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In this article we report about a successful application of modern machine learning technology, namely
Support Vector Machines, to the problem of assessing the ‘drug-likeness’ of a chemical from a given set of
descriptors of the substance. We were able to drastically improve the recent result by Byvatov et al. (2003)
on this task and achieved an error rate of about 7% on unseen compounds using Support Vector Machines.
We see a very high potential of such machine learning techniques for a variety of computational chemistry
problems that occur in the drug discovery and drug design process.

1. INTRODUCTION

Neural networks are a common working tool for problem
solving in computational chemistry (e.g. refs 1-3) and other
industries (e.g. ref 4). Recent advances in machine learning,
so-called kernel-based learning methods, like Support Vector
Machines5-8 (SVM), or the more general mathematical
programming machines9,10 have already demonstrated their
superiority over neural network approaches for a wide range
of applications outside chemistry (cf. refs 7, 11, and 8 and
references therein).

Recent work by Byvatov et al.12 considered a large
benchmark data set containing atomic descriptors of com-
pounds that are either drugs (WDI) or nondrugs (ACD).
Byvatov et al. proposed a Support Vector Machine (SVM)
based method that correctly classifies 80% (error rate 20%)
of the compounds based on Ghose-Crippen (GC) descriptors
(counting occurrences of atoms according to the 120 types
defined in ref 13). In their comparison they find that SVMs
are only slightly (and from a statistical point this seems not
significantly) better than a rather simple artificial neural
network (20.75% error rate).

Independently of Byvatov et al.12 and simultaneously we
analyzed the benchmark data using not only SVMs but also
other modern classifiers. Our results are significantly better
than those reported in ref 12. We show that (a) using the
same amount of training data and after appropriate prepro-
cessing the error rate can be reduced to 18.1% and (b) using
more training examples we achieve a surprisingly low error
rate of 10.2%. This shows that careful model selection
combined with novel large-scale SVM algorithms can indeed
help in making better predictions.

Byvatov et al. considered the data set that has also been
used in ref 14. However in the experiments by Byvatov et
al., the WDI to ACD ratio has been skewed from the original
1:4.4 to almost 1:1. Since it is to be expected that the number
of potential compounds in the ACD is much larger than the
ones in the WDI, it seems more reasonable to stay with the
given empirical priors.

We therefore generated a new data set obeying the
empirical class priors and compared different methods on
this new data set. For this more realistic data set we show
in simulations that the best method achieves error rates at
around 7% which we additionally confirmed in a blind-test
experiment. We therefore were able to reduce the error rate
for the task of classifying drugs (WDI) vs nondrugs (ACD)
by more than 60% compared to Byvatov et al.12 and
Sadowski and Kubinyi.14

2. METHODS

Machine learning algorithms such as neural networks or
SVMs use the statistical differences in features to infer the
implicit properties of the classification problem. As most
existing algorithms differ in their implicit assumptions, and
since there is no single best algorithm for all problems, it is
important to test a variety of different techniques on a new
problem.

2.1. Model Selection.Typically, machine learning algo-
rithms possess one or two different hyperparameters (e.g.
kernel width, number of neighbors, etc.) that need to be
selected carefully in order to yield a good generalization
performance, i.e., a low error rate on unseen data. This so-
called model selection process is an art and mandatory for
achieving excellent results. Typically cross-validation tech-
niques are applied here, where an appropriate range of the
hyperparameters is scanned (e.g. ref 7). A proper model
selection is the key to a successful application of modern
learning techniques; however, at the same time it is typically
computationally very expensive.
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For the first part of the experiments (Section 4.1) we
replicated the model selection procedure used in ref 12 as
closely as possible in order to guarantee a fair comparison.
We first split the data set into a training and a test set. Then
we used 4-fold cross-validation to estimate the generalization
error and selected the model with the lowest validation error.
Finally we measured the accuracy of the selected method
on the test set. For the second part (Section 4.2) we opted
for a simpler and less computational demanding model
selection scheme and split the data set into three parts:
training, validation and test set. The validation set is used
for parameter tuning and the test set for the final evalua-
tion.

2.2. Learning Techniques.We investigated methods that
range from conventional decision trees,15 Fishers Linear
Discriminant16 and Nearest Neighbor methods17 to advanced
learning techniques such as SVMs5,7,8 and linear program-
ming machines.18,19 Contrary to Byvatov et al.12 we solely
base our study on a Ghose-Crippen parametrization of the
chemicals.13 However, before feeding it into any of the
learning machines we preprocess the GC descriptors by
adding one and then computing the log. This transformation
helped to increase the numerical stability of large scale SVM
optimization.

