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The support vector machines (SVM), as a novel type of learning machine, were used to develop a quantitative
structure-mobility relationship (QSMR) model of 58 aliphatic and aromatic carboxylic acids based on
molecular descriptors calculated from the structure alone. Multiple linear regression (MLR) and radial basis
function neural networks (RBFNNs) were also utilized to construct the linear and the nonlinear model to
compare with the results obtained by SVM. The root-mean-square errors in absolute mobility predictions
for the whole data set given by MLR, RBFNNs, and SVM were 1.530, 1.373, and 0.888 mobility units
(*10-5 cm2 S-1 V-1), respectively, which indicated that the prediction result agrees well with the experimental
values of these compounds and also revealed the superiority of SVM over MLR and RBFNNs models for
the prediction of the absolute mobility of carboxylic acids. Moreover, the models we proposed could also
provide some insight into what structural features are related to the absolute mobility of aliphatic and aromatic
carboxylic acids.

1. INTRODUCTION

Capillary electrophoresis provides high efficiency separa-
tions of samples of a very diverse nature (pharmaceutical,
biological, environmental...). Its speed, resolving power,
efficiency, analyte solubility and stability, minimal reagent
and solvent consumption, compatibility with mass spectrom-
etry, and availability of several modes has made CE a very
popular technique and an alternative to other analytical
methods such as high performance liquid chromatography
(HPLC). Electrophoretic mobility is the most important
parameter governing the separation of solutes in capillary
electrophoresis. According to Max Born’s model,1 the
mobility (µ) of an ion can be expressed by

whereq is the effective charge on the ion andfh and fdl are
hydrodynamic (size- and shape-related) and dielectric (charge-
induced) frictional drag. The hydrodynamic friction associ-
ates with moving the solute through a continuum solvent of
finite viscosity. The dielectric friction is due to the interaction
between the moving ion and the adjacent solvent dipoles.
As an ion migrates through the solvent, it causes the adjacent
solvent dipoles to orient. After passage, the solvent dipoles
relax to their normal random orientation. However, this
relaxation takes a finite period of time (0.82× 10-11 s in
water at 25°C)2 and so imposes a retarding force on the
migrating ion. In essence, the dielectric friction can be
considered as an effective increase in the local viscosity
around the ion. Absolute mobility is a constant characteristic

of an ion. Typically, absolute mobility (µ0) is measured
experimentally either by extrapolating the mobilities observed
over a range of ionic strength to infinite dilution or by
measuring their limiting equivalent conductance.

During method development in CE to develop an opti-
mized separation, the analysts generally have to employ a
large number of experiments, which is often costly and time-
consuming. The basic mechanism in electrophoresis is the
differences in the analytes’ mobilities and any attempt to
provide a computation method to calculate the mobility in
certain practical conditions could provide a useful tool for a
faster method optimization process in CE. Therefore, devel-
oping theoretical models to predict the electrophoretic
behavior of analytes is necessary. However, only a few
reports have investigated the quantitative correlation between
the molecular parameters and the responses obtained in CE.

The computational methods used to calculate/predict
electrophoretic mobility can be classified into two categories.
One approach is to use a mathematical equation to correlate
electrophoretic mobility with the molecular parameters.2-7

The other methods are more empirically based on QSPR
approaches using multiple linear regression (MLR) and
artificial neural networks (ANN) techniques.8-13

Of those previous studies that aimed at predicting the
electrophoretic mobility, the most promising method is to
use the QSPR approach. QSPR methods have been success-
fully used to predict many physicochemical properties. The
advantage of this approach over other methods lies in the
fact that the descriptors used can be calculated from the
structure alone and are not dependent on any experimental
properties. Once the structure of a compound is known, any
descriptor can be calculated no matter whether it is found
or not. So once a reliable model is established, we can use
this method to predict the property of compounds. Therefore,
quantitative structure-mobility relationship (QSMR) is a
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useful tool to predict the electrophoretic mobilities avoiding
long and tedious separation optimization. The QSMR study
can also tell us which of the structural factors may play an
important role in the determination of mobility.

