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Generalizing the folding method to any periodic two-dimensional planar carbon structures we have calculated
the corresponding electronic structures in the framework of the one orbital one site tight-binding (Bloch-
Huckel) method by solving the eigenvalue problems in a numerical way. We discussed the metallic or the
nonmetallic behavior of the nanotubes by applying the folding vectors of parametans Ve extended

the topological coordinate method to two-dimensional periodic planar structures as well. Nearly regular
hexagonal, pentagonal, and heptagonal polygons were obtained. The curvatures of the final relaxed structures
can be read from the sizes of the polygons. Thus relying only on the topological information we could
describe the shape of the tubular structures and their conductivity behaviors.

INTRODUCTION of the graphene sheet can be used in the description of the
All polyhex single wall nanotubes can be indexed by the hanotube ele_ctronic structures by applying the folding
(m, n) pair of integers, and in the one orbital one site fight- Method. In this paper we shall extend this method to any
binding calculations the nanotube electronic structures cantWo-dimensional periodic tiling of the plane and to the

be constructed from that of the graphene shéd@hesemn corresponding tubular, helical, and toroidal structures. In the
integers are associated with a lattice vestior ma; + nay, reciprocalk space the electronic eigenvalue problem will
along which the graphene sheet is rolling up. Heranda, be solved in a numerical way.

are the unit vectors of the primitive unit cell containing two

atoms. Ifn — mis a multiple of 3, then the tube is metallic, THE TOPOLOGICAL COORDINATES

and in other cases it is nonmetallic. There are also analytical _ i
relations for the energy leveld The case of the nonpolyhex . 1 nere are already developed topological coordinates for
nanotubes is much more complicafed’ There is not yet fullerenes;?*tori,*?>and nanotube¥.Here we extend them
an available general formula for the geometric and electronic 1© Periodic planar structures as well. Using this method we
structures of the nonpolyhex nanotubes when they contain€an do prehmlmary calculathns for several carbon structures
pentagons and heptagons as WelP without applying any relaxation process. Let us suppose that
In ref 20 we presented a method for describing the W& know only the number of carbon atoms and the
geometrical structures of nonhexagonal nanotubes, nanocoilsconnectivity structure. That is for each atom we know the
and nanotori. Starting from the topological arrangement of N€ighboring atoms. Using this information the adjacency
carbon atoms and using the topological coordinates we MatrixA can be constructed with matrix elemeA{s= 1 if
constructed good initial Cartesian coordinates for nanotubes,i @ndj are adjacent ané; = O otherwise. In an appropriate
and their final structures were obtained with the help of a energy unit of this papeA is equal to the minus of the
Brenner-potentidt based molecular mechanics calculation. Htckel HamiltonianH. The topological coordinates are
For a given tiling the toroidal, helical, or tubular relaxed constructed from the so-called bilobal eigenvectstsof
structure depends on the position and shape of the super cellhe adjacency matrix.

to be rolled up. Vectors having this bilobal property can be identified in
TheR? plane cannot be always tilled by regular hexagons, the following way. For a candidate vector color black all
pentagons, and heptagons. Here we present a topologicalertices bearing positive coefficients, white all bearing
coordinate method for the t|||ng of the two-dimensional plane negative Coefﬁcients' and gray all bearing azero Coefﬁcient;
by near regular polygons. The size of the polygons will be now delete all gray vertices, all edges incident on gray
proportional to the Gaussian curvature of the relaxed yertices, and all edges connecting a black to a white vertex;
structure. Small sizes of polygons correspond to positive i the graph now consists of exactly two connected compo-

Gaussia_n curvatures, and great sizes of polygons corresponghents, one of black and one of white vertices then the
to negative ones. The Gaussian curvature is the product ofgjgenvector is of the bilobal typd2325

the two principal curvatures.
In the one orbital one site tight-binding (with the other

. . . THE CASE OF TWO-DIMENSIONAL PERIODIC
name of Hekel-type) calculations the electronic structure

PLANAR STRUCTURES
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Figure 1. The hexagonal planar structure. a. The topological coordinates. bEJd@x — ELumok €nergy gap in the function df and
in the range of energy (0.0, 6.0). c. TBRomok €nergy in the function ok and in the range of energy-0.3, 0.3). d. TheéE, ymok €nergy
in the function ofk and in the range of energy-0.3, 0.3).