In the sequel we outline the different learning techniques
that we used in the comparison:

Support Vector Machineswork by mapping the training
data into a feature space by the aid of a so-called kernel
function and then separating the data using alarge margin
hyperplane. Intuitively, the kernel computes a similarity
between two given examples. Most commonly used kernel
functions areRBF kernels

andpolynomial kernels

where one often employs normalization for the latter:

In our experiments we use SVMs with RBF kernels and
normalized polynomial kernels. More details on SVMs have
been provided in the literature numerous times, for instance
in refs 20, 5, 7, and 8.

Linear Programming Machines are similar to SVMs but
do not use kernels and compute a hyperplane with large
margin using a linear (1-norm) distance metric.18,19To allow
nonlinear classifications, one may nonlinearly map the
examples into another feature space. In our experiments we
used quadratic features (all first- and second-order monomials
of the 120 input features). Solving the resulting optimization
problems can be done very efficiently.

Linear Discriminant Analysis computes a hyperplane in
the input space that minimizes the within-class variance and
maximizes the between class distance.16 It can be efficiently
computed in the linear case even with large data sets.
Nonlinear extensions by using kernels exist,10 however, make

it difficult to apply it to problems with large training sets.
We therefore only used the linear version.

Bagged K-Nearest Neighbor Classifiers.We use the
standardK-Nearest Neighbor algorithm as described in ref
17 together with Bagging:21 we randomly drawN subsets
(with replacement) of the training set and then apply the
K-Nearest Neighbor algorithm to it. TheN different predic-
tions are averaged. The use of Bagging has the advantage
that it usually improves the performance and leads to real-
valued outputs.N was chosen to be 30 throughout our
experiments.

Bagged Decision Trees.We use the C4.5 decision tree
implementation15 with Bagging as above.

3. SETUP

We prepare three different data sets based upon the WDI22

and ACD23 databases used in ref 14:
(1) From the WDI and ACD data set used in ref 14, Ghose

Crippen (GC) parameters have been extracted (J. Sadowski
kindly provided the complete GC descriptor matrices com-
puted for all 207,001 compounds using the 1998 versions
of WDI and ACD.), and 10% of the examples have been
kept separated for blind testing (cf. Section 4.3). The
remaining 90% (186,301 examples) were split into training
(166,301 examples), validation (10,000 examples) and test
(10,000 examples) sets.

(2) A subset of 9208 molecules of data set (1), 4998 of
them drugs and 4210 nondrugs, are used as data set (2) (as
in ref 12). As Byvatov et al. did not make this smaller set
publicly available, 9208 examples are chosen randomly from
data set (1) which follow the same prior as in ref 12, i.e.,
the WDI to ACD ratio becomes almost 1:1 instead of 1:4.4.
We perform 4-fold cross-validation and thus in each fold
use 5250 of the examples for training and 1750 for validation,
while the test error was measured on 2208 samples which
were kept separate.

Data set (2) and a version of data set (1) following the
same WDI to ACD ratio as (2) were used for direct
comparison with ref 12 (Section 4.1). We use data set (1)
for our performance evaluation of different methods (Section
4.2) and the final blind test evaluation (Section 4.3).

4. RESULTS

In the following sections we present our experimental
results on the aforementioned data sets. In particular we will
show in Section 4.1 that the results presented in ref 12 were
not optimal and that careful model selection and preprocess-
ing leads to improvements. In Section 4.2 we show new
results on a larger study avoiding the problems present in
ref 12. Finally, in Section 4.3 we present results on a so-
called blind-test illustrating the excellent expected perfor-
mance of our system in the real-world.

4.1. Comparison with Prior Results. First we present
our results on the smaller data set (2) as described before-
a randomlychosen reduced data set with 9208 chemicals
described by 120 Ghose Crippen features (cf. Table 1). As
motivated before this data set resembles very closely the one
used in refs 14 and 12, and we compare our results to these
findings, especially the latter.

Byvatov et al.12 performed model selection for SVMs over
the regularization constantC and a scaling factors in the

k(x, x′) ) exp(||x - x′||2
σ2 )

k(x, x′) ) (x·x′)d

k̃(x, x′) )
k(x, x′)

xk(x, x)k(x′, x′)
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inhomogeneous polynomial kernel of fixed degree 5, i.e.
k(x, y) ) ((x‚y)s + 1)5. We used homogeneous normalized
polynomial and rbf kernels and tuned the degreed of the
kernel (rbf-kernel widthσ2 respectively)and the regulariza-
tion constantC of the SVM as outlined in Section 2.2. Our
SVMs yields an error rate of 18.7% (RBF-SVM: 18.1%),
performing slightly better than the 20.0% presented in ref
12 - a relative reduction of the error rate of 6% (RBF-
SVM: 9%). It also turned out that a higher polynomial degree
of d ) 6 was optimal, contrary to the fixed value ofd ) 5.