After the calculation of molecular descriptors, linear
methods, such as MLR, principal component regression
(PCR), and partial least squares (PLS) or nonlinear methods,
e.g. neural networks, can be used in the development of a
quantitative relationship between the structural descriptors
and the property. Machine learning techniques such as neural
networks, genetic algorithm, etc., have been applied to the
QSPR analysis since the late 1980s, mainly in response to
increased accuracy demands. The most popular neural
networks model is the back-propagation (BP) neural networks
due to its simple architecture yet powerful problem-solving
ability. However, the BP neural networks suffers from a
number of weaknesses which include the need for a large
number of controlling parameters, difficulty in obtaining a
stable solution, and the danger of overfitting. Other problems
with the use of neural networks concern the reproducibility
of results, due largely to random initialization of the networks
and variation of stopping criteria.14 Genetic algorithms can
suffer in a similar manner. The stochastic nature of both
population initialization and the genetic operators used during
training can make results hard to reproduce.15 Owing to the
reasons outlined above, there is a continuing need for the
application of more accurate and informative techniques in
QSPR analysis.

The support vector machines (SVM) are a new algorithm
developed from the machine learning community. Due to
its remarkable generalization performance, the SVM have
attracted attention and gained extensive application, such as
pattern recognition problems,16,17drug design,18 quantitative
structure-activity relationship19 (QSAR), and QSPR analy-
sis.20

In this work, SVM were used for the prediction of absolute
mobility of 58 carboxylic acids in capillary electrophoresis
using descriptors calculated by the software CODESSA.21

The aim was to establish a QSMR model that could be used
for the prediction of electrophoretic mobilities of carboxylic
acids from their molecular structures alone and to show the
flexible modeling ability of SVM and, at the same time, to
seek the important structural features related to the absolute
mobility of carboxylic acids. MLR and RBFNNs methods
were also utilized to establish quantitative linear and
nonlinear relationship to compare with the results obtained
by SVM.

2. EXPERIMENTAL SECTION

2.1. Data Preparation.The values of absolute mobilities
of 58 carboxylic acids studied were taken from ref 3. Table
1 contained the mobilities of the data set, in *10-5 cm2 S-1

V-1. The compounds contain of aliphatic and aromatic
monofuntional carboxylic acids with various groups, het-
eroatoms and structural isomers. The electrophoretic mobili-
ties of these compounds were obtained in the same condi-
tions. The data set was randomly divided into two subsets:
a training set of 43 compounds and a test set of 15
compounds. The training set was used to adjust the param-
eters of the models and the test set was used to evaluate its
prediction ability. Leave-one-out (LOO) cross-validation was
performed to evaluate the modeling ability of the model.

2.2. Descriptor Calculation. All structures of the mol-
ecules were drawn with the HYPERCHEM program (Hy-
percube, 1994).22 The final geometries were obtained with
the semiempirical PM3 method. All calculations were carried
out at the restricted Hartree-Fock level with no configuration
interaction. The molecular structures were optimized using
the Polak-Ribiere algorithm until the root-mean-square
gradient was 0.001. The resulted geometry was transferred
into software CODESSA that can calculate constitutional,
topological, geometrical, electrostatic, and quantum-chemical

Table 1. Compounds and Electrophoretic Mobilities (*10-5 cm2

S-1 V-1)