the case of the tubular structuf8s:irst we construct a super  and
cell or parallelogram in the periodic two-dimensional planar

structure, then by identifying the opposite edges of the X =—r arccos$4C!‘4/r) if C!‘3 <0 2

parallelogram we obtain an auxiliary torus. In this identifica-

tion the directions of the opposite edges are the same. The v, =0 A3)
|

topological coordinates of this torus are constructed in the
way presented for the torus, and a simple geometric
transformation gives the original parallelogram. Thus the
topological coordinates of a two-dimensional periodic planar
structure are the following: and

z = Rarccos§Cl/R) if Cl2 = 0 (4)

¥ = r arccos§,C/r) if C'¢ = 0 (1) z = R(2m — arccos§,Cl/R)) if C'2 < 0 (5)
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Figure 2. The planar structure of Figure 1 in ref 20. a. The topological coordinates. bEJd@k — ELumok €nergy gap in the function
of k and in the range of energy (0.0, 2.1). c. Th@wmox energy in the function ok and in the range of energy(.32, 0.0). d. Thé&, ymok
energy in the function ok and in the range of energy-0.32, 0.0).

Hereck, ¢, ¢, andck are the four bilobal eigenvectors of atom as the neighbor in the unit cells (0, G},1( 0), and (O,
the adjacency matriA of the auxiliary torus. The radiR —1), and atom 2 of unit cell (0, 0) has the number 1
andr govern the size and aspect ratio of the torus. At each neighboring atoms in the unit cells (0, 0), (0, 1), and (1, 0).
point (%, i, z) = Ri + r; we used the additional scaling for If for example the unit vectors of the super cell ae=
R = |Ri| andr = |ri| (see ref 20). 123, + 12a; ands, = —12a; + 12a, the adjacency matrix

As an example let us see the case of a two-dimensionalA of the auxiliary torus is obtained by identifying the
hexagonal structure. It can be generated by the translationsopposite edges and using the before mentioned neighboring
t = ma; + nyay, wheren; andn, are integers and; anda, structure. In this special case tbg c3, ¢* andc® are the
are unit vectors of the direct lattice. Each unit cell contains four bilobal eigenvectors and egs-% give the structure of
two carbon atoms which are atom numbers 1 and 2. The Figure la withck = ¢, ¢ = ¢,°> ¢ = ¢?, andck = ¢ The
neighboring structure of the lattice is totally described by structures in Figures 2&ba are constructed in the same way.
giving the neighbors for each atom in tha,(n;) = (0, 0) They contain pentagons, hexagons, and heptagons, and their
unit cell. That is atom 1 of unit cell (0, 0) has the number 2 topological structures are described in ref 20.
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Figure 3. The planar structure of Figure 2 in ref 20. a. The topological coordinates. bEJd@x — ELumok €nergy gap in the function
of k and in the range of energy (0.0, 1.1). c. Themok energy in the function ok and in the range of energy-0.12, 0.11). d. The
E umok energy in the function ok and in the range of energy-0.12, 0.11).

a, x z
THE ELECTRONIC STRUCTURE OF NANOTUBES b,= 2.7'[2— (6)
(ara, x 2)
The simplest method of studying the electronic structure 7% a
of nanotubes is the one orbital one site tight-binding method b, = 27— — (7)
or in the terminology of quantum chemistry the BlocheKel (ara, x 2)

approximation. As in this approximation the nanotube
electronic structure can be constructed from that of the
infinite sheet.?first we study the two-dimensional periodic
planar structure. r

luk = ¢y lkD) (8)

y=

wherez has the same direction ag x a, with zzz=1. The
wave functions of wavenumbdr = kib; + kob, are

From thea; anda; unit cell vectors of the direct lattice
the b; andb, unit cell vectors of the reciprocal lattice are
calculated by the relations with
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Figure 4. The planar structure of Figure 3 in ref 20. a. The topological coordinates. bEJd@x — ELumok €nergy gap in the function

of k and in the range of energy (0.0, 1.0). c. TH&wmok energy in the function ok and in the range of energy-0.2, 0.0). d. TheéE, ymok
energy in the function ok and in the range of energy-0.2, 0.0).

