electrical
circuits, where evidently connectivity is again an essential ingredient, π−electrons being
constrained to move along bonds (wires) joining neighbouring nuclei. The dispersion relation
of the π−bands is then utilized to calculate (a) constant energy surfaces and (b) the electronic
DOS for this two-dimensional (2D) model boron lattice. This latter quantity is compared
and contrasted with the study of graphene made in the early work of Coulson [5]. These
dispersion relations are then used to obtain the one-dimensional (1D) energy bands and the
electronic DOS of boron nanotubes within the ’zone folding scheme’ [2].

In section IV the theory of the inhomogeneous electron gas [6] is applied self-consistently
to infinite nanotubes, but now in a surface charge model generalizing the ’spherical March
model’ of C60 [7, 8, 9], originally designed to deal with tetrahedral (eg. SiH4 and GeH4)
and octahedral molecules [10]. It is noteworthy in the present context that central to the
March model is the (obviously approximate) assumption that the π−electrons (one per C
atom) in C60 are distributed spherically. Naturally this is consistent with the uniform sur-
face charge model. However, with this assumption, if we assume the nuclei are constrained
on the surface of a sphere, the lowest energy isomer structure will be determined by mini-
mizing the Coulomb repulsion energy between the nuclei. This is a very old problem going
back as far as J.J. Thomson. The history is briefly recorded by Berezin [11] together with
other possible references. For general N point charges the problem remains mathematically
unsolved except for small N . In particular exact solutions are known for N = 4, 6 and
12, and are respectively tetrahedron, octahedron and icosahedron. For C60 a Monte Carlo
programme written specifically for boron cages [3] demonstrated to numerical accuracy that
the European football was extremely close to (if not lowest) the favoured isomer for this
molecule, provided nuclei are constrained on the surface of the sphere.

The above discussions are then generalized in Section V to treat hetero-nanostructures,
earlier work on BN cages [12] being briefly summarized, followed by reference to fluorinated
buckminsterfullerene [13]. The essential new feature in both examples is the electronegativity
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difference between the component atoms. Section VI constitutes a summary, with some
proposals for future directions; the salient one being the use of the progress on quantum
current network models (see especially the study of Ringwood [14]) to investigate further
topologically disordered networks, which began with the work of Dancz et al. [15].

II. CURVATURE OF GRAPHITIC FRAGMENT, PENTAGONAL DEFECTS

AND A ONE-TO-ONE CORRESPONDENCE BETWEEN CONNECTIVITY OF

B AND C CAGES

A. Use of Euler’s theorem

Amovilli and March [3] performed Hartree-Fock calculations on Bn cages, with n varying
from 30 to 54, under the constraint that all B nuclei lie on the surface of a sphere. In
correspondence with the ’Aufbau principle’ all boron atoms were found to be either 5- or
6-fold coordinated. They noted that as the number of boron atoms gets large, the number
of triangular faces becomes dominant compared to other types of faces in the optimized
geometry and the number of penta-coordinated atoms approaches ∼ 12 for the largest cages,
though considerable scatter around this result was found.

In fact, if one assumes all faces to be triangular, one can rigorously show that the number
of penta-coordinated atoms is exactly 12, as we demonstrate immediately below. If all boron
faces are triangular we have the following relation between the number of boron faces fB and
the number of boron edges eB

eB =
3

2
fB (1)

Following the aufbau principle we only have 5− and 6−fold coordinated boron atoms and
so if n5 and n6 denote the number of 5- and 6-fold coordinated boron atoms respectively we
have that

eB =
5

2
n5 +

6

2
n6 (2)

with the total number of boron atoms n evidently given by

n = n5 + n6 (3)

But now for any closed geometrical figure, the number of faces f , the number of edges e,
and the number of vertices v are related through Euler’s theorem

f + v = e+ 2

and combining this theorem, where obvioulsy the number of boron vertices vB = n, with
Eqs.(1), (2) and (3) we immediately obtain that n5 = 12 i.e. the number of 5-fold coordinated
atoms in boron clusters is uniquely predicted to be 12 if one assumes all faces to be triangular.

This is reminiscent of the situation for carbon fullerenes where, as was already noted by
Euler, to form a closed figure with hexagons, one always needs exactly 12 pentagons. This
similarity inspired us to examine whether a correspondence (or map) between the structure
of a Bn boron cage, containing only triangular faces, and the structure of a CN fullerene,
containing only pentagons and hexagons, can be established.

As will be demonstrated below, the only constraint one needs to impose is that every
B − B bond crosses exactly one C − C bond. Evidently this implies that there is only one
carbon atom in every boron face and vice versa.
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First of all, since every carbon atom in a CN cage is threefold coordinated through
sp2 hybridization, the crossing of the bonds is a sufficient condition to ensure that all boron
faces are triangular as is required. Secondly, as is clear from Fig. 2.1, a pentagonal ’defect’ in
a CN cage (a pentagon surrounded by 5 hexagons, see Fig. 2.1, the thin lines) will generate
a corresponding pentagonal ’defect’ in a boron cage (a penta-coordinated atom surrounded
by 5 hexa-coordinated atoms, see Fig. 2.1, the thick lines). On the other hand, as one
can easily check, sections of the CN cage containing only hexagons will generate only 6-fold
coordinated boron atoms.

So a natural correspondence between the structure and connectivity of CN carbon cages
and that of Bn boron cages (with only triangular faces) is exposed. To find out precisely
which Bn boron cage we obtain in this way starting from a certain CN cage we again turn to
Euler’s theorem. Starting from a carbon cage CN , we have obviously N vertices, and hence

fc = ec + 2−N (4)

With constant threefold coordination, it follows that the number of edges, ec, is equal to
3
2
N and hence, inserting this value into Eq.(4) one reaches the result for CN cages that

fc =
N

2
+ 2 (5)

Since our construction implies one boron atom in every carbon face, the number of carbon
faces fc obviously equals the number of boron vertices vB (=n) and we obtain the following
one-to-one relation between N and n.

n =
N

2
+ 2 (6)

Eq.(6) applied to buckminsterfullerene itself with N = 60 yields n = 32, i.e. the cage B32 is
its analogue. Note that this correspondence is purely topological. Whether or not realistic
values for the bond lengths in CN carbon cages and Bn boron cages allow for the mapping we
propose in Fig. 2.1 is not relevant. Since the faces in Bn boron cages become predominantly
triangular only in the limit of large n, we expect the correspondence to become especially
relevant for large Bn boron clusters.

B. Electronic structure of π−electrons in C60 and valence electrons in B32

Having emphasized topology and connectivity above, let us first record the one-electron
eigenvalues obtained by Amovilli et al. [4] from Hartree-Fock calculations for C60. To
emphasize the degeneracies plus near degeneracies , the reader may refer to Fig. 2.2 As is
readily verified, filling these depicted π-eigenvalues with two electrons per level shows that
the upper state is the HOMO level.

Turning to B32, a large number of eigenvalues for the valence orbitals were obtained in
the Hartree-Fock study of Amovilli and March [3]. Their degeneracies (or near degeneracies)
are depicted in Fig. 2.3. Filling the lowest four graphs of levels would deal with B32 itself if
one assumes one π-electron per atom, which is a chemical oversimplification however.
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C. Pentagonal defects and curvature

To complete the present section, we wish to add some comments on cage curvature in
relation to pentagonal ’defects’ (see also ref.[4]). If we discuss fullerenes in particular, we
first note that there will be appreciable anisotropic curvature at the equilibrium geometries.
To illustrate this, a best candidate for uniform curvature is a fullerene with the pentagonal
’defects’ spread as uniformly as is feasible: i.e. to form an icosahedral-symmetry cage. For
such a fullerene (which we conceive for the CN cage in the largeN limit) the pentagons can be
visualized to reside at the corners of an icosahedron-type super-structure, all the remaining
rings being hexagons. Then it is helpful to consider a graphitic region corresponding to a
triangular face of the above super-structure, all the remaining rings being hexagons. The
area of this face as measured on the surface of a uniformly curved spherical surface of radius
R is evidently Acurved = (4πR2)/20, there being 20 such faces. The length l of the side of
such a ’spherical triangle’ is θR; here θ denotes the angle subtended by the edge as viewed
from the center of the sphere. The area of a planar triangle with edges of the same length
is Aplane = (l/2)(3/4l)

1

2 . But Aplane (corresponding to an unstrained part of graphene) is
different, of course, from Acurved, and there is a strain σ per C atom given by [4]:

σ ∼ {Aplane/(N/20)}
1

2 − {Acurved/(N/20)}
1

2 (7)

such a strain occuring for each bond in the graphitic portion of the network. Therefore,
with ∼ 3N/2 such bonds, the total stress is

Estress ≈ (3N/2)
1

2
kσ2 (8)

where k denotes a suitable force constant appropriate for C−C aromatic bonds. Substituting
Eq.(7) into Eq.(8) it follows that

Estress ∼ 15k

(

3
1

4

2
θ −

{π

5

}
1

2

)

R2 (9)

But the equilibrium R is determined well by the ’rule’ of constant surface area per atom
[3, 4] i.e. R2 ∼ N and so from Eq.(9) stress is important. If some structure other than that
of icosahedral symmetry is assumed for the arrangement of the pentagons, the geometric
factor in Eq.(9) will be modified, but will remain non-zero.

The question as to the relief of such curvature strain then arises (still one is considering
the large N limit). Once more, as a prototypical example, the arrangement of icosahedral
symmetry can be taken. One then visualizes the structure to deform to resemble a icosa-
hedron super-structure, having the pentagon at its apices. Then the triangular graphitic
regions already discussed can be viewed as changed from their spherically curved forms to
almost planar regions with anisotropic curvature at the edges which connect each triangu-
lar region to adjacent ones. Within the planar triangular areas there is neither strain nor
stress: instead it occurs at the edges of the triangles. The total amount of such edge is
∼ 30R ∝ N

1

2 , so that the stress is reduced to E ′
stress ∝ N

1

2 . The proportionality constant
can again be expected to depend on the way the pentagons are dispersed, the overall con-
clusion being that geometric Gaussion curvature is preferably localized in the region of the
pentagons, with then some anisotropic curvature (without Gaussian curvature) mediating
between such adjacent parts, as noted in ref.[4]. Computations on large non-open-shell
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icosahedral-symmetry fullerenes reveal the proposed polyhedralization in diagrams of the
geometry optimized structures (most clearly for C240; the largest treated).

Having referred in some detail above to the graphitic layers, we follow this account by
taking a planar ’model boron’ structure and using again topology and connectivity to discuss
the π−electronic energy band structure. As was reported in the paper by Boustani et al.
[16] preliminary experimental results for pure-boron systems seem to confirm the existence
of boron sheets. We will consider here a purely planar boron configuration and apply
the simplest possible theories to extract the main features of the DOS which arise from
topological aspects.

III. ELECTRONIC PROPERTIES OF BORON NANOTUBES.

A. Structure of a single wall boron nanotube

1. Equilateral and Isosceles zigzag symmetry.

We start by describing the model planar boron lattice which will then be folded to obtain
boron nanotubes. The structure of the boron lattice we consider can be obtained simply by
considering an ordinary sheet of graphene in which we replace all carbon atoms by boron
atoms and place an additional boron atom in the center of every hexagon. In this way, every
boron atom has a near-neighbour coordination, say c, equal to 6. The resulting lattice is
shown in Fig. 3.1

To describe this lattice one can use two lattice vectors, say a1 and a2, which are either
120◦ apart, or 60◦ apart. If one only wants to describe the 2D lattice, both choices are
of course equivalent. However, if one wants to use these lattice vectors to describe the
nanotubes obtained by folding the 2D sheet, then the choice where both lattice vectors are
60◦ apart is the most convenient as became apparent for carbon nanotubes.

To describe a nanotube obtained by folding a sheet, one starts by defining the so-called
chiral vector Ch.

Ch = na1 +ma2 (10)

This vector connects by definition two lattice points on the sheet which have to be con-
nected when one folds the sheet into a tube and the specific choice for n and m completely
determines the structure of the resulting tube. From the definition of the chiral vector Ch

it is clear that its length equals the circumference L of the resulting nanotube which is then
given by

L = a
√
n2 +m2 + nm (11)

with a = |a1| = |a2| .
Similar to carbon, all possible distinct seamless nanotubes can be obtained by choosing

a set of indices (n,m) with n any integer number and m ranging from 0 to n. However,
an interesting feature then arises when one is dealing with boron. As one can easily see on
Fig. 3.1 both the nanotube generated by a Ch(n, n) chiral vector and that generated by the
Ch(n, 0) vector now have in essence zigzag symmetry. However, as is clear from Fig. 3.1 in
the case n = m we have isosceles triangles (two equal sides), while in the case m = 0 we
have equilateral triangles (three sides equal) triangles. For simplicity we will refer to these
limiting cases as (n, n) i-zigzag and (n, 0) e-zigzag symmetry respectively where ’i’ then
evidently stands for isosceles and ’e’ for equilateral.
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We will now go on to define the unit cell of our boron nanotube and the corresponding
Brillouin zone. Except for a few details this is identical to the carbon case and we refer the
reader to the excellent book by Saito, Dresselhaus and Dresselhaus [2] for more details.

The vector perpendicular to Ch going from the chosen origin to the nearest lattice point
defines the translational vector of our 1D periodic nanotube and is given by.

T =t1a1 + t2a2

with the relation between t1, t2 and m,n unchanged as compared to the carbon system
namely

t1 =
2m+ n

dR
, t2 = −2n+m

dR
(12)

where dR is the greatest common divisor (gcd) of (2m + n) and (2n + m). The rectangle
generated by these two vectors Ch and T is the unit cell of our boron nanotube, where
the translational vector T determines the direction in which the unit cell repeats itself
periodically.

2. Reciprocal space

The reciprocal space of the boron sheet is generated by the reciprocal lattice vectors
b1 and b2 defined by

bi.ai = 2πδij

We define the vectors in the reciprocal space of the nanotube by the relations

Ch.K1 = 2π T.K1 = 0 (13)

Ch.K2 = 0 T.K2 = 2π (14)

which then immediately leads to the result

K1 =
1

N
(−t2b1 + t1b2) K2 =

1

N
(mb1 − nb2) (15)

with

N = mt1 − nt2 =
|Ch ×T|
|a1 × a2|

=
2(m2 + n2 + nm)

dR
(16)

with b1 and b2 the lattice vectors of the graphene Brillouin zone and N the number of
atoms in the unit cell of the nanotube. Note that for the carbon sheet the number of carbon
atoms in the nanotube unit cell was given by 2N .

Since the boron lattice we consider can be obtained from taking only the lattice points
in a graphene layer (points with identical physical environment), the Brillouin zone of the
boron and the carbon sheet have identical symmetries.

3. Energy bands within the ’zone folding sheme’

Within the ’zone-folding sheme’ [2] one essentially assumes that the motion of the elec-
trons in a real single wall 3D nanotube can be described by the motion of the electrons in
the planar 2D strip from which that specific nanotube can be obtained by folding. In order
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to obtain the energy dispersion relations for the boron nanotube we first need to determine
the energy dispersion relation of the boron sheet, say E2DB(k), for all possible k−values
and then restrict ourselves only to those k−values which are consistent with the boundary
conditions for motion of the electrons on the strip which generates the boron nanotube.

Since the unit cell of the nanotube (or the infinitely long strip) defined by T and
Ch repeats itself periodically only in one dimension (in the direction of T) the motion of
the electrons along that direction is characterized in k−space by a quasi-continuous scalar
wave-vector k in a one-dimensional Brillouin zone of length 2π

T
in the direction of K2. The

boundary conditions along the direction of the chiral vector Ch yield a discrete number
(equal to N) of allowed values for the component of the wave-vector in the direction of K1

given by µ
(

2π
|Ch|

)

(or equivalently µ |K1|) with µ = 0, ....., N − 1.

Combining this we find that the allowed k−values lie on a set of N parallel lines in
k−space directed along K2 and separated by K1. Every line represents the 1D Brillouin
zone but for a different value of the component of the wave-vector along K1. The energy
values for these wave-vectors are obtained by taking cross sections along these lines of the
energy surface of the full 2D boron sheet. Every cross-section then gives a band in the 1D
Brillouin zone of the nanotube.

We then find for the energy dispersion relations for a single wall nanotube within the
’zone folding scheme’ [2]

Eµ(k) = E2DB

(

k
K2

|K2|
+ µK1

)

(

−π

T
< k <

π

T

)

(17)

with the band index µ given by
µ = 0, ....., N − 1 (18)

and with T = |T| .We now first turn to the determintation of the energy dispersion relation
E2DB(k) for the planar boron sheet.

B. Electronic structure of the 2D boron sheet

1. 2D Energy dispersion bands

For the energy band of the 2D boron sheet we obtain within the Quantum Network (QN)
(See Appendix A) model the relation

EQN
2DB(k) =

q2

2
=

1

2

{

1

a
cos−1

(

1

c
S(k)

)}2

(19)

The structure factor S(k) appearing in Eq.(19) is defined by

S(k) =

c
∑

j=1

eik.aj (20)

where the vectors aj connect every lattice position R to its c nearest neighbours. On the
other hand, from the tight binding (TB) method we obtain the relation (see Appendix B)

ETB
2DB(k) =ǫπ + tS(k) (21)
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with ǫπ and t defined in Appendix B. Since we are mainly interested in qualitative electronic
properties which arise as a consequence of the periodicity and topology of the system under
consideration, we have assumed in our tight binding calculations the following simple values
(assumed arbitrarily in atomic units) for the parameters.

ǫπ = 0 , t = −1 (a.u.) (22)

The important point to stress here is that both expressions for the energy depend on the
wave-vector k through the same structure factor S(k) for which we will derive an explicit
expression immediately below.

2. Expression for the structure factor S(k) within a given reference frame

In particular we start by choosing the x − y coordinate system in the same direction
relative to the lattice vectors a1 and a2 as in Fig. 3.1. This then yields for the coordinates
of both lattice vectors

a1 =

(√
3

2
a ,

a

2

)

, a2 =

(√
3

2
a , −a

2

)

(23)

where the lattice constant a is now equal to the B − B bond length aB−B. (Note that for
graphene we have the relation a =

√
3aC−C). We choose a3 along the positive y−axis which

yields for the coordinates
a3 = (0 , a) (24)

All near neighbour points can then be reached by the vectors ±ai (i = 1..3). We can then
further evaluate the expression for the structure factor to obtain

S(k) =

c
∑

j=1

eik.(aj)

= 2

3
∑

i=1

cos(k.ai)

= 2 cos(aky) + 4 cos

(√
3

2
akx

)

cos

(

1

2
aky

)

(25)

As mentioned above, this structure factor is common to both the QN model and the tight
binding result.

3. Constant energy surfaces and DOS of the 2D boron sheet

The constant energy contours from the QN model are given in Fig. 3.2. Similar to the
carbon case, we note that also here so-called ’trigonal warping effect’ [17] occurs, whereby
the constant energy contours change from the circular behaviour around the center and the
K−points to a triangular shape near the M points.
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The DOS2D of the 2D energy bands can then be calculated from the expression

DOS2D(E) =
2

(2π)2

∫

ds

|∇kE(k)|
(26)

where the line integral is along a surface of constant energy E. Returning to the constant
energy surfaces in Fig. 3.2, we have performed the line integration in Eq.(26) with E(k)
given for the ’model boron lattice’ by Eq.(19) with c = 6, and the results are depicted in
Fig. 3.3. It is worthwhile to compare and contrast the form of N(E) shown there with
the π−bands for graphite first obtained by Coulson [5] using the same QN model. First,
the π−bands touched in graphite, at the point where N(E) = 0, i.e. one had semimetallic
behaviour (both zero gap and zero N(EF )) at the Fermi (or HOMO) level EF . In contrast,
the ’model boron lattice’, by counting the π−electrons, is metallic (zero gap and non-zero
N(EF ) at the HOMO level). A van Hove singularity (vHs) arises near the edge of the
Brillouin zone where the energy bands level off due to periodicity. Results from the tight
binding method yielded similar results for all features.

C. 1D energy bands of (n,n) i-zigzag boron nanotubes

Within the chosen orientation for the x−y coordinate system, the chiral vector Ch, (and
correspondingly also K1) is directed along the positive x-axis for the special case where
m = n.Whereas for graphene this special choice for the indices leads to nanotubes exhibiting
armchair symmetry, in the case of boron it leads to i-zigzag symmetry, as discussed above.
Applying periodic boundary conditions along the circumferential direction then leads to the
quantization

kx,j =
2π

n
√
3a
j (j = 1, ....., 2n) (27)

This then yields for the i−zigzag structure factor Sizj (k)

Sizj (k) = 2 cos(ak) + 4 cos

(

πj

n

)

cos

(

ak

2

)

(28)

(j = 1, ..., 2n)
(

−π
a
< k <

π

a

)

From this expression, one can immediately write down the corresponding expression for the
(n, n) energybands Eiz

q (k), either in the tight binding approximation or from the Quantum
Network model.

Fig. 3.4 (a) shows the energy bands obtained from the QN method for a boron (3, 3)
i-zigzag nanotube which has from Eq.(11) a diameter L ≈ 5.20a. Clearly since K1 is directed
along a symmetry axes of the 2D Brillouin zone, we have energy bands symmetrical around
the origin. From tight binding calculations we found a similar set of bands, with the same
general form and degeneracy.

D. 1D energy bands of (n,0) e-zigzag boron nanotubes

We will now go on to derive an expression for the energy bands in the special case thatm =
0. As in the case of graphene this leads to zigzag nanotubes but as discussed above, we now
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need to make the extra specification that we are dealing with equilateral zigzag symmetry
. In order to obtain an explicit expression for the energy bands it is helpful to consider a
coordinate transformation to a more suitable reference system. Following Saito, Dresselhaus
and Dresselhaus [2] we consider a passive coordinate transformation counterclockwise over
120◦. This implies we now use the x − y coordinate system depicted in their Fig. 4.3 (b).
This transformation leaves the expression for the structure factor (25) unchanged as one can
easily check, but brings the chiral vector Ch for the (n, 0) system under consideration along
the (negative) y-axis. Again applying periodic boundary conditions along the circumferential
direction leads to the quantization

ky,j =
2π

na
j (j = 1, ....., 2n) (29)

For the e-zigzag structure factor Sezj (k) one then obtains

Sezj (k) = 2 cos(
2π

n
j) + 4 cos

(

πj

n

)

cos

(√
3

2
ak

)

(30)

(j = 1, ..., 2n)

(

− π√
3a

< k <
π√
3a

)

from which one can again immediately obtain the corresponding (n, 0) energybands
Eez
j (k). The resulting energy bands from the QN model are plotted in Fig. 3.4 (b). We

chose a value for n which yields approximately a nanotube of the same radius as for the
(3, 3) zigzag tube, namely n = 5 which yields for the circumference L = 5a.

E. 1D energy bands for general chiral symmetry

For a general (n,m) system we go back to the original coordinate system (as for the
armchair nanotubes). The coordinates of the lattice vectors b1 and b2 in reciprocal space
are then given by

b1 = (
2π√
3a

,
2π

a
) , b2 = (

2π√
3a

, −2π

a
) (31)

which implies the relations

b1.b1 = b2.b2 =
4

3

(

2π

a

)2

and b1.b2 = −2

3

(

2π

a

)2

(32)

We then obtain for the x and y components of the vector k K2

|K2| + µK1

kx =
k

|K2|

[

m− n

N

](

2π√
3a

)

+ µ

[

m+ n

N

](

2π

a

)√
3 (33)

ky =
k

|K2|

[

m+ n

N

](

2π

a

)

+ µ

[

n−m

N

](

2π√
3a

)

(34)

with

|K2| =
√

K2.K2 =

√

[

(m

N

)2

+
( n

N

)2
]

b1.b1 − 2
(nm

N

)

b1.b2 (35)
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and the dependence of N on m and n given by Eq.(16). For a general choice of n and m,
the number of atoms in the unit cell of the nanotube, and correspondingly the number of
1D dispersion relations gets very large compared to the simpler (n, n) and (n, 0) cases and
is less insightfull.

F. Density of States of one-dimensional boron nanotubes

We now calculate the DOS per boron atom from these 1D energy dispersion relations
using the formula

DOS(E) =
2

(2π)

|T|
N

N
∑

µ=1

∫

δ (E −Eµ(k)) dk (36)

where the integration is over the 1D Brillouin zone of the nanotube. The results are shown
in Fig.3.5(a) and (b) for the (3, 3) i-zigzag tube and the (5, 0) e-zigzag tube respectively.
Obviously since the first cuts in the 2D energy bands of the boron sheet are within the region
where the constant energy contours are circular, irrespective of the direction of Ch(n,m) we
find a similar DOS for the low energy values. On the whole we find that the DOS looks
similar, the main difference being that the two peaks which were nearly degenerate for the
(3, 3) i-zigzag tube are further apart for the (5, 0) e-zigzag tube.

All of the boron nanotubes we considered were found to be metallic. Of course, we must
expect also here that a Peierls distortion [2] will occur which will then possibly open a small
gap in the DOS of the first energy band but this is beyond the scope of the present study.

IV. ’THE MARCH MODEL’ APPLIED TO NANOTUBES

Contrary to the density of states, we expect other quantities relating to the electrons to
be only very slightly dependent on the detailed structure of the carbon or boron frame. To
exemplify this point F.E. Leys et al. [18] calculated the self consistent field in which the 2s
and 2p valence electrons move in an isolated carbon nanotube under the assumption that
the positive charge of the C4+ ions can be smeared out uniformly over the surface of an
infinitely long cylinder, thereby neglecting all structure and only retaining the basic cylin-
drical symmetry of the problem. The spirit of this assumption goes back to the early work of
March [10] on tetrahedral and octahedral molecules where, for instance in GeH4, the exter-
nal field in which the electrons move was approximated by smearing out the four H protons
over the surface of a sphere of equal radius to the Ge−H bond length and centered on the
Ge nucleus. The inhomogeneous electron gas created by this model external potential was
then treated using the Thomas-Fermi method. In evaluating the nuclear-nuclear potential
energy however the correct geometry of the nuclear framework was always retained. This
method has recently experienced renewed interest. Thus the work of Clougherty and Zhu
[7] on C60 calculated the equilibrium cage radius for C60 using the method they termed ’the
March-model’. Further studies include those of Despa [8], also on C60, and Amovilli and
March [3] on boron cages. (See also Siringo et al. [9]). We will now briefly summarize the
main results of the study of Leys et al. [18].

If we take Θ(r) to be minus the self-consistent potential Vsc(r) we obtain for Θ(r) the
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differential equation
∂2Θ

∂r2
+

1

r

∂Θ

∂r
= cΘ

3

2 c =
2

7

2

3π
(37)

where r denotes the distance from the axis of the tube. This equation was solved subject to
the appropriate boundary conditions and in particular the surface charge σ was taken into
account through the boundary condition at the radius Rt of the tube

(

∂Θ1

∂r

)

Rt

= 4πσ +

(

∂Θ2

∂r

)

Rt

(38)

where Θ1 denotes the solution inside the tube and Θ2 outside the tube. The condition (A11)
reflects the discontinuity in the electric field across the surface charge..

Figs. 4.1 shows our results for the potential Vsc(r). The data used in determining σ is
mentioned in the captions. Östling et al. [19] performed full Kohn-Sham calculations on
the same model system and we have used their results for comparison. The electron density
ρ(r) was found to be reasonably well described by TF theory but we especially found very
good agreement for the self-consistent potential Θ(r), both qualitatively and quantitatively.
Moreover, in the same study, Östling et al. compared their results with those obtained from
tight binding when the exact atomic positions were taken into account and found only very
small differences from their Kohn-Sham results on the model system. This clearly indicates
that we can expect also our results, following the original procedure of March, to be a
good approximation to the self-consistent field. Obviously the main merit of our work is its
relative simplicity allowing one to obtain analytic results in certain cases, for instance for
the power law behaviour at large r which was found to be

Θ(r) =

(

16

c

)2
1

r4

[

1 +
F1

rc
+ higher order terms

]

with c = 2
√
6− 4 (39)

and F1 an integration constant.

V. HETERO-NANOSTRUCTURES

So far we have focussed attention on the homonuclear cases of B and of C. In this penul-
timate section, we shall extend these considerations to two specific heteronuclear systems:
(i) BN cages and (ii) fluorinated buckminsterfullerene. We shall take these in turn below

A. Boron nitride cages: effect of electronegativity difference on electronic struc-

ture

Let us commence this section on BN with two general references to this area: (a) the work
of Niedenzu and Dawson [20] on boron-nitrogen compounds and (b) the more technologically
oriented work on the synthesis and properties of boron nitride edited by Pouch and Alterovitz
[21].

With no electronegativity difference included, Fig. 6 of ref.[12] shows the Hückel π−bands
of the structures depicted in Fig. 5 of the same reference. It is immediately clear from the
uppermost and the lowest parts of their Fig. 6 that the π−bands touch, whereas for the
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other 3 structures depicted in their Fig. 5 there are energy gaps. But when electronegativity
is included in the Hückel treatment (i.e. αB 6= αN ), the zero-gap cases with αB = αN also
have energy gaps: the most important consequence of the electronegativity difference. Zhu et
al. [12] also have used the so-called extended Hückel model, but although the bands change
somewhat in detailed shape the salient feature of the electronegativity as introducing energy
gaps where originally π−bands touched is confirmed.

B. Fluorinated buckminsterfullerene

A highly fluorinated fullerene, a D3 isomer of C60F48, has recently been investigated by
X-ray fluorescence spectroscopy [13]. The results of such study have been interpreted by
quantum mechanical calculations. In particular, it has been confirmed that the contribution
to the electron density of frontier orbitals, namely the occupied orbitals with the highest
energy, comes from six localized CC double bonds. Evidently, the higher electronegativity
of fluorine causes, in this case, a localization of the π cloud of fullerene in the C − F bond
regions, which are in fact essentially orthogonal to the carbon cage surface. The twelve
carbon atoms which are not bonded to fluorine thus determine six isolated CC double bonds.
Within a very simple Hückel-like formalism the situation can be simulated by substituting
48 of the 60 p functions of fullerene by the same number of σ C−F bond functions and also,
by reducing the connectivity, namely the bond order, between all neighbour pair of functions
in which one of them is a C − F bond orbital. Furthermore, the energy of C − F bond
functions must be shifted to lower energies with respect to the p carbon atomic orbitals. The
resulting molecular orbitals are then split essentially in to three bands. The lowest energy
band is built from 48 occupied orbitals, which represent the 48 C − F σ electron cloud, the
intermediate band being constructed from 6 occupied orbitals, representing the 6 isolated
π C − C double bonds, and, finally, the highest energy band which includes the 6 empty π
CC antibonding orbitals.

VI. SUMMARY AND FUTURE DIRECTIONS

We have stressed the way pentagonal ’defects’, present say in a C60 cage, can be connected
with the curvature introduced into an originally planar graphitic strip. Using Euler’s theo-
rem, a one-to-one correspondence between the geometry of B cages and C cage structures
has been proposed. This has led us to embed topology and connectivity into a quantum
current network approach to a ’model boron’ two-dimensional lattice. The electronic band
dispersion relation E(k) for this lattice has been employed to obtain (i) constant energy E
surfaces in the k = (kx, ky) plane and (ii) the density of states of the π−electrons. The results
are compared and contrasted with the earlier results of Coulson on a graphite layer. This
’model boron’ layer was then wrapped into a ’model boron nanotube’. After a discussion
concerning chirality and symmetry of these tubes, the electronic properties were discussed
within the zone folding scheme. As to future directions, generalizations which may prove
feasible of earlier work by Dancz et al. [15]. on a topologically disordered network are
proposed.
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APPENDIX A: THE QUANTUM NETWORK MODEL.

1. Introduction and general formalism

The idea behind the quantum network (QN) model is extremely simple. One joins each
atom to its nearest neighbours, and then treats electrons (though quantum mechanically, of
course) as though they flowed through 1D wires as in an electrical circuit obeying Kirchoff’s
Laws at every node. This was first introduced by Pauling [22] and important later contri-
butions include those of Ruedenberg and Scherr [23] who applied the method systematically
to a large group of molecules, Coulson [5] who was the first to apply the method to periodic
systems (namely graphene) and Montroll [25] who studied a class of model potentials along
the bonds which allow for analytical solutions for the wave functions and the density of
states. In particular, these methods have been applied to conjugated systems where one
assumes that the σ-electrons form the framework, and the delocalized π−electrons move
along this network.

If φ[j] denotes the value of the 1D wave function at the jth node (assuming one has made
a suitable numbering of all nodes or atoms) the system of equations one has to solve is given
by [25]

F (q, η)φ[j] =

c
∑

i=1

φ[ji] (A1)

where F (q, η) is a general form factor which contains information about the (possibly
parametrized via η) potential along the bonds and ji (i = 1..c) denote the index of the
c near neigbour nodes (or atoms)

For free electrons along the network (i.e. no potential along the bonds), one has that

F (q, η) = c cos(qa) (A2)

where a is the bond length (assumed there is only one) and the energy E is given of course
by

E =
~
2q2

2m
(A3)

For certain specific choices of the potential acting along the bonds, analytic formulae for the
structure factor F (q, η), the wave functions along the wires and the resulting DOS can be
derived as was shown for instance in the work by Montroll [25].

For large molecules it is convenient to use the matrix formulation of the problem as was
proposed by Ruedenberg and Scherr [23] (to which we refer the interested reader for more
details). If we define for a molecule containing N atoms or units the vector

φ =













φ(1)
φ(2)
...
...

φ(N)













(A4)
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we can write Eq.(A1) in the form
Fφ = 0 (A5)

where F is the so-called ’connectivity matrix’. It is an N ×N matrix, the structure of which
can most easily be explained by writing it down for a simple molecule, for instance benzene.
If we number all C atoms in a chosen direction from 1 to 6, we obtain for F the matrix

F =















−F (q, η) 1 1
1 −F (q, η) 1

1 −F (q, η) 1
1 −F (q, η) 1

1 −F (q, η) 1
1 1 −F (q, η)















(A6)

where the omitted elements are all zero. The eigenvalues of this matrix, say Fn, then follow
from the secular equation

|F| = 0 (A7)

combined with Eqs.(A2) and (A3) in the case of free electrons or from a generalization of
Eq.(A2) in the case of a potential along the bonds.

2. Periodic systems

For periodic systems equations (A1) or (A5) can be considerably simplified. If the vectors
ai (i = 1..c) connect every lattice point to its c nearest neighbours, Bloch’s theorem implies
that

φ[ji] = φ[j]eik.ai . (A8)

Then, assuming there is only one atom in the Brillouin zone Eq.(A1) immediately reduces
to

F (q, η) = S(k) (A9)

with the structure factor S(k) given by

S(k) =

c
∑

i=1

eik.ai

and k a wave vector of the first Brillouin zone of the periodic structure. For free electrons
along the network one immediately obtains for the energy bands EQN(k)

EQN(k) =
q2

2
=

1

2

{

1

a
cos−1

(

1

c
S(k)

)}2

(A10)

where atomic units have been used. For a more detailed discussion on the use of the Quantum
Network model to periodic systems we refer the interested reader to the study of Hoerni
[24].
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3. More recent related theories: Use of Feynman Propagators

Let us suppose that at time t = 0 (i.e. canonical density matrix analogue, β = it where
β = (kBT )

−1, with kB denoting Boltzmann’s constant and T the absolute temperature) the
electron can be located at a particular point, say O, on one of the line segments of the tree.
The electron wave function on this line segment for t > 0 is the free-particle propagator

1√
4πit

ei
y2

4t (A11)

where the distance y is to be measured from the initial point O. The electron then diffuses
outward from O. As usual in the network model, the wave function is required to vary
continuously, but the current divides equally down the remaining c − 1 branches, where c
denotes the number of nearest neighbours. The wave function ψ and 1

c−1
∂ψ

∂x
evaluated at the

node serve as initial conditions for the wave function itself in the next c−1 segments. These
boundary conditions go back to Griffiths [26]. But, as Ringwood stresses, in this situation
of an infinite tree the network is simply connected. The same procedure is to be adopted at
the next node and so on.

In fact the simplest procedure analytically is to employ the Green function, to be calcu-
lated, between two points, say O and P , distanced respectively x and x′ from a node. In
the initial line segment the Green function takes the form [14]

− 1

2

1√
−E

e−
√
−E|y| (A12)

where the energy is taken to be negative, positive energies being obtained by analytic con-
tinuation. Putting ω =

√
−E, the Green function between the two points O and P then

follows as (T denotes Tree)

GT (P,O;E) =
(

e−ωx
′

, eωx
′

)

Z(bN−1)Z(bN−2)....Z(b1)Z(x)

(

ω
2

0

)−1

(A13)

where bi is the length of a segment and Z(b) denotes the matrix

1

2
(q − 1)−1

(

qe−ωb (q − 2)eωb

(q − 2)e−ωb qeωb

)

(A14)

The Green functionGL on the lattice (L) is then obtained by a sum over suitable restricted
walks (γ) [14] as

GL(x, x
′;E) =

∑

γ

eiα(γ)GT (γx, x
′;E) (A15)

where α(γ) enters the phase of the wave function through

ψ(γx) = eiα(γ)ψ(x) (A16)

Ringwood [14] uses the above results to recover the (more directly calculated) density of
states in a graphitic layer given by Coulson [5].
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APPENDIX B: TIGHT BINDING RESULT FOR THE MODEL BORON LAT-

TICE AND RELATION TO THE QN MODEL.

For the model boron lattice considered above, we have only 1 atom per unit cell which is
assumed to contribute only 1 π−electron. There is thus only one band in the first Brillouin
zone. The Bloch orbital corresponding to the translational eigenstate k generated by this
atom is given by

φπ =
1√
N

N
∑

i=1

eik.Rjϕπ(r−Ri) (B1)

where ϕπ denotes the atomic π−orbital centered on lattice position Ri and N the number
of atoms in the crystal. The energy E(k) is then given by the secular equation

|H −ES| = 0 (B2)

where the matrices H and S are now 1−dimensional. If we denote the crystal hamiltonian
(which is assumed to depend only on r) by Ĥ the only matrix element of H, say 〈H〉, is
given by

〈H〉 = 1

N

N
∑

i,j=1

eik.(Ri−Rj)
〈

ϕπ(r−Rj)
∣

∣

∣
Ĥ
∣

∣

∣
ϕπ(r−Ri)

〉

(B3)

If we now only take into account nearest neighbour interactions this can be rewritten as

〈H〉 =
1

N

N
∑

i=j=1

ǫπ +
1

N

N
∑

i=j=1

eik.(Ri−Rj)
〈

ϕπ(r−Rj)
∣

∣

∣
Ĥ
∣

∣

∣
ϕπ(r−Ri)

〉

(B4)

= ǫπ +
1

N

N
∑

i=1

c
∑

j=1

eik.(aj)
〈

ϕπ(r− (Ri + aj)
∣

∣

∣
Ĥ
∣

∣

∣
ϕπ(r−Ri)

〉

(B5)

= ǫπ+

c
∑

j=1

eik.(aj)
〈

ϕπ(r− (Ri + aj)
∣

∣

∣
Ĥ
∣

∣

∣
ϕπ(r−Ri)

〉

(B6)

where the vectors aj connect every lattice position Ri to its c nearest neighbours and

ǫπ =
〈

ϕπ(r)
∣

∣

∣
Ĥ
∣

∣

∣
ϕπ(r)

〉

For the model boron lattice considered here we then obtain for the energy

ETB = ǫπ +
{[

eik.(a1) + e−ik.(a1)
]

t1 +
[

eik.(a2) + e−ik.(a2)
]

t2 +
[

eik.(a3) + e−ik.(a3)
]

t3
}

= ǫπ + tS(k)

with
ti = t =

〈

ϕπ(r− ai)
∣

∣

∣
Ĥ
∣

∣

∣
ϕπ(r)

〉

i = 1..3 (B7)

since the π−orbitals are symmetric with respect to rotations in the plane and all near-
neighbour atoms are at equal distance, and

S(k) =
c
∑

j=1

eik.(aj)
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On the other hand from the QN model we obtained (in a.u.)

EQN(k) =
q2

2
=

1

2

{

cos−1

(

1

6
S(k)

)}2

(B8)

The function

f(x) =
1

2

{

cos−1(x)
}2

(B9)

is plotted over its domain [−1, 1[ in Fig. B1. To obtain correspondence with the tight binding
calculation this function should be a linear function with a negative slope. Except very close
to the lower boundary, we indeed find a linear behaviour for f(x) with a slope of about −1.2
which yields for t the value −1.2

c
,where c is the near-neighbour coordination number, here

equal to 6. The curve has an intersection at about 1.2, which then corresponds to ǫπ. Clearly,
apart from a topological similarity, both methods also exhibit analytical similarities.

APPENDIX C: BORON-NITRIDE SYSTEMS:

1. Isolated benzene and borazole levels

The building block of graphene is benzene (without its H atoms: i.e. a hexagon of C
atoms) while for a boron nitride layer it is a hexagon on which B and N atoms alternate. It is
natural enough therefore to appeal to a simple treatment of bonding in these two molecules
an then to extend the discussion to graphene and a BN layer. Following the survey of one
of us [27] we treat in this Appendix benzene and borazole by a common approach to their
π−electron level spectrum, following Roothaan and Mulliken [28]. We note that one of the
objectives of their study was to treat the ultraviolet spectra of benzene and borazole by the
semi empirical molecular orbital method.

Ignoring interactions between neighbouring ring atoms, one has for the secular equations
for the 6 molecular orbitals derivable from linear combinations of 2pπ atomic orbitals of the
ring atoms.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A 1 1
1 A 1

1 A 1
1 A 1

1 A 1
1 1 A

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (benzene) (C1)

where all the omitted elements vanish. Note that this equation is idential to the secular
equation obtained from the QN model and so obviously the structure of the energyspectrum
predicted by both methods will be similar.

For borazole we have similarly

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A′ 1 1
1 A′′ 1

1 A′ 1
1 A′′ 1

1 A′ 1
1 1 A′′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (borazole) (C2)
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For benzene, for example, A involves not only the desired energy E but also Coulomb and
resonance integrals, and the overlap S between adjacent C atoms (appropriate generalization
for borazole involves evidently both B and N atomic orbitals).

These secular equations can be reduced (by suitable similarity transformations) to the
form

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A′ 2
2 A′′ 1

1 A′ 1
1 A′′ 1

1 A′ 1
1 A′′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (borazole) (C3)

where, to pass from the borazole result to benzene, one has to set A′ = A′′ = A.
The MO’s corresponding to the roots A = −2 and A = −1 (twice) in benzene, or the

corresponding orbitals in borazole, are each doubly occupied in the ground state.
Without going into further details, let us simply state the above in a form such that one

can describe the effect of the π−electron eigenvalues of bringing molecules together into a
larger compound, the molecular levels then clearly being broadend into bands. To describe
this broadening we follow Coulson and Taylor [29] and rewrite the above formulae in an
explicit manner for borazole

(αB − E)(αN − E)− g2(β − ES)2 = 0 (C4)

where the Coulomb integrals are denoted by αB and αN on boron and nitrogen atoms,
respectively, while β denotes the so-called resonance integral.

By way of example, to obtain results for benzene, we merely set αB = αN = αc and
then we find discrete allowed values of g2 (corresponding to discrete values of A above) as
g2 = 1 (twice) and g = 4. It is to be stressed that the electronegativity difference between
B and N will be reflected in the difference between αB and αN . The fact that boron is more
electronegative than nitrogen is reflected in the inequality αB > αc > αN . We have already
emphasized in the body of the text that this is a crucial point in highlighting an essential
difference between the electronic structure of graphene and of a layer of boron nitride.

2. Broadening of π−electron energy levels into bands.

For details of the tight-binding calculation of graphite,the interested reader must consult
the study of Coulson and Taylor [29]. However, the point to be reiterated is that the molec-
ular energy levels, corresponding to discrete values of g2 quoted above, will be broadend into
bands. The detailed nature of the structure of graphene merely gives a spread of values of
g2 that is found to embrace the range 0 to 9 after considerable calculation. Defining sums
and differences of Coulomb integrals as

E0 =
1

2
(αB + αN ) (C5)

and

δ =
1

2
(αB − αN) (C6)
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and introducing also Z = E − E0, which merely shift the zero of energy, and γ = β − E0S,
then one obtains

Z =
−2γg2S ± [4γ2g4S2 + 4 (δ2 + g2γ2) (1− g2S2)]

2 (1− g2S2)
(C7)

Denoting the result of adopting the plus sign in Eq.(C7) by Z+(g), then by allowing g2 to
embrace the range 0 to 9 already quoted, it is a straightforward matter to demonstrate that
Z+(g) has its lowest value equal to δ, having a range which is continuous up to a maximum
value while, Z−(g) decreases to its minimum from the value −δ. Thus, for the layer of boron
nitride, the π−levels are separated into 2 sub-bands, with an energy gap 2δ which can be
associated directly from the above discussion with the electronegativity difference between
B and N . In contrast, for graphene, one must put αB = αN = αc and δ tends to zero. Hence,
instead of the (substantial) energy gap (∼ 4eV ) in the BN layer, in graphene the π−bands
touch since δ → 0.
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FigureCaptions :

Fig. 2.1: Unfolded section of a hypothetical CN carbon cage (thin lines) with the corre-
sponding Bn boron cage on top of it (thick lines). Boron cage is constructed by imposing
the constraint that every B−B bond crosses exactly one C−C bond. The number of boron
atoms is then given by n = N

2
+ 2.

Fig. 2.2: Hartree-Fock values of the π−electron level spectrum of C60. The degeneracies
are in good agreement with predictions from Hückel theory.

Fig. 2.3: Hartree-Fock values for the valence electron level spectrum of B32.

Fig. 3.1: Model boron lattice. Translational vector T and chiral vector Ch defining
the unit cell of the nanotube are shown. Special choices for the chiral vector Ch(n, n) and
Ch(n, 0) are shown to lead to isosceles zigzag symmetry and equilateral zigzag symmetry
respectively.

Fig. 3.2: Brillouin zone of the boron lattice. Constant energy contours (with values in
atomic units) for the quantum network model are shown. Trigonal warping effect causes de-
viation from spherical behaviour near the center and K points towards triangular behaviour
near the M points.

Fig. 3.3: Density of states (including spin degeneracy) for the 2D boron sheet. Out-
standing feature is the van Hove singularity near the edge of the first Brillouin zone.

Fig. 3.4 (a): 1D energy dispersion relations from the QN model for a boron (3, 3)
i−zigzag nanotube

Fig. 3.4 (b): 1D energy dispersion relations from the QN model for a boron (5, 0)
e−zigzag nanotube.

Fig. 3.5 (a): DOS from the QN model for a boron (3, 3) i−zigzag nanotube.

Fig. 3.5 (b): DOS from the QN model for a boron (5, 0) e−zigzag nanotube.

Fig. 4.1: Self consistent field for an isolated single wall nanotube from the March model.
In calculating the surface charge, the C − C bond length was taken to be 2.68 a.u..

Fig. B.1: Plot of the function f(x) = 1
2
{cos−1(x)}2. To obtain analytic correspondence

with the tight binding result we must have a linear relation and this is found to be true over
most of the domain of f(x).
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