no. name exptla MLRb RBFNNsc SVMd

1e fluoroacetic acid 43.9 42.2 44.5 43.4
2 3-iodopropionic acid 34.9 34.8 34.4 34.4
3 benzoic acid 34.4 34.0 34.7 33.8
4 gallic acid 34.4 31.6 32.8 34.3
5e phenoxyacetic acid 27.8 30.3 30.2 28.6
6 o-aminoenzoic acid 31.6 31.9 32.7 31.8
7 2-hydroxybutyric acid 34.2 33.4 34.7 33.2
8 bromoacetic acid 38.8 40.0 40.0 39.4
9e 3, 5-dinitrobenzoic acid 29.1 29.5 29.1 29.9
10 p-hydroxybenzoic acid 34.0 33.4 34.2 33.1
11 vanillic acid 27.1 29.1 27.8 27.4
12 chloroacetic acid 41.9 41.0 41.3 40.2
13e p-fluorobenzoic acid 33.4 34.7 34.8 34.3
14 pyruvic acid 40.4 38.3 39.0 39.8
15 2-nitro-3-chlorobenzoic acid 31.3 30.3 30.4 30.5
16 trichloroacetic acid 36.2 35.7 35.0 36.3
17e glycolic acid 42.3 39.9 41.2 42.3
18 p-nitrobenzoic acid 32.1 31.6 32.5 31.9
19 nicotinic acid 34.6 35.5 34.9 35.2
20 2-nitro-3-bromobenzoic acid 28.2 29.1 28.7 29.8
21e glucutonic acid 26.6 28.6 24.0 26.7
22 4-bromobutyric acid 32.8 33.9 32.9 33.5
23 3, 4-dibromofluoroacetic acid 36.9 36.7 37.2 37.0
24 o-isopropylbenzoic acid 24.7 22.8 24.7 24.5
25e trifluoroacetic acid 42.5 41.7 42.0 41.4
26 cinnamic acid 28.3 29.7 28.5 29.7
27 p-methoxybenzoic acid 28.3 29.6 28.5 30.1
28 2-chlorobutyric acid 32.8 36.6 33.8 33.2
29e gloconic acid 27.2 27.2 21.7 27.2
30 p-bromobenzoic acid 31.5 32.1 31.6 32.0
31 iodoacetic acid 40.2 38.4 38.5 39.7
32 salicylic acid 35.4 33.2 34.0 35.0
33e lactic acid 36.5 38.7 39.1 38.3
34 dichloroacetic acid 39.4 39.1 40.2 38.6
35 2, 3-dimethylbenzoic acid 27.1 27.8 26.3 28.0
36 p-chloeobenzoic acid 33.4 33.3 33.1 33.1
37e 5-bromovaleric acid 30.8 31.2 29.5 30.7
38 trichloroacetic acid 34.2 35.7 35.0 34.3
39 p-tert-butylbenzoic acid 23.2 23.3 23.6 23.9
40 5-iodovaleric acid 30.8 29.4 30.4 29.0
41e 2-bromobutyric acid 30.8 32.2 31.0 32.3
42 3, 4-dihydroxybenzoic acid 34.4 32.4 33.2 34.2
43 chlorodibromoacetic acid 34.9 34.8 34.7 35.4
44 p-toluic acid 29.1 30.8 30.5 30.9
45e glyoxalic acid 37.8 43.3 34.2 38.1
46 tribromoacetic acid 34.9 34.6 35.3 34.7
47 glyceric acid 36.3 37.2 35.8 36.9
48 2-bromopropionic acid 33.4 34.9 35.8 35.1
49e 3-chloropropionic acid 36.8 37.8 35.3 37.0
50 2, 3-dibromopropionic acid 32.3 32.0 31.5 32.9
51 4-iodobutyric acid 32.9 32.2 34.0 31.7
52 2-chloro-3-hydroxybutyric acid 32.9 32.8 31.9 33.0
53e p-ethylbenzoic acid 26.5 27.7 25.3 28.1
54 2,4,6-trimethylbenzoic acid 24.7 24.9 24.6 25.2
55 2, 4-dihydroxybenzoic acid 32.0 32.6 33.7 32.3
56 p-ethoxybenzoic acid 26.6 27.6 26.2 28.0
57e 5-chlorovaleric acid 30.8 32.3 29.5 31.7
58 phenylacetic acid 31.7 30.8 30.7 31.0

a Experimental absolute mobility.b-d Predicted mobility by MLR,
RBFNNs, and SVM, respectively.e Test set.
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descriptors.21 The constitutional descriptors reflect the mo-
lecular composition of the compound without using the
geometry or electronic structure of the molecule. The
topological descriptors describe the atomic connectivity in
the molecule. The geometrical descriptors describe the size
of the molecule and require 3D-coordinates of the atoms in
the given molecule. The electrostatic descriptors reflect
characteristics of the charge distribution of the molecule. The
quantum-chemical descriptors add important information to
the conventional descriptors. Additionally, some physico-
chemical descriptors include lopP, refractivity, etc. were
calculated by software HYPERCHEM.