1 ikt and
— 3 it 9)
INT (1), = [0 gt 0 (11)
wherer is the number of atoms in the unitcell= 1, 2, ..., ] ]
r is the band index, = nya; + na is the translations of the ~ Here 0 |heq|t"l= —1 if the uth atom of the 0 unit cell and
lattice, and|t[ is the atomic basis function centered at the thevth atom of thet unit cell are neighbors and|hes|t*C]
sitev of the unit cellt. n, andn, are integersk; andk, are = O in other case¥ If the neighbors of an atom are no
real numbers, and = 1, 2, ...,r. The number of unit cells  farther than the neighboring unit cell of the atom in question,
is N.226 The C;k coefficients are theth eigenvectors of the theT summation fot [in eq 10] means the summation for the
H(k) Hamiltonian ancE,y is the corresponding eigenvalue, Unit cells (0, 0), (1, 0),€1,0), (0, 1), (0-1), (1, 1), 1,
where -1), (1,-1), and (1, 1).
_ In this Bloch-Hickel-type tight-binding calculation the
H(k) = Ze'k‘h(t) (10) electronic structure of the planar sheet can be used for the
T electronic structure calculation of the single-walled nano-

kGl =
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Figure 5. The planar structure of Figure 4 in ref 20. a. The topological coordinates. bEJd@x — ELumok energy gap in the function
of k and in the range of energy (0.0, 0.8). c. Th@wmok energy in the function ok and in the range of energy-0.2, 0.0). d. TheE ymok

energy in the function ok and in the range of energy-0.2, 0.0).

tubes. One part of an infinite long nanotube can be obtainedwherek; and k;, are real values. Thk values in the first

from the super cell of the side vect@is— ma; + nay, s, =

pa; + ga; by identifying the opposite sides parallel with

(m, n, p, andg are integers.) The periodic boundary condition
on the vectors, is fulfilled if

sk =2nl, (12)
wherel; is an integer. Thus the allowdd values are on
parallel lines in the reciprocal space. ks= kjb; + kib,
ands; = ma; + nap, eq 12 can be simplified by eqs 6 and
7 as

mk, + nk, =1, (13)

reciprocal lattice unit cell can be characterized by<(k;

< 1) and (0= k; < 1). From eq 13 it follows that if we are
restricted to the first reciprocal unit cell, then the number of
possiblel; values isn + m for n and m having the same
sign, and|n| + |m| — 1 if they have different signs.

If both sides of the super cell are identified we obtain the
toroidal structures and must apply periodic boundary condi-
tions for the vector, as well. With this condition we obtain
the following restrictions for the allowekl values

sk =27, (14)

and
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pk; +ak, =1, (15) of the HamiltonianH (k) is solved in a numerical way. The

r number of atoms in the unit cell are 8, 16, 24, 32, and 60
with the integerl, values. The two periodic boundary in order for the_ structures in Figures 2a, 3a, 4a, and 5a. For
conditions give that only isolatekl values are allowed for ~ the structures in Figures 2 andE3omomax > Evumomin and
toroidal structures. for the structures in Figures 4 andEpomomax ~ ELumomin.

In Figures 2c, 2d, 3c, and 3d the energy levels are presented

RESULTS Only in the range ELUMOmim EHOMOmax): and the white color
corresponds to values out of this range. Let us see a nanotube
The drawings obtained from the topological coordinates with the parametersnf, n) = (1, 0). From eq 13 it follows

of various planar atomic arrangements are presented inthat the allowedk values in the first reciprocal unit cell are
Figures 1a, 2a, 3a, 4a, and 5a. For the polyhex structure Wecharacterized with, = 0. Figure 2c,d shows that for this
obtained a regular hexagonal atomic arrangement (Figure 1a)jine the supposed lowest unoccupied energy levels are always
In the other structures however the sizes of the heptagonshigher than the supposed highest occupied energy levels. The
are great and those of the pentagons are small. The size ohanotube will not be metallic. The same figures show that
hexagons decreases by increasing the heptagexagon  the nanotuberg, n) = (3, — 5) will be metallic, as one of
distances and it increases by increasing the pentagon the allowedk line will be 3k; = 5k,. This line crosses such
hexagon distances. From these topological coordinates weg region in Figure 2c where the energy levels are occupied,
can read information about the shape of the relaxed nanotubegnd it crosses such a region in Figure 2d where the
constructed by the f0|d|ng method of the super cell. Let us unoccupied levels have lower energy values than some
construct for example a tube from a given super cell having occupied ones in Figure 2c. Thus this supposed occupation
great heptagons and small pentagons on its surface. Theyf energy levels is not a ground state, and some electrons
Gaussian curvature of the tube is zero, namely one of themost go to such energy levels which were not supposedly