Table 2 shows the averages and standard deviations of
the test errors of the algorithms trained on the four different
sets generated in cross-validation (each exluding one-quarter
of the data, leading to 5250 examples). Based on the cross-
validation errors (not shown) we tuned the model parameters.
Usually one retrains the algorithm on all available training
data (i.e. 7000). However, this has not been done in ref 12,
and we chose to follow the same strategy. Note however,
that if we retrain for instance the RBF SVM on all 7000
available training examples, it leads to a further improvement
(17.3%).

For comparison we also used the same data set without
the log-transformation (as in ref 12). In this case the resulting
error rates were almost identical with the SVM result by
Byvatov et al. (cf. Table 2). We originally introduced the
log-transformation to increase the numerical stability of the
SVM optimization (Note that atom counts can be quite big
and raising it to the power of for instance five can lead to
quite large numbers.). However, it turned out that the
transformation actually leads to a considerable improvement.
Moreover, while the optimal degree for the polynomial kernel
with log-transformation isd ) 6, it is only d ) 2 for the
unprocessed data. The log-transformation seems to represent
the data at more appropriate scales and allows better
generalization.

Moreover, in ref 12 it was shown that the error rate
“leveled off” between 2000 and 3000 examples. Since the

number of available data is much larger than just 9,208
samples, we repeated the model selection with a much larger
training set (1) (cf. Table 1). To keep results comparable
we also skewed the class priors in the validation and testing
sets to be roughly equal instead of being close to the original
ratio and estimated the SVMs bias term on this validation
set (leading to fewer validation and test examples- 3454
each, instead of 10,000). Using more of the abundantly
available training data, one obtains considerable lower error
rates. Using 166,301 training examples we achieved an error
of 10.8% for the SVM using a polynomial kernel and for
the RBF-SVM 10.6% (cf. Table 2)- a relative improve-
ment of 46% (RBF-SVM: 47%). This finding clearly
contradicts the interpretation of a plateau in ref 12.

4.2. Evaluation.As we have already seen in the previous
Section, the rate of 20% error as presented in ref 12 can
significantly be improved upon by performing a more careful
model selection.

Note furthermore that it seems unclear why it should make
sense for a practical application to change the class priors
to be roughly equal. Since it is to be expected that the number
of potential compounds in the ACD is much larger than the
ones in the WDI it seems more reasonable to stay with the
given empirical priors. The results we present in the
following are hence all based on the data set (1) described
before (cf. Table 1), i.e., the data for training, validation and
testing have the original class prior of 1:4.4.

Yet, the 120 GC-parameters do not sufficiently describe
the compounds as for the 34,549 drugs there are only 32,932
unique descriptors. Similarly for the 151,752 nondrugs there
are only 131,464 unique descriptors. Even worse, there are
also 824 descriptors which code for both drugandnondrug
resulting in an WDI/ACD overlap of 2368 compounds.
However intuitively, training with “inconsistent” data can
be understood as some extra regularization by noise.24

The results on data set (1) reported in Table 3 vary
considerably, with error rates of 13.6% for the Linear
Programming Machine, which is our worst result, but is still
a relative improvement of 24% over the result reported in
ref 14 and of 31% over the result from ref 12 (note, however,
that the class priors are different in ref 12). Our best result
is 6.8% error from a RBF-SVM of kernel widthσ2 ) 5, a
relative improvement of 62% and 66% compared to the errors
reported in refs 14 and 12, respectively.

Table 1. An Overview of the Two Data Sets Used

data set description

1 data set derived from ACD/WDI with 207,001 compounds;
only 90%, i.e., 151,752 ACDs and 34,549 WDIs
(186,301) were available

2 9208 randomly chosen examples following the same prior
as in (1); for comparison with ref 12

Table 2. Estimate of Expected Test Errors on Classifying WDI
against ACD Compounds for SVMs Only Using Ghose-Crippen
Parametersa

method training examples accuracy (%)

ANN-BYV (N.P.) 5250 20.8( 0.7
SVM-BYV (N.P.) 5250 20.0( 0.1
SVM-POLY (N.P.) 5250 20.1( 0.5
SVM-RBF (N.P.) 5250 20.0( 0.2
SVM-POLY 5250 18.7( 0.5
SVM-RBF 5250 18.1( 0.6
SVM-POLY large 166,301 10.8
SVM-RBF large 166,301 10.2

a The SVMs were trained on 5250 examples (Byvatov et al.) and
166,301 examples (SVM large) and tested on the 2208 remaining
examples (Byvatov et al.) and 3454 examples (SVM large), respectively.
In the upper part of the table shows results obtained on non preprocessed
(N.P.) data for comparison. The ANN-BYV and SVM-BYV results
were taken from ref 12.

Table 3. Estimate of Expected Test Errors on WDI against ACD
Data for Various Machines Using Only Ghose-Crippen Parametersa

method

total
error
(%)

AUC
(%)

WDI found at
83% ACD
found (%)

Sadowski and Kubinyi (1998) 18.1 n/a 77
LPM linear 13.7 86.2 76.9
Fishers Discrim. 13.6 86.9 77.6
LPM quadratic 9.3 91.9 86.0
KNN 8.2 93.4 90.9
C4.5 8.2 94.7 92.0
SVM-POLY 7.0 95.0 91.4
SVM-RBF 6.8 95.2 91.7

a Machines were trained on 166,301 examples from data set (1).
Parameter tuning was performed on 10,000 examples, and it was tested
on the remaining 10,000 examples. For comparison to Sadowksi and
Kubinyi (1998) also the true positive rate of WDI at a false negative
rate of 17% for ACD (i.e. 83% ACD are found) is shown. The AUC
denotes the area under the ROC Curve.25
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It seems noteworthy that the well-established techniques
such as C4.5 decision trees or even k-nearest neighbor
achieved very good results. We noticed quite large improve-
ments for these techniques when used with Bagging.

Since for practical applications such as e.g. high through-
put screening the minimal possible error rate is much less
important than the ratio of false positive predictions (i.e.
nondrug like compounds that need to be tested in vain) to
true positives (i.e. compounds that are at least potential
candidates) we show in Figure 1, the Receiver Operating
Characteristic (ROC) Curve for each of the classifiers. To
obtain such a curve one changes an internal parameter (the
decision threshold) and measures the number of false
positives and true positives (on the test set). In ref 14 a true
positive rate of 77% is reported at a false positive rate of
83% (marked by a ‘x’ in Figure 1). Support Vector Machines
with polynomial and RBF kernel obtain true positive rates
of 91.4% and 91.7% at the same false positive rate,
respectively. This is a relative improvement of the false
negative rate of 63% (RBF-SVM: 64%) (cf. Table 3 for
the other methods).

An interesting observation is thatd ) 11 is the optimal
degree for polynomial kernels. This finding is an indication
for a highly fragmented classification space that requires such
a highly complex learning machine and also a large number
of examples for learning.

4.3. Blind Test. After careful model selection and the
comparison of the methods one can be confident that the
chosen learning machines also perform well on unseen data.
However to provide a fully realistic practice test, 10% of
the data points were retained by the Schering group as
described before in Section 3 and thus were from the
beginning unavailable for the training and model selection
procedure done by Fraunhofer’s IDA group. After finishing
the training and model selection procedure this truly unseen
data was suppliedwithout a labelto the Fraunhofer IDA
group, i.e., in this manner a blind-test was executed. Using
the best (most trusted in) models for data set (1), i.e., a

polynomial SVM using a polynomial kernel of degree 11
and the RBF-SVM with width σ2 ) 5, IDA computed the
labels and sent the results to the Schering group, where the
correct labels were matched with the inferred ones. The blind
test result yielded an error of 7.1% for the polynomial SVM
and 6.9% for the RBF-SVM in good agreement with our
predictions of the generalization error.

5. CONCLUSION

We would like to conclude by stating that machine learning
technology where a careful model selection procedure is used
can improve dramatically upon existing results and ultimately
provide more powerful software tools for computational
chemistry. Note furthermore that the current results were
achieved under a realistic blind test scenario, unlike most
existing studies.

It is interesting to observe that among the best classifiers
- an SVM of polynomial degreed ) 11 - for the drug-
likeness analysis allows for a very complex decision surface.
This indicates that the Ghose-Crippen features make the
problem rather local and fine granular. We conjecture that
more powerful chemical descriptors could ultimately allow
classification with simpler global models that would at the
same time be easier to interpret. Future research will follow
this idea.
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