3. METHODOLOGY

3.1. Feature Selection and Regression Analysis.Once
descriptors were generated, in this work, correlation analysis
of descriptors was performed first. In the process of
correlation analysis, pairwise correlations between descriptors
were examined so that only one descriptor was retained from
a pair contributing similar information (correlation coef-
ficients greater than 0.85). After correlation analysis of the
descriptors, descriptor-screening methods were used to select
the most relevant descriptor to establish the models for
prediction of the molecular property. Here, the forward
stepwise regression method was used to choose the subset
of the molecular descriptors. Forward stepwise regression
starts with no model terms, and at each step it adds the most
statistically significant term (the one with the highest
F-statistic or lowestP-value) until there are none left.

After the descriptor was selected, multiple linear regression
was used to develop the linear model of the property of
interest, which takes the form below:

In this equation,Y is the property, that is, the dependent
variable,X1-Xn represent the specific descriptor, whileb1-
bn represent the coefficients of those descriptors, andb0 is
the intercept of the equation. The statistical evaluation of
the data was obtained by the software SPSS.

3.2. Radial Basis Function Neural Networks Theory.
The theory of RBFNNs has been extensively presented in
Derks’ paper.23 Here, only a brief description of the RBFNNs
principle was given. The RBFNNs consist of three layers:
input layer, hidden layer, and output layer. The input layer
does not process the information, it only distributes the input
vectors to the hidden layer. Each neuron on the hidden layer
employs a radial basis function (RBF) as nonlinear transfer
function to operate on the input data. The most often used
RBF is the Gaussian function that is characterized by a center
(cj) and width (rj). In this study, Gaussian was selected as
the radial basis function. The operation of the output layer
is linear, which is given in eq 14

whereyk is thekth output unit for the input vectorx, wkj is
the weight connection between thekth output unit and the
jth hidden layer unit, andhj is the notation for the output of
the jth RBF unit.

The training procedure when using RBF involves selecting
centers, width, and weights. In this paper, the forward subset

selection routine was used to select the centers from training
set samples.24,25 The adjustment of the connection weight
between the hidden layer and the output layer was performed
using a least-squares solution after the selection of centers
and width of radial basis functions.

3.3. Support Vector Machines.26,27 The foundation of
Support Vector Machines (SVM) has been developed by
Vapnik, and they are gaining popularity due to many
attractive features and promising empirical performance.28,29

The formulation embodies the Structural Risk Minimization
(SRM) principle,26,27 which has been shown to be superior
to the traditional Empirical Risk Minimization (ERM)
principle, employed by conventional neural networks. SRM
minimizes an upper bound on VC dimension (“generalization
error”), as opposed to ERM that minimizes the error on the
training data. It is the difference that equips SVM with good
generalization performance, which is the goal in statistical
learning. Originally, SVM were developed for classification
problems,30 and now, with the introduction ofε-insensitive
loss function, SVM have been extended to solve nonlinear
regression estimation.31

Compared to other neural network regressors, there are
three distinct characteristics when SVM are used to estimate
the regression function. First of all, SVM estimate the
regression using a set of linear functions that are defined in
a high dimensional space. Second, SVM carry out the
regression estimation by risk minimization where the risk is
measured using Vapnik’sε-insensitive loss function. Third,
SVM use a risk function consisting of the empirical error
and a regularization term which is derived from the SRM
principle.