principal curvatures is zero in this case. To obtain the realistic gccupied in the drawing of the figures. This is why this tube
carbon-carbon distances, the local distances around the hecomes metallic. We shall have metallic tubes for if)

pentagons must be increased and around the heptagons must (1, —1) and nonmetallic forr, n) = (0, 5). From Figure

be decreased. This can be reached by indentures around thgp—d it follows that in nonmetallic nanotubes the smallest
heptagons and by bulging around the pentagons. Thus theslectronic transitions correspond to indirect energy gaps.
small sizes in the drawings by the topological coordinates Similar analysis of Figure 3bd shows that the nanotubes

correspond to the positive Gaussian curvatures and the greaty o), (1, —1), (3, —5), and (0, 5) are metallic and the
sizes to the negative ones. The zero curvature is attributednanotubes (0, 1) and (0, 2) are nonmetallic.

to the average carbettarbon distances.
Now we turn to the study of the electronic structures. For
each energy levet,x we defined theE,min, = min(E,x) and

As in Figures 4 and 5 we have the relatiBAomomax &
E, umomin. Here the situation is very similar to the case of
. . ) the polyhex structure, but there is not a closed formula for
Eumex = MaxEy) minimum and maximum values in the the conditions of conductivity. We must do the same analysis

function ofk. As a supposed occupation of the orbitals, we ; - :
) ) . . as for the previous structures. In Figure 4 we obtained that
define for eacltk the Highest Occupied Molecular Orbital the nanotubes (1), (3,5), (0, 5), (0, 1), and (0, 2) are

Evomor and the Lowest Unoccupied Molecular Orbital nonmetallic, and the nanotube (1, 0) is metallic. In Figure 5

ELumok, supposing that for eadh the lowestr/2 levels are
occupied and the other highest levels are unoccupied. Thes%hoen;iqgﬁ?cbﬁélthg)r’] ;grl;'o%u)J'bEeO’(;}:z;) Egrﬁt)atz;illr:g (0, 1) are

are not however always the highest occupied or lowest
unoccupied molecular orbitals in the ground state. From the
definition it follows thatE, umok — Enomok = 0, and in our
cases the number ofr-electrons is even. IEqomomax <

CONCLUSION

) i ) Starting from the topological arrangements of carbon
Eumomin then Exowox is really the Highest Occupied Mo~ 5¢4ms we discussed the electronic structures of the nonpoly-
lecular Orbital andE uwox is really the Lowest Unoccupied  pey carhon nanotubes. The calculations are based on the
Molecular Orb|tal in the ground state of the system. This is g|ych-Hickel theory (or the one orbital one site tight-binding
not the case i omomax > Erumomin When the ground-staté  aihod). More sophisticated methods can change some
occupation numbers do not correspond to the before men-aq,its ‘hut the main tendencies can be found in these cases
tioned supposed occupations. Now the Fermi-level is over 5o \well such as in the polyhex carbon structures. We have
ELUMOn_nn and underEnomoma _ found that the extension of the topological coordinate method
In Figure 1b we can see t&uvok — Ewowmok function ¢4 pe used in the drawing of various two-dimensional
for the polyhex structure, and Figure 1c,d shows that the pheriodic carbon arrangements, and it is useful also in the
Evomok = Ei and Erymox = Ex bands coincide only in - egtimating of the final Gaussian curvatures in the relaxed
special points, th& points. structures. Thus relying only on the topological information

There are only = 2 atoms in the unit cell anBromomax ~ we described the shape of the tubular structures and their
= Elumomin = 0. Taking advantage of the hexagonal conductivity behaviors.

symmetry it can be proved that only the nanotubes obeying

the conditionm — n = 0 (mod 3) are metalli¢? That is

only in these cases the lines of eqs 12 and 13 are crossing

the K points. This work was supported by grants from PAST and OTKA
In Figures 2-5 the reciprocal lattice unit vectors are scaled (T 038191, T043231). The author thanks Prof. Aridessat’

in such a way thatb,| = |b,| and the eigenvalue problem for the fruitful discussions.
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