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Support vector machines (SVMs) were used to develop QSAR models that correlate molecular structures to
their toxicity and bioactivities. The performance and predictive ability of SVM are investigated and compared
with other methods such as multiple linear regression and radial basis function neural network methods. In
the present study, two different data sets were evaluated. The first one involves an application of SVM to
the development of a QSAR model for the prediction of toxicities of 153 phenols, and the second investigation
deals with the QSAR model between the structures and the activities of a set of 85 cyclooxygenase 2 (COX-
2) inhibitors. For each application, the molecular structures were described using either the physicochemical
parameters or molecular descriptors. In both studied cases, the predictive ability of the SVM model is
comparable or superior to those obtained by MLR and RBFNN. The results indicate that SVM can be used
as an alternative powerful modeling tool for QSAR studies.

INTRODUCTION

Quantitative structure property/activity relationship (QSPR/
QSAR) represents an attempt to correlate structural descrip-
tors of compounds with their physicochemical properties and
biological activities. It is now widely used for the prediction
of physicochemical properties and biological activities in
chemical, environmental, and pharmaceutical areas.1,2 The
main steps involved in this method include the following:
data collection, molecular descriptor selection and obtaining,
correlation model development, and finally model evaluation.
The main problems encountered in this kind of research are
still the description of the molecular structure using ap-
propriate molecular descriptors and selection of suitable
modeling methods. At present, many types of molecular
descriptors such as topological indices and quantum chemical
parameters have been proposed to describe the structural
features of molecules.3-5 Many different chemometrics
methods, such as multiple linear regression (MLR), partial
least squares regression (PLS), different types of artificial
neural networks (ANN), genetic algorithms (GAs), and
support vector machine (SVM) can be employed to derive
correlation models between the molecular structures and
properties.

ANNs are useful tools in QSAR/QSPR studies, and
particularly in cases where it is difficult to specify an exact
mathematical model for describing a given structure-
property relationship. Most of these works used neural
networks based on the back-propagation learning algorithm,
which has some disadvantages such as local minimum, slow
convergence, time-consuming nonlinear iterative optimiza-
tion, difficulty in explicit optimum network configuration,

etc. In contrast, the parameters of radial basis function neural
networks (RBFNNs) can be adjusted by fast linear methods.
It has advantages of short training times and is guaranteed
to reach the global minimum of error surface during training.
The optimization of its topology and learning parameters are
easy to be implemented.6

As a new and powerful modeling tool, support vector
machine (SVM) has gained much interest in pattern recogni-
tion and function approximation applications recently. In
bioinformatics, SVMs have been successfully used to solve
classification and correlation problems, such as cancer
diagnosis,7-10 identification of HIV protease cleavage sites,11

protein class prediction,12 etc. SVMs have also been applied
in chemistry, for example, the prediction of retention index
of protein, and other QSAR studies.13-21 Compared with
traditional regression and neural networks methods, SVMs
have some advantages, including global optimum, good
generalization ability, simple implementation, few free
parameters, and dimensional independence.22-24 The flex-
ibility in classification and ability to approximate continuous
function make SVMs very suitable for QSAR and QSPR
studies.

In the present paper, we present the applications of support
vector regression (SVR) for correlation problems in QSAR
and compare its performance with MLR and RBFNN
methods. Two data sets were selected for this study, the
toxicities of 153 phenols and the activities of 85 cyclooxy-
genase 2 (COX-2) inhibitors.

MATERIALS AND METHODS

Radial Basis Function Neural Networks.RBFNNs can
be described as a three-layer feed-forward structure. RBFNNs
consist of three layers: input layer, hidden layer, and output
layer. The input layer does not process the information; it
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only distributes the input vectors to the hidden layer. The
hidden layer of RBFNNs consists of a number of RBF units
(nh) and bias (bk). Each hidden layer unit represents a single
radial basis function, with associated center position and
width. Each neuron on the hidden layer employs a radial
basis function as a nonlinear transfer function to operate on
the input data. The most often used RBF is a Gaussian
function that is characterized by a center (cj) and a width
(rj). The RBF functions by measuring the Euclidean distance
between the input vector (x) and the radial basis function
center (cj) and performs the nonlinear transformation with
RBF in the hidden layer as given below

in which hj is the notation for the output of thejth RBF
unit. For thejth RBFcj andrj are the center and the width,
respectively. The operation of the output layer is linear,
which is given in eq 2

whereyk is thekth output unit for the input vectorx, wkj is
the weight connection between thekth output unit and the
jth hidden layer unit, andbk is the bias.

From eqs 1 and 2, one can see that designing a RBFNN
involves selecting centers, number of hidden layer units,
width, and weights. There are various ways for selecting the
centers, such as random subset selection,K-means clustering,
orthogonal least squares learning algorithm, RBF-PLS, etc.
The widths of the radial basis function networks can either
be chosen the same for all the units or can be chosen
differently for each units. In this paper, considerations were
limited to the Gaussian functions with a constant width,
which was the same for all units. A forward subset selection
routine25,26 was used to select the centers from training set
samples. The adjustment of the connection weight between
hidden layer and output layer is performed using a least-
squares solution after the selection of centers and width of
radial basis functions.

The overall performance of RBFNs is evaluated in terms
of a root-mean-squared error (RMS) according to the
equation below

whereyk is the desired output andŷk is the actual output of
the network, andns is the number of compounds in analyzed
set.

The performance of RBFNN is determined by the values
of following parameters:

• The numbernh of radial basis functions
• The centercj and the widthrj of each radial basis function
• The connection weightwkj between thejth hidden layer

unit and thekth output unit.
The centers of RBFNN are determined with the forward

subset selection method proposed by Orr.25,26The advantages

of this method over others are simultaneous determination
of the centers and the number of hidden layer units and
without the need to fix the number of hidden layer units in
advance.

The optimal width was determined by experiments with a
number of trials by taking into account the leave-one-out
(LOO) cross-validation error. The one which gives a
minimum LOO cross-validation error is chosen as the optimal
value. After the selection of the centers and number of hidden
layer units, the connection weights can be easily calculated
by linear least-squares methods.

SUPPORT VECTOR REGRESSION METHOD

SVM is a new and very promising classification and
regression method developed by Vapnik et al.22 A detailed
description of the theory of SVM can be referred in several
excellent books and tutorials.23,24 SVMs are originally
developed for classification problems; they can also be
extended to solve nonlinear regression problems by the
introduction ofε-insensitive loss function. In support vector
regression, the inputx is first mapped into a higher
dimensional feature space by the use of a kernel function,
and then a linear model is constructed in this feature space.
The kernel functions often used in SVM include linear,
polynomial, radial basis function, and sigmoid function. The
linear modelf(x,ω) in the feature space is given by

where gj(x), j ) 1,..., m represents a set of nonlinear
transformations, andb is the “bias” term.

The quality of estimation is measured by the loss func-
tionL(y,f(x,ω)). SVM regression uses a new type of loss
function called ε-insensitive loss function proposed by
Vapnik:22

The empirical risk is

SVM regression performs linear regression in the high-
dimension feature space usingε-insensitive loss and, at the
same time, tries to reduce model complexity by minimizing
||ω||2. This can be described by introducing (non-negative)
slack variablesêi,êi

/ i ) 1,...n, to measure the deviation of
training samples outside theε-insensitive zone. Thus SVM
regression is formulated as a minimization of the following
functional:

hj(x) ) exp(- ||x - cj||2/rj
2) (1)

yk(x) ) ∑
j)1

nh

wkjhj(x) + bk (2)

RMS ) x∑
i)1
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2

ns
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f(x,ω) ) ∑
j)1

m

ωjgj(x) + b (4)
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|y - f(x,ω)| - ε otherwise
(5)

Remp(ω) )
1

n
∑
i)1

n

Lε(yi,f(xi,ω)) (6)

min
1

2
||ω||2 + C∑

i)1

n

(êi + êi
/)

s.t.{yi - f(xi,ω) eε + ê* i

f(xi,ω) - yi e ε + êi

êi,êi
/ g0,i ) 1,...,n

(7)

1258 J. Chem. Inf. Comput. Sci., Vol. 44, No. 4, 2004 YAO ET AL.



This optimization problem can be transformed into a
quadratic programming problem,22 and its solution is given
by

wherenSV is the number of Support Vectors (SVs) and the
kernel function

The generalization performance of SVR depends on a good
setting of parameters:C, ε and the kernel type and
corresponding kernel parameters. The selection of the kernel
function and corresponding parameters is very important
because they define the distribution of the training set
samples in the high dimensional feature space. ParameterC
is a regularization constant which determines the trade-off
between the model complexity and the degree to which
deviations larger thanε are tolerated in an optimization
formulation.

Similar with other multivariate statistical models, the
performance of SVM for regression depends on the combi-
nation of several factors. They are kernel function type,
capacity parameterC, ε of ε-insensitive loss function, and
its corresponding parameters. To get the best generalization
ability, some strategies are needed for optimizing these
factors. The selection of the kernel function and correspond-
ing parameters is very important because they implicitly
define the distribution of the training set samples in the high-
dimensional feature space and also the linear model con-
structed in the feature space. There are four possible choices
of kernel functions available in the LibSVM package i.e.,
linear, polynomial, radial basis function, and sigmoid func-
tion. For regression tasks, the radial basis function kernel is
often used because of its effectiveness and speed in training
process. It was also used for all SVR models in our study.
For the RBF kernel, the most important parameter is the
width γ of the radial basis function.C is a regularization
parameter that controls the trade-off between maximizing
the margin and minimizing the training error. IfC is too
small, then insufficient stress will be placed on fitting the
training data. IfC is too large, then the algorithm will overfit
the training data. The optimal value forε depends on the
type of noise present in the data, which is usually unknown.
Even if enough knowledge of the noise is available to select
an optimal value forε, there is the practical consideration
of the number of resulting support vectors.ε-insensitivity
prevents the entire training set meeting boundary conditions
and so allows for the possibility of sparsity in the dual
formulation’s solution. The value ofε can affect the number
of support vectors used to construct the regression function.
The biggerε, the fewer support vectors are selected. To select
the proper values for the regulation parameterC, width and
ε different values for these parameters have been tried; the
set of values with the best leave-one-out cross-validation
performance is selected for further analysis.

All calculation programs implementing RBFNNs were
written in an M-file based on the MATLAB script for radial

basis function neural networks.25,26 All SVM models in our
present study were implemented using the software LibSVM
that is an efficient software for classification and regression
developed by Chih-Chung Chang and Chih-Jen Lin.27,28

DATA SETS

Data Set 1.This data set is extracted from a recent work
reported by Aptula et al.29 The data set includes 221 phenols,
for which toxicity data to the ciliateTetrahymena pyriformis
are available. In our QSAR study, we only use the 153
compounds grouped into polar narcotics. The molecular
descriptors used include hydrophobicity (logKow), acidity
constant (pKa), frontier orbital energies (EhomoandElumo), and
hydrogen bond donor/acceptor counts (Nhdon). The com-
pounds and their corresponding toxicity are shown in Table
1. Three different modeling methods, i.e., MLR, RBFNNs,
and SVM, were used to develop the correlation models.

Data Set 2.This data set is taken from a recent review
contributed by Hansch et al.30 The data set includes 85
COX-2 inhibitors with their activity IC50 values. The
structures of the compounds and their corresponding activi-
ties are listed in Table 2. Two different sets of molecular
descriptors were used to describe the structures of these
compounds: one is from the cited review, and another is
from CODESSA analysis.31,32 The calculation process of
CODESSA is described as below: molecules were drawn
into Hyperchem33 and then preoptimized using MM+
molecular mechanics force field. A more precise optimization
is done with the semiempirical AM1 method in MO-
PAC6.0.34 All calculations are carried out at a restricted
Hartree-Fock level with no configuration interaction. The
molecular structures were optimized using the Polak-Ribiere
algorithm until the root-mean-square gradient reached 0.01.
The resulting geometry was transferred into software CODES-
SA that can calculate constitutional, topological, electrostatic,
and quantum chemical descriptors. After the calculation of
molecular descriptors, the best multilinear regression method
in CODESSA is used to select the structural descriptors that
are correlated with the biological activity. Three different
types of modeling methods, i.e., MLR, RBFNN, and SVM,
were used to the QSAR study. This data set is also used to
stress the importance of the choice of structural descriptors.

RESULTS AND DISCUSSION

Data Set 1. To compare the performance of MLR,
RBFNN and SVM, we first used leave-one-out (LOO) cross-
validation based on all the compounds to all these three
modeling methods. The detailed description of the linear
model is listed in Table 3. For RBFNN, the most important
parameter that influences its performance is the width. For
this data set, the optimal value for the width was determined
as 0.937. For the SVM model with the RBF kernel function,
there are three parameters,ε, γ, andC, to be determined.
For this data set, theγ, ε, andC for this data set were fixed
to 4.5, 0.1, and 6, respectively.

The comparison of the leave-one-out cross-validation
results obtained with SVM, RBFNN, and MLR is sum-
marized in Table 4. It is very clear from Table 4 that SVM
and RBFNN models show similar correlation performance
and outperform the MLR model. The performance of SVM
is a bit better than that obtained by RBFNN.

f(x) )∑
i)1

nSV

(Ri - Ri
/)K(xi,x) s.t. 0eRi

/eC,0 eRi eC (8)

K(x,xi) ) ∑
j)1

m

gj(x)gj(xi) (9)
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Table 1. Observed and Calculated Toxicity Values by MLR, RBF, and SVM

no. name toxicity MLR SVM RBFNN

1 1,3,5-trihydroxybenzene -1.26 -1.11 -1.16 -1.25
2 2-(tert)-butyl-4-methylphenol 1.30 1.22 0.97 1.20
3a 2,3,5-trichlorophenol 2.37 1.46 1.67 1.83
4 2,3,5-trimethylphenol 0.36 0.65 0.56 0.54
5 2,3,6-trimethylphenol 0.28 0.67 0.55 0.57
6 2,3-dichlorophenol 1.28 0.81 1.01 1.09
7 2,3-dimethylphenol 0.12 0.31 0.22 0.19
8 2,4,5-trichlorophenol 2.10 1.48 1.66 1.68
9 2,4,6-tribromophenol 2.03 1.72 1.93 2.05

10a 2,4,6-tribromoresorcinol 1.06 2.06 2.10 1.32
11 2,4,6-trichlorophenol 1.41 1.27 1.55 1.62
12 2,4,6-trimethylphenol 0.28 0.69 0.54 0.55
13 2,4,6-tris(dimethylaminomethyl)phenol -0.52 -0.80 -0.73 -0.52
14 2,4-dibromophenol 1.40 1.18 1.35 1.44
15 2,4-dichlorophenol 1.04 0.89 1.07 1.10
16 2,4-difluorophenol 0.60 0.34 0.33 0.36
17a 2,4-dimethylphenol 0.07 0.32 0.22 0.17
18 2,5-dichlorophenol 1.13 0.93 1.12 1.18
19 2,5-dimethylphenol 0.08 0.34 0.29 0.19
20 2,6-di-(tert)-butyl-4-methylphenol 1.80 2.46 1.90 1.75
21 2,6-dichloro-4-fluorophenol 0.80 0.97 1.12 1.15
22 2,6-dichlorophenol 0.74 0.65 0.90 0.96
23 2,6-difluorophenol 0.47 0.14 0.23 0.35
24a 2,6-dimethoxyphenol -0.60 -0.54 -0.58 -0.46
25 2-allylphenol 0.33 0.38 0.33 0.30
26 2-bromo-4-methylphenol 0.60 0.73 0.87 0.80
27 2-bromophenol 0.33 0.44 0.46 0.48
28 2-chloro-4,5-dimethylphenol 0.69 0.88 1.02 0.91
29 2-chloro-5-methylphenol 0.39 0.56 0.72 0.60
30 2-chlorophenol 0.18 0.22 0.36 0.28
31a 2-cyanophenol 0.03 0.07 0.15 0.30
32 2-ethoxyphenol -0.36 -0.08 -0.13 -0.21
33 2-ethylphenol 0.16 0.32 0.29 0.22
34 2-fluorophenol 0.19 -0.03 0.06 0.12
35 2-hydroxy-4,5-dimethylacetophenone 0.71 0.63 0.56 0.50
36 2-hydroxy-4-methoxyacetophenone 0.55 0.38 0.23 0.27
37 2-hydroxy-4-methoxybenzophenone 1.42 1.63 1.52 1.22
38a 2-hydroxy-5-methylacetophenone 0.31 0.74 0.51 0.46
39 2-hydroxyacetophenone 0.08 0.39 0.18 0.18
40 2-hydroxybenzyl alcohol -0.95 -0.88 -0.85 -0.90
41 2-hydroxyethylsalicylate -0.08 0.34 0.24 0.04
42 2-isopropylphenol 0.80 0.58 0.52 0.51
43 2-methoxy-4-propenylphenol 0.75 0.75 0.74 0.49
44 2-methoxyphenol -0.51 -0.42 -0.46 -0.40
45a 2-phenylphenol 1.09 1.02 1.06 0.99
46 2-(tert)-butylphenol 1.30 0.88 0.69 0.86
47 3,4,5-trimethylphenol 0.93 0.59 0.54 0.45
48 3,4-dichlorophenol 1.75 1.06 1.17 1.24
49 3,4-dimethylphenol 0.12 0.28 0.22 0.12
50 3,5-dibromosalicylaldehyde 1.64 1.56 1.58 1.79
51 3,5-dichlorophenol 1.57 1.13 1.26 1.38
52a 3,5-dichlorosalicylaldehyde 1.55 1.32 1.34 1.45
53 3,5-diiododsalicylaldehyde 2.34 1.83 1.88 2.13
54 3,5-dimethoxyphenol -0.09 -0.31 -0.24 -0.32
55 3,5-dimethylphenol 0.11 0.31 0.28 0.20
56 3,5-di-(tert)-butylphenol 1.64 2.00 1.92 2.05
57 3-acetamidophenol -0.16 -0.78 -0.59 -0.49
58 3-bromophenol 1.15 0.62 0.68 0.72
59a 3-chloro-4-fluorophenol 1.13 0.83 0.84 0.86
60 3-chloro-5-methoxyphenol 0.76 0.48 0.59 0.55
61 3-chlorophenol 0.87 0.47 0.54 0.55
62 3-cyanophenol -0.06 0.20 0.05 0.06
63 3-ethoxy-4-hydroxybenzaldehyde 0.02 0.32 0.36 0.32
64 3-ethoxy-4-methoxyphenol -0.30 -0.06 -0.10 -0.22
65 3-ethylphenol 0.23 0.31 0.30 0.22
66a 3-fluorophenol 0.38 0.10 0.14 0.23
67 3-hydroxy-4-methoxybenzyl alcohol -0.99 -1.00 -0.84 -0.69
68 3-hydroxyacetophenone -0.38 0.14 -0.06 -0.08
69 3-hydroxybenzaldehyde 0.09 0.16 -0.06 -0.14
70 3-hydroxybenzoicacid -0.81 0.06 -0.69 -0.83
71 3-hydroxybenzyl alcohol -1.04 -0.83 -0.82 -0.84
72 3-iodophenol 1.12 0.77 0.87 0.91
73a 3-isopropylphenol 0.61 0.56 0.54 0.48
74 3-methoxyphenol -0.33 -0.26 -0.25 -0.31
75 3-phenylphenol 1.35 1.16 1.16 1.22
76 3-(tert)-butylphenol 0.73 0.81 0.80 0.79
77 4-(tert)-octylphenol 2.10 2.01 2.00 2.05
78 4-(tert)-butylphenol 0.91 0.81 0.75 0.76
79 4,6-dichlororesorcinol 0.97 0.40 0.44 1.04
80a 4-allyl-2-methoxyphenol 0.42 0.38 0.32 0.24
81 4-benzyloxyphenol 1.04 1.06 0.96 0.97
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To further compare the performance of the different
methods, the compounds were divided into a training set (131
compounds) and a test set (22 compounds). The training set
was used to adjust the parameters of the models. The test

set was used to evaluate and compare the performance of
different methods. A detailed description of the linear model
based on compounds in the training set is summarized in
Table 5. The predicted versus experimental toxicity based

Table 1 (Continued)

no. name toxicity MLR SVM RBFNN

82 4-bromo-2,6-dichlorophenol 1.78 1.38 1.65 1.76
83 4-bromo-2,6-dimethylphenol 1.17 1.32 1.29 1.53
84 4-bromo-3,5-dimethylphenol 1.27 1.23 1.26 1.44
85 4-bromo-6-chloro-2-cresol 1.28 1.35 1.53 1.63
86 4-bromophenol 0.68 0.61 0.65 0.65
87a 4-butoxyphenol 0.70 0.87 0.77 0.73
88 4-chloro-2-isopropyl-5-methylphenol 1.85 1.75 1.75 2.14
89 4-chloro-2-methylphenol 0.70 0.80 0.82 0.83
90 4-chloro-3,5-dimethylphenol 1.20 1.12 1.16 1.27
91 4-chloro-3-ethylphenol 1.08 1.12 1.18 1.29
92 4-chloro-3-methylphenol 0.80 0.78 0.83 0.82
93 4-chlorophenol 0.55 0.47 0.51 0.46
94a 4-chlororesorcinol 0.13 -0.05 0.00 0.39
95 4-cyanophenol 0.52 0.10 0.10 0.21
96 4-ethoxyphenol 0.01 0.18 0.08 -0.03
97 4-ethylphenol 0.21 0.30 0.29 0.17
98 4-fluorophenol 0.02 0.14 0.09 0.12
99 4-heptyloxyphenol 2.03 1.91 1.80 1.91
100 4-hexyloxyphenol 1.64 1.56 1.45 1.58
101a 4-hexylresorcinol 1.80 1.06 1.38 1.16
102 4-hydroxy-2-methylacetophenone 0.19 0.43 0.19 0.16
103 4-hydroxy-3-methoxyacetophenone -0.12 0.06 -0.18 -0.07
104 4-hydroxy-3-methoxybenzonitrile -0.03 0.08 0.07 0.11
105 4-hydroxy-3-methoxybenzyl alcohol -0.70 -0.92 -0.84 -0.77
106 4-hydroxy-3-methoxybenzylamine -0.97 -0.95 -0.87 -0.68
107 4-hydroxy-3-methoxyphenethyl alcohol -0.18 -0.85 -0.68 -0.63
108a 4-hydroxyacetophenone -0.30 0.02 0.01 0.11
109 4-hydroxybenzaldehyde 0.27 0.02 0.02 0.12
110 4-hydroxybenzamide -0.78 -0.70 -0.85 -0.86
111 4-hydroxybenzoic -1.02 0.02 -0.67 -0.85
112 4-hydroxybenzophenone 1.02 1.19 1.12 1.05
113 4-hydroxybenzylcyanide -0.38 -0.56 -0.57 -0.17
114 4-hydroxyphenethyl alcohol -0.83 -0.86 -0.79 -0.84
115a 4-hydroxyphenylacetic -1.50 -0.69 -1.42 -1.07
116 4-hydroxypropiophenone 0.05 0.39 0.32 0.33
117 4-iodophenol 0.85 0.76 0.83 0.86
118 4-isopropylphenol 0.47 0.57 0.52 0.47
119 4-methoxyphenol -0.14 -0.17 -0.24 -0.29
120 4-phenylphenol 1.39 1.14 1.19 1.08
121 4-propylphenol 0.64 0.66 0.61 0.58
122a 4-(sec)-butylphenol 0.98 0.91 0.85 0.89
123 4-(tert)-pentylphenol 1.23 1.16 1.11 1.22
124 5-bromo-2-hydroxybenzyl alcohol 0.34 0.07 0.10 0.19
125 5-bromovanillin 0.62 0.46 0.52 0.45
126 5-fluoro-2-hydroxyacetophenone 0.04 0.76 0.39 0.00
127 5-methylresorcinol -0.39 -0.33 -0.21 -0.28
128 5-pentylresorcinol 1.31 1.02 1.28 1.14
129a 6-(tert)-butyl-2,4-dimethylphenol 1.16 1.62 1.13 1.47
130 R,R,R-trifluoro-4-cresol 0.62 0.89 0.89 0.98
131 ethyl-3-hydroxybenzoate 0.48 0.80 0.68 0.60
132 ethyl-4-hydroxy-3-methoxyphenylacetate -0.23 -0.05 -0.13 -0.11
133 ethyl-4-hydroxybenzoate 0.57 0.74 0.67 0.68
134 isovanillin -0.14 0.07 -0.09 -0.08
135 3-cresol -0.06 -0.02 -0.05 -0.08
136a methyl-3-hydroxybenzoate -0.05 0.49 0.30 0.20
137 methyl-4-hydroxybenzoate 0.08 0.41 0.29 0.29
138 methyl-4-methoxysalicylate 0.62 0.71 0.64 0.65
139 nonylphenol 2.47 2.73 2.60 2.29
140 2-cresol -0.30 -0.01 -0.06 -0.09
141 2-vanillin 0.38 0.23 0.24 0.22
142 4-cresol -0.18 -0.02 -0.08 -0.12
143a 4-cyclopentylphenol 1.29 0.98 0.98 0.98
144 phenol -0.21 -0.37 -0.36 -0.23
145 resorscinol -0.65 -0.69 -0.61 -0.65
146 salicylaldehyde 0.42 0.29 0.23 0.27
147 salicylaldoxime 0.25 -0.14 0.01 0.41
148 salicylamide -0.24 -0.17 -0.34 -0.47
149 salicylhydrazide 0.18 -0.22 -0.00 0.19
150a salicylhydroxamic acid 0.38 -0.20 -0.33 0.09
151 salicylicacid -0.51 0.34 -0.50 -0.61
152 syringaldehyde 0.17 -0.14 -0.17 0.01
153 vanillin -0.03 -0.01 -0.00 0.07

a Test set compounds.
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on MLR was shown in Table 1 and Figure 1. The same set
of descriptors was also employed to develop the nonlinear
correlation models based on RBFNN and SVM. To obtain

better results, the parameters that influence the performance
of RBFNN and SVM were also optimized. The selection of
the optimal width value for RBFNN was performed by
systemically changing its value in the training step. The value
which gives the best leave-one-out cross-validation result was
used in the model. Figure 2 shows the detail of this selection
process. For this data set, the optimal value was determined
as 0.5. The corresponding number of centers (hidden layer

Table 2. IC50 Activities of Imidazole Derivatives

substituent substituent

no. X Y Z Log(1/IC50) no. X Y Z Log(1/IC50)

1 4-Cl Me CF3 6.96 44 3-Me-4-F Me CF3 6.77
2 4-F Me CF3 7.00 45 3-Me-4-Cl Me CF3 7.05

3a H Me CF3 6.92 46a 3-OMe-4-Cl Me CF3 6.60
4 4-Me Me CF3 6.80 47 3-NMe2-4-Cl Me CF3 5.98
5 4-OMe Me CF3 6.24 48 3,4-OCH2O Me CF3 6.77
6 4-NHMe Me CF3 5.83 49 3,4-F2 Me CF3 6.92
7 4-NMe2 Me CF3 6.16 50 3,4-Me2 Me CF3 6.48
8 4-SMe Me CF3 6.80 51 3-Me-5-Cl Me CF3 7.10
9 4-SO2Me Me CF3 5.24 52 3-Me-5-F Me CF3 6.96

10a 4-Cl NH2 CF3 8.00 53a 3-OMe-5-Cl Me CF3 6.02
11 4-F NH2 CF3 8.00 54 3,5-Cl2 Me CF3 6.77
12 H NH2 CF3 7.40 55 3-F-4-OMe NH2 CF3 7.52
13 4-Me NH2 CF3 7.40 56 3-Cl-4-OMe NH2 CF3 7.70
14 3-Cl Me CF3 7.22 57 3-Br-4-OMe NH2 CF3 7.52
15 3-F Me CF3 6.92 58 3-Cl-4-SMe NH2 CF3 8.00
16 3-Br Me CF3 7.10 59 3-Cl-4-Me NH2 CF3 8.52
17a 3-Me Me CF3 7.22 60a 3-OMe-4-Cl NH2 CF3 7.70
18 3-CF3 Me CF3 6.68 61 3,4-F2 NH2 CF3 7.52
19 3-OMe Me CF3 6.46 62 3-Me-5-Cl NH2 CF3 7.40
20 3-SMe Me CF3 6.46 63 3-Me-5-F NH2 CF3 7.52
21 3-CH2OMe Me CF3 4.17 64 3-OMe-5-F NH2 CF3 6.34
22 3-NMe2 Me CF3 5.50 65 3,5-F2-4-OMe Me CF3 6.77
23 3-NHMe Me CF3 6.04 66 3,5-Cl2-4-OMe Me CF3 6.85
24 3-NH2 Me CF3 5.23 67 3,5-Br2-4-OMe Me CF3 7.05
25a 3-NO2 Me CF3 6.24 68a 3,5-Me2-4-OMe Me CF3 6.14
26 3-Cl NH2 CF3 8.10 69 2,5-Me2-4-OMe Me CF3 4.91
27 3-F NH2 CF3 7.52 70 3,5-Cl2-4-NMe2 Me CF3 6.85
28 3-Br NH2 CF3 8.16 71 3,5-F2-4-OMe NH2 CF3 7.52
29 3-Me NH2 CF3 7.52 72 4-Cl Me Me 6.62
30 2-Cl Me CF3 6.05 73 4-Cl Me CF3 6.96
31 2-F Me CF3 6.40 74 4-Cl Me CