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Generalizing the folding method to any periodic two-dimensional planar carbon structures we have calculated
the corresponding electronic structures in the framework of the one orbital one site tight-binding (Bloch-
Hückel) method by solving the eigenvalue problems in a numerical way. We discussed the metallic or the
nonmetallic behavior of the nanotubes by applying the folding vectors of parameters (m, n). We extended
the topological coordinate method to two-dimensional periodic planar structures as well. Nearly regular
hexagonal, pentagonal, and heptagonal polygons were obtained. The curvatures of the final relaxed structures
can be read from the sizes of the polygons. Thus relying only on the topological information we could
describe the shape of the tubular structures and their conductivity behaviors.

INTRODUCTION

All polyhex single wall nanotubes can be indexed by the
(m, n) pair of integers, and in the one orbital one site tight-
binding calculations the nanotube electronic structures can
be constructed from that of the graphene sheet.1,2 Thesem,n
integers are associated with a lattice vectors1 ) ma1 + na2,
along which the graphene sheet is rolling up. Herea1 anda2

are the unit vectors of the primitive unit cell containing two
atoms. Ifn - m is a multiple of 3, then the tube is metallic,
and in other cases it is nonmetallic. There are also analytical
relations for the energy levels.1,2 The case of the nonpolyhex
nanotubes is much more complicated.3-17 There is not yet
an available general formula for the geometric and electronic
structures of the nonpolyhex nanotubes when they contain
pentagons and heptagons as well.18,19

In ref 20 we presented a method for describing the
geometrical structures of nonhexagonal nanotubes, nanocoils,
and nanotori. Starting from the topological arrangement of
carbon atoms and using the topological coordinates we
constructed good initial Cartesian coordinates for nanotubes,
and their final structures were obtained with the help of a
Brenner-potential21 based molecular mechanics calculation.
For a given tiling the toroidal, helical, or tubular relaxed
structure depends on the position and shape of the super cell
to be rolled up.

TheR2 plane cannot be always tilled by regular hexagons,
pentagons, and heptagons. Here we present a topological
coordinate method for the tiling of the two-dimensional plane
by near regular polygons. The size of the polygons will be
proportional to the Gaussian curvature of the relaxed
structure. Small sizes of polygons correspond to positive
Gaussian curvatures, and great sizes of polygons correspond
to negative ones. The Gaussian curvature is the product of
the two principal curvatures.

In the one orbital one site tight-binding (with the other
name of Hu¨ckel-type) calculations the electronic structure

of the graphene sheet can be used in the description of the
nanotube electronic structures by applying the folding
method. In this paper we shall extend this method to any
two-dimensional periodic tiling of the plane and to the
corresponding tubular, helical, and toroidal structures. In the
reciprocalk space the electronic eigenvalue problem will
be solved in a numerical way.

THE TOPOLOGICAL COORDINATES

There are already developed topological coordinates for
fullerenes,22,23tori,24,25and nanotubes.20 Here we extend them
to periodic planar structures as well. Using this method we
can do preliminary calculations for several carbon structures
without applying any relaxation process. Let us suppose that
we know only the number of carbon atoms and the
connectivity structure. That is for each atom we know the
neighboring atoms. Using this information the adjacency
matrix A can be constructed with matrix elementsAij ) 1 if
i andj are adjacent andAij ) 0 otherwise. In an appropriate
energy unit of this paperA is equal to the minus of the
Hückel Hamiltonian H. The topological coordinates are
constructed from the so-called bilobal eigenvectors22,23 of
the adjacency matrix.

Vectors having this bilobal property can be identified in
the following way. For a candidate vector color black all
vertices bearing positive coefficients, white all bearing
negative coefficients, and gray all bearing a zero coefficient;
now delete all gray vertices, all edges incident on gray
vertices, and all edges connecting a black to a white vertex;
if the graph now consists of exactly two connected compo-
nents, one of black and one of white vertices then the
eigenvector is of the bilobal type.22,23,25

THE CASE OF TWO-DIMENSIONAL PERIODIC
PLANAR STRUCTURES

The topological coordinates for a two-dimensional periodic
planar structure can be constructed in a way very similar to
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the case of the tubular structures.20 First we construct a super
cell or parallelogram in the periodic two-dimensional planar
structure, then by identifying the opposite edges of the
parallelogram we obtain an auxiliary torus. In this identifica-
tion the directions of the opposite edges are the same. The
topological coordinates of this torus are constructed in the
way presented for the torus, and a simple geometric
transformation gives the original parallelogram. Thus the
topological coordinates of a two-dimensional periodic planar
structure are the following:

and

and

Figure 1. The hexagonal planar structure. a. The topological coordinates. b. TheEHOMOk - ELUMOk energy gap in the function ofk and
in the range of energy (0.0, 6.0). c. TheEHOMOk energy in the function ofk and in the range of energy (-0.3, 0.3). d. TheELUMOk energy
in the function ofk and in the range of energy (-0.3, 0.3).