In support vector regression (SVR), the basic idea is to
map the datax into a higher-dimensional feature spaceF
via a nonlinear mappingΦ and then to do linear regression
in this space. Therefore, regression approximation addresses
the problem of estimating a function based on a given data
set G ) {(xi,di)}i

n (xi is the input vector,di is the desired
value, andn is the total number of data patterns). SVM
approximate the function using the following

whereΦ(x) denotes the element wise mapping fromx into
feature space. The coefficientsw and b are estimated by
minimizing

In eq 5,RSVMsis the regularized risk function, and the first
termC(1/n)∑i)1

n Lε(di,yi) is the empirical error (risk). They
are measured by theε-insensitive loss function (Lε) given
by eq 6. This loss function provides the advantage of enabling
one to use sparse data points to represent the decision
function given by eq 4. The second term 1/2|w|2, on the
other hand, is the regularization term.C is referred to as the
regularized constant, and it determines the tradeoff between
the empirical risk and the regularization term. Increasing the
value of C will result in the relative importance of the
empirical risk with respect to the regularization term to grow.

Y ) b0 + b1X1 + b2X2 +‚‚‚ + bnXn (2)

yk(x) ) ∑ wkjhj(x) + bk (3)

y ) f(x) ) wΦ(x) + b (4)

RSVMs(C) ) C
1

n
∑
i)1

n

Lε(di,yi) +
1

2
|w|2 (5)

Lε(d,y) ) {|d - y| - ε|d - y| g ε

0 otherwise
(6)
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ε is called the tube size, and it is equivalent to the
approximation accuracy placed on the training data points.
Both C andε are user-prescribed parameters.

Finally, by introducing Lagrange multipliers (ai, ai
/) and

exploiting the optimality constraints, the decision function
given by eq 4 has the following explicit form:

Based on the Karush-Kuhn-Tucker (KKT) conditions of
quadratic programming, only a number of coefficients (ai -
ai
/) will assume nonzero values, and the data points associ-

ated with them could be referred to as support vectors. In
eq 7, the kernel functionK corresponds toK(x,xi) ) Φ(x)‚
Φ(xi). One has several possibilities for the choice of this
kernel function, including linear, polynomial, splines, and
radial basis function. The elegance of using the kernel
function lies in the fact that one can deal with feature spaces
of arbitrary dimensionality without having to compute the
map Φ(x) explicitly. In SVR, a commonly used kernel
function is the Gaussian Radial Basis function.

The overall performances of RBFNNs and SVM were
evaluated in terms of the root-mean-square (RMS) error
which was defined as below:

To compare the predicted mobility with the corresponding
experimental value, the absolute average relative deviation
(AARD) as an accuracy criterion was computed by

In eqs 8 and 9,yk is the desired output,yk is the actual
output of the model, andns is the number of compounds in
analyzed set.

3.4. RBFNNs and SVM Implementation and Computa-
tion Environment. All calculation programs implementing
RBFNNs were written in M-file based on the basis MAT-
LAB script for RBFNNs. All calculation programs imple-
menting SVM were written in R-file based on the R script
for SVM.32 The scripts were compiled using an R 1.7.1
compiler running operating system on a Pentium IV PC with
256M RAM.

4. RESULTS AND DISCUSSION

4.1. Results of MLR. About 170 descriptors were
calculated by the CODESSA program. After the correlation
analysis of the descriptors, the pool of descriptors was

reduced to 102. The stepwise regression routine was used
to develop the linear model for the prediction of the absolute
mobilities of carboxylic acids in capillary electrophoresis
using calculated structural descriptors. The best linear model
contained 4 molecular descriptors. The regression coefficients
of the descriptors and their physical-chemical meaning were
listed in Table 2, and the corresponding values were listed
in Table 3, respectively. The predicted results were given in
Table 1. This model produced aRMS error of 1.296
electrophoretic mobility units for the training set, 2.057 for
the test set, and 1.530 for the whole set, the corresponding
correlation coefficients (R) were 0.952, 0.951, and 0.947,
and the correspondingAARDwere 3.140, 4.758, and 3.558%,
respectively. Figure 1 showed these predicted versus experi-
mental electrophoretic mobilities.

4.2. Results of RBFNNs.After the establishment of a
linear model, RBFNNs were used to develop a nonlinear
model based on the same subset of descriptors. Such
RBFNNs can be designed as 4- nh - 1 net to indicate the
number of units in the input, the hidden layer, and the output
layer, respectively. The optimal width was selected by
experimenting with a number of trials and selecting the one
most favored by the model selection criterion: a width<1
gives poor prediction ability, and varying the width indicates
the width has little effect on the performance of RBFNNs,
if the width exceeds 3. So we selected the optimum width
from 1 to 3, every 0.1. Each minimum error on LOO cross-
validation was plotted versus the width (Figure 2) and the
minimum was chosen as the optimal conditions. In this case
r ) 1.9 andnh ) 19.

Through the above process, the best number of hidden
layer units and the optimum width were selected as 19 and
1.9, respectively. From the best network, the inputs in the
test set were presented with it, and the results with RBFNNs
were obtained. They were shown in Table 1 and Figure 3.
The network gave anRMSerror of 0.918 for the training
set, 2.206 for the test set, and 1.373 electrophoretic mobility
unit for the whole set, the corresponding correlation coef-
ficients (R) were 0.976, 0.951, and 0.960, and the corre-
spondingAARDwere 2.240, 5.467, and 3.075%, respectively.

4.3. Results of SVM. 4.3.1. Selection of the Kernel
Function and Parameters of SVM.After the establishment
of models by MLR and RBFNNs, the support vector
machines were used to develop an accurate nonlinear model
based on the same subset of descriptors.

Similar to other multivariate statistical models, the per-
formances of SVM for regression depend on the combination
of several parameters. They are capacity parameterC, ε of
ε-insensitive loss function, the kernel typeK, and its
corresponding parameters.C is a regularization parameter
that controls the tradeoff between maximizing the margin
and minimizing the training error. IfC is too small, then

Table 2. Descriptors, Coefficients, Standard Error, and T-Values for the Linear Modela

descriptor chemical meaning coefficient SE beta t-test sig

intercept intercept 28.929 4.551 6.357 0
ABIC0 average bonding information content (order 0) 6.838 1.882 0.301 3.633 0.001
ZXS/ZXR ZX shadow/ZX rectangle 18.902 4.606 0.281 4.104 0
CHDS count of H-donors sites [Zefirov’s PC] -0.330 0.091 -0.207 -3.606 0.001
REF refractivity -0.383 0.032 -0.764 -11.829 0

a R ) 0.952; Standard error of the estimate) 1.379;RMS) 1.296;n ) 43; F ) 91.290.

f(x,ai, ai
/) ) ∑(ai - ai

/)K(x,xi) + b (7)

RMS) x∑i)1
ns(yk - ŷk)

2

ns
(8)

AARD)
100

ns

∑
i)1

ns (|yk - ŷk|
ŷk

) (9)
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insufficient stress will be placed on fitting the training data.
If C is too large, then the algorithm will overfit the training
data. To make the learning process stable, a large value
should be set up forC.

The kernel type is another important parameter. For
regression tasks, the Gaussian kernel is commonly used. The
form of the Gaussian function is represented as follows

whereγ is a constant, the parameter of the kernel, andu
andV are two independent variables.γ controls the amplitude
of the Gaussian function and, therefore, controls the gener-
alization ability of SVM. EachRMSerror on LOO cross-
validation was plotted versusγ (Figure 4), and the minimum

was chosen as the optimal conditions. In this caseγ )
0.0004.

The optimal value forε depends on the type of noise
present in the data, which is usually unknown. Even if
enough knowledge of the noise is available to select an
optimal value forε, there is the practical consideration of
the number of resulting support vectors.ε-insensitivity
prevents the entire training set meeting boundary conditions
and so allows for the possibility of sparsity in the dual
formulation’s solution. So, choosing the appropriate value
of ε is critical from theory. To find an optimalε, theRMS
error on LOO cross-validation on differentε was calculated.
The curve ofRMSerror versus the epsilon (ε) was shown in
Figure 5. The optimalε was found as 0.12.

The last important parameter is regularization parameter
C, which effect on theRMSwas shown in Figure 6. From
Figure 6, the optimalC was found as 100.

Table 3. Values of the 4 Descriptors

no. ABIC0 ZXS/ ZXR CHDS REF no. ABIC0 ZXS/ ZXR CHDS REF

1 0.8569 0.6994 3 12.65 30 0.4666 0.8321 1 40.44
2 0.6689 0.7722 5 30.43 31 0.8569 0.7616 3 25.73
3 0.4000 0.8070 1 32.82 32 0.4194 0.8078 2 34.51
4 0.4250 0.8220 4 37.90 33 0.6694 0.6943 4 17.09
5 0.4344 0.7517 3 38.61 34 0.8905 0.7075 2 22.60
6 0.4344 0.8110 3 37.52 35 0.4051 0.7845 7 42.90
7 0.4876 0.6708 8 23.36 36 0.4666 0.8401 1 37.62
8 0.8569 0.7412 3 20.38 37 0.4847 0.8004 9 34.44
9 0.4888 0.7897 1 45.46 38 0.8569 0.6369 1 28.16
10 0.4194 0.8187 2 34.51 39 0.3694 0.7869 10 51.66
11 0.4400 0.7665 5 40.97 40 0.4847 0.8129 9 39.78
12 0.8569 0.7317 3 17.40 41 0.5578 0.6885 7 29.40
13 0.4666 0.8228 1 33.03 42 0.4256 0.8126 3 36.20
14 0.6694 0.6848 4 17.99 43 0.9796 0.6593 1 33.78
15 0.5336 0.7893 1 43.94 44 0.4184 0.7856 4 37.86
16 0.8569 0.6369 1 28.16 45 0.7544 0.8043 2 13.51
17 0.6863 0.6893 4 14.35 46 0.8569 0.7445 1 36.58
18 0.4817 0.7786 1 39.14 47 0.5663 0.7237 6 19.05
19 0.4912 0.8089 1 30.60 48 0.6689 0.6615 5 24.87
20 0.5336 0.7838 1 46.76 49 0.6689 0.7550 5 22.10
21 0.4201 0.7347 10 35.79 50 0.7130 0.6339 4 32.45
22 0.5578 0.7886 7 29.83 51 0.5578 0.8040 7 35.18
23 0.9796 0.6596 1 28.94 52 0.5638 0.6900 7 27.85
24 0.3873 0.6276 8 47.01 53 0.4051 0.7494 6 42.46
25 0.8569 0.6647 1 13.65 54 0.3873 0.7929 10 47.94
26 0.3492 0.8380 3 43.06 55 0.4256 0.8220 3 36.20
27 0.4344 0.7424 4 39.28 56 0.4203 0.7745 6 44.03
28 0.6421 0.7475 4 24.95 57 0.4847 0.7986 9 31.45
29 0.4009 0.7493 12 38.27 58 0.4184 0.7577 3 37.37

Figure 1. Predicted vs experimental electrophoretic mobilities
(MLR).

exp(-γ* |u - V|2) (10)

Figure 2. The width of RBFNNs vsRMSerror on LOO cross-
validation.
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4.3.2. The Predicted Results of SVM.From the above
discussion, theγ, ε, andC were fixed to 0.0004, 0.12, and
100, respectively, and the support vector number of the SVM
model was 28. From the optimal model, the inputs in the
test set were presented with it, and the results with SVM
were obtained. They were shown in Table 1 and Figure 7.
The model gave anRMSerror of 0.859 for the training set,
0.917 for the test set, and 0.888 for the whole set, the

corresponding correlation coefficients (R) were 0.980, 0.993,
and 0.984, and the correspondingAARDwere 2.235, 2.202,
and 2.227%, respectively.

4.4. Discussion of the Input Parameters and the Results.
By interpreting the descriptors in the regression model, it is
possible to gain some insight into factors that are likely to
govern the absolute mobilities of the carboxylic acids in
capillary electrophoresis. Of the four descriptors, ABIC0 is
topological, ZXS/ZXR is geometrical, CHDS is electrostatic,
and REF is physicochemical descriptor. These descriptors
encoded different aspects of the molecular structure. As
mentioned in the Introduction two fundamental frictional
factors are found to be important in the electrophoretic
mobility of a solute in capillary electrophoresis. One is the
hydrodynamic friction factor, which is related to the molec-
ular size and/or mass of solute, and the other is the dielectric
friction factor, which is related to the charge distribution
within the solute. The descriptors in the present model can
account for these friction factors. The topological descriptor
(ABIC0), which encode the size, shape, and degree of
branching in the compound, gives some information about
the hydrodynamic friction factors. The geometrical descriptor
(ZXS/ZXR) describes the size of the molecules and also has

Figure 3. Predicted vs experimental electrophoretic mobilities
(RBFNNs).

Figure 4. The gamma vsRMS error on LOO cross-validation
(C)100, ε)0.1)

Figure 5. The epsilon vsRMS error on LOO cross-validation
(C)100, γ)0.0004).

Figure 6. The cost (C) vs RMSerror on LOO cross-validation
(γ)0.0004,ε)0.12).

Figure 7. Predicted vs experimental electrophoretic mobilities
(SVM).
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some correlation with the hydrodynamic friction. In organic
acid, the charge distribution of the carboxylate anion
significantly influences the acid dissociation constant (pKa).
Hence thepKa value is an effective measure of the charge
distribution within a fully deprotonated carboxylate ion, so
each parameter that affected thepKa value can influence the
electrophoretic mobility of the solute. The inclusion of
electrostatic descriptors, CHDS, can influence thepKa values
of solutes and can affect the dielectric friction term and play
important roles in the migration behavior of ions. Refractivity
is a combined measure of the size and polarizability of a
molecule and can explain the hydrodynamic and dielectric
friction contribution in determination of the electrophoretic
mobility.33 According to the beta values (Table 2), the more
relevant descriptor is the refractivity of the molecule.

Analysis of the results obtained indicated that the models
we proposed correctly represent the structure-mobility rela-
tionships of carboxylic acids and that the molecular descrip-
tors calculated solely from structures can represent the
structural features of the compounds responsible for their
absolute mobility in capillary electrophoresis. Moreover, the
performance of SVM is much better than MLR and RBFNNs
models. The root cause that SVM can obtain the best results
is that SVM adopts the Structural Risk Minimization
principle.

5. CONCLUSION

An attempt to summarize the calculation/prediction of
electrophoretic mobility in capillary electrophoresis was
made to illustrate how the various theoretical models actually
reflect the experimental facts in the past 50 years. Then,
SVM, as a novel type of learning machine, for the first time,
were used to develop a QSMR model for the prediction of
absolute mobility of 58 carboxylic acids in capillary elec-
trophoresis based on descriptors calculated from the molec-
ular structure alone. MLR and RBFNNs were also utilized
to establish quantitative linear and nonlinear relationships
to compare with the results obtained by SVM. Very
satisfactory results were obtained with the proposed method.
The models proposed could identify and give some insight
into factors that are likely to govern the absolute mobilities
of the carboxylic acids in capillary electrophoresis. Addition-
ally, nonlinear models using SVM based on these same sets
of descriptors produced even better models with a good
predictive ability than the two other MLR and RBFNNs
models. This study of the QSMR model shows that SVM
are very promising tools in the prediction of electrophoretic
mobility and exhibit a high speed of leaning when compared
with RBFNNs. The training procedure is also simple when
using SVM because there are fewer parameters having to
be optimized, and only support vectors (only a fraction of
all data) are used in the generalization process. Besides, SVM
exhibit the better whole performance due to embodying the
Structural Risk Minimization principle and some advantages
over the other techniques of converging to the global
optimum and not to a local optimum. Furthermore, the
proposed approach can also be extended to other QSPR
investigations.
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