xi ) r arccos(S4Ci
k4/r) if Ci

k3 g 0 (1)

xi ) -r arccos(S4Ci
k4/r) if Ci

k3 < 0 (2)

yi ) 0 (3)

zi ) Rarccos(S1Ci
k1/R) if Ci

k2 g 0 (4)

zi ) R(2π - arccos(S1Ci
k1/R)) if Ci

k2 < 0 (5)
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Hereck1, ck2, ck3, andck4 are the four bilobal eigenvectors of
the adjacency matrixA of the auxiliary torus. The radiiR
andr govern the size and aspect ratio of the torus. At each
point (xi, yi, zi) ) Ri + r i we used the additional scaling for
R ) |Ri| and r ) |r i| (see ref 20).

As an example let us see the case of a two-dimensional
hexagonal structure. It can be generated by the translations,
t ) n1a1 + n2a2, wheren1 andn2 are integers anda1 anda2

are unit vectors of the direct lattice. Each unit cell contains
two carbon atoms which are atom numbers 1 and 2. The
neighboring structure of the lattice is totally described by
giving the neighbors for each atom in the (n1, n2) ) (0, 0)
unit cell. That is atom 1 of unit cell (0, 0) has the number 2

atom as the neighbor in the unit cells (0, 0), (-1, 0), and (0,
-1), and atom 2 of unit cell (0, 0) has the number 1
neighboring atoms in the unit cells (0, 0), (0, 1), and (1, 0).
If for example the unit vectors of the super cell ares1 )
12a1 + 12a2 ands2 ) -12a1 + 12a2 the adjacency matrix
A of the auxiliary torus is obtained by identifying the
opposite edges and using the before mentioned neighboring
structure. In this special case thec2, c3, c4, andc5 are the
four bilobal eigenvectors and eqs 1-5 give the structure of
Figure 1a withck1 ) c,4 ck2 ) c,5 ck3 ) c2, andck4 ) c3. The
structures in Figures 2a-5a are constructed in the same way.
They contain pentagons, hexagons, and heptagons, and their
topological structures are described in ref 20.

Figure 2. The planar structure of Figure 1 in ref 20. a. The topological coordinates. b. TheEHOMOk - ELUMOk energy gap in the function
of k and in the range of energy (0.0, 2.1). c. TheEHOMOk energy in the function ofk and in the range of energy(-0.32, 0.0). d. TheELUMOk
energy in the function ofk and in the range of energy (-0.32, 0.0).
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THE ELECTRONIC STRUCTURE OF NANOTUBES

The simplest method of studying the electronic structure
of nanotubes is the one orbital one site tight-binding method
or in the terminology of quantum chemistry the Bloch-Hu¨ckel
approximation. As in this approximation the nanotube
electronic structure can be constructed from that of the
infinite sheet,1,2 first we study the two-dimensional periodic
planar structure.

From thea1 anda2 unit cell vectors of the direct lattice
the b1 andb2 unit cell vectors of the reciprocal lattice are
calculated by the relations

wherez has the same direction asa1 × a2 with z‚z ) 1. The
wave functions of wavenumberk ) k1b1 + k2b2 are

with

Figure 3. The planar structure of Figure 2 in ref 20. a. The topological coordinates. b. TheEHOMOk - ELUMOk energy gap in the function
of k and in the range of energy (0.0, 1.1). c. TheEHOMOk energy in the function ofk and in the range of energy (-0.12, 0.11). d. The
ELUMOk energy in the function ofk and in the range of energy (-0.12, 0.11).

b1 ) 2π
a2 × z

(a1·a2 × z)
(6)

b2 ) 2π
z × a1

(a1·a2 × z)
(7)

|µk〉 ) ∑
ν)1

r

cµk
ν |k〉ν (8)
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wherer is the number of atoms in the unit cell,µ ) 1, 2, ...,
r is the band index,t ) n1a1 + n2a2 is the translations of the
lattice, and|t〉ν is the atomic basis function centered at the
site ν of the unit cellt. n1 andn2 are integers,k1 andk2 are
real numbers, andν ) 1, 2, ...,r. The number of unit cells
is N.2,26 Thecµk

ν coefficients are theνth eigenvectors of the
H(k) Hamiltonian andEνk is the corresponding eigenvalue,
where

and

Here〈0µ|heff|tν〉 ) -1 if the µth atom of the 0 unit cell and
the νth atom of thet unit cell are neighbors and〈0µ|heff|tν〉
) 0 in other cases.26 If the neighbors of an atom are no
farther than the neighboring unit cell of the atom in question,
the summation fort [in eq 10] means the summation for the
unit cells (0, 0), (1, 0), (-1, 0), (0, 1), (0,-1), (1, 1), (-1,
-1), (1, -1), and (-1, 1).

In this Bloch-Hückel-type tight-binding calculation the
electronic structure of the planar sheet can be used for the
electronic structure calculation of the single-walled nano-

Figure 4. The planar structure of Figure 3 in ref 20. a. The topological coordinates. b. TheEHOMOk - ELUMOk energy gap in the function
of k and in the range of energy (0.0, 1.0). c. TheEHOMOk energy in the function ofk and in the range of energy (-0.2, 0.0). d. TheELUMOk
energy in the function ofk and in the range of energy (-0.2, 0.0).

|k〉ν )
1

xN
∑

t

eikt|t〉ν (9)

H(k) ) ∑
t

eikth(t) (10)

h(t)µν ) 〈0µ|heff|tν〉 (11)
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tubes. One part of an infinite long nanotube can be obtained
from the super cell of the side vectorss1 ) ma1 + na2, s2 )
pa1 + qa2 by identifying the opposite sides parallel withs2.
(m, n, p, andq are integers.) The periodic boundary condition
on the vectors1 is fulfilled if

where l1 is an integer. Thus the allowedk values are on
parallel lines in the reciprocal space. Ask ) k1b1 + k2b2

ands1 ) ma1 + na2, eq 12 can be simplified by eqs 6 and
7 as

wherek1 and k2 are real values. Thek values in the first
reciprocal lattice unit cell can be characterized by (0e k1

< 1) and (0e k2 < 1). From eq 13 it follows that if we are
restricted to the first reciprocal unit cell, then the number of
possiblel1 values isn + m for n and m having the same
sign, and|n| + |m| - 1 if they have different signs.

If both sides of the super cell are identified we obtain the
toroidal structures and must apply periodic boundary condi-
tions for the vectors2 as well. With this condition we obtain
the following restrictions for the allowedk values

and

Figure 5. The planar structure of Figure 4 in ref 20. a. The topological coordinates. b. TheEHOMOk - ELUMOk energy gap in the function
of k and in the range of energy (0.0, 0.8). c. TheEHOMOk energy in the function ofk and in the range of energy (-0.2, 0.0). d. TheELUMOk
energy in the function ofk and in the range of energy (-0.2, 0.0).

s1k ) 2πl1 (12)

mk1 + nk2 ) l1 (13)

s2k ) 2πl2 (14)
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with the integer l2 values. The two periodic boundary
conditions give that only isolatedk values are allowed for
toroidal structures.

RESULTS

The drawings obtained from the topological coordinates
of various planar atomic arrangements are presented in
Figures 1a, 2a, 3a, 4a, and 5a. For the polyhex structure we
obtained a regular hexagonal atomic arrangement (Figure 1a).
In the other structures however the sizes of the heptagons
are great and those of the pentagons are small. The size of
hexagons decreases by increasing the heptagon-hexagon
distances and it increases by increasing the pentagon-
hexagon distances. From these topological coordinates we
can read information about the shape of the relaxed nanotubes
constructed by the folding method of the super cell. Let us
construct for example a tube from a given super cell having
great heptagons and small pentagons on its surface. The
Gaussian curvature of the tube is zero, namely one of the
principal curvatures is zero in this case. To obtain the realistic
carbon-carbon distances, the local distances around the
pentagons must be increased and around the heptagons must
be decreased. This can be reached by indentures around the
heptagons and by bulging around the pentagons. Thus the
small sizes in the drawings by the topological coordinates
correspond to the positive Gaussian curvatures and the great
sizes to the negative ones. The zero curvature is attributed
to the average carbon-carbon distances.

Now we turn to the study of the electronic structures. For
each energy levelEνk we defined theEνmin ) min(Eνk) and
Eνmax ) max(Eνk) minimum and maximum values in the
function ofk. As a supposed occupation of the orbitals, we
define for eachk the Highest Occupied Molecular Orbital
EHOMOk and the Lowest Unoccupied Molecular Orbital
ELUMOk, supposing that for eachk the lowestr/2 levels are
occupied and the other highest levels are unoccupied. These
are not however always the highest occupied or lowest
unoccupied molecular orbitals in the ground state. From the
definition it follows thatELUMOk - EHOMOk g 0, and in our
cases ther number ofπ-electrons is even. IfEHOMOmax <
ELUMOmin then EHOMOk is really the Highest Occupied Mo-
lecular Orbital andELUMOk is really the Lowest Unoccupied
Molecular Orbital in the ground state of the system. This is
not the case ifEHOMOmax > ELUMOmin when the ground-state
occupation numbers do not correspond to the before men-
tioned supposed occupations. Now the Fermi-level is over
ELUMOmin and underEHOMOmax.

In Figure 1b we can see theELUMOk - EHOMOk function
for the polyhex structure, and Figure 1c,d shows that the
EHOMOk ) E1k and ELUMOk ) E2k bands coincide only in
special points, theK points.

There are onlyr ) 2 atoms in the unit cell andEHOMOmax

) ELUMOmin ) 0. Taking advantage of the hexagonal
symmetry it can be proved that only the nanotubes obeying
the conditionm - n ) 0 (mod 3) are metallic.1,2 That is
only in these cases the lines of eqs 12 and 13 are crossing
the K points.

In Figures 2-5 the reciprocal lattice unit vectors are scaled
in such a way that|b1| ) |b2| and the eigenvalue problem

of the HamiltonianH(k) is solved in a numerical way. The
r number of atoms in the unit cell are 8, 16, 24, 32, and 60
in order for the structures in Figures 2a, 3a, 4a, and 5a. For
the structures in Figures 2 and 3EHOMOmax > ELUMOmin and
for the structures in Figures 4 and 5EHOMOmax ≈ ELUMOmin.
In Figures 2c, 2d, 3c, and 3d the energy levels are presented
only in the range (ELUMOmin, EHOMOmax), and the white color
corresponds to values out of this range. Let us see a nanotube
with the parameters (m, n) ) (1, 0). From eq 13 it follows
that the allowedk values in the first reciprocal unit cell are
characterized withk1 ) 0. Figure 2c,d shows that for this
line the supposed lowest unoccupied energy levels are always
higher than the supposed highest occupied energy levels. The
nanotube will not be metallic. The same figures show that
the nanotube (m, n) ) (3, - 5) will be metallic, as one of
the allowedk line will be 3k1 ) 5k2. This line crosses such
a region in Figure 2c where the energy levels are occupied,
and it crosses such a region in Figure 2d where the
unoccupied levels have lower energy values than some
occupied ones in Figure 2c. Thus this supposed occupation
of energy levels is not a ground state, and some electrons
most go to such energy levels which were not supposedly
occupied in the drawing of the figures. This is why this tube
becomes metallic. We shall have metallic tubes for (m, n)
) (1, -1) and nonmetallic for (m, n) ) (0, 5). From Figure
2b-d it follows that in nonmetallic nanotubes the smallest
electronic transitions correspond to indirect energy gaps.
Similar analysis of Figure 3b-d shows that the nanotubes
(1, 0), (1, -1), (3, -5), and (0, 5) are metallic and the
nanotubes (0, 1) and (0, 2) are nonmetallic.

As in Figures 4 and 5 we have the relationEHOMOmax ≈
ELUMOmin. Here the situation is very similar to the case of
the polyhex structure, but there is not a closed formula for
the conditions of conductivity. We must do the same analysis
as for the previous structures. In Figure 4 we obtained that
the nanotubes (1,-1), (3, -5), (0, 5), (0, 1), and (0, 2) are
nonmetallic, and the nanotube (1, 0) is metallic. In Figure 5
the nanotubes (1, 0), (1,-1), (0, 5), (0, 2), and (0, 1) are
nonmetallic and the nanotube (3,-5) is metallic.

CONCLUSION

Starting from the topological arrangements of carbon
atoms we discussed the electronic structures of the nonpoly-
hex carbon nanotubes. The calculations are based on the
Bloch-Hückel theory (or the one orbital one site tight-binding
method). More sophisticated methods can change some
results, but the main tendencies can be found in these cases
as well such as in the polyhex carbon structures. We have
found that the extension of the topological coordinate method
can be used in the drawing of various two-dimensional
periodic carbon arrangements, and it is useful also in the
estimating of the final Gaussian curvatures in the relaxed
structures. Thus relying only on the topological information
we described the shape of the tubular structures and their
conductivity behaviors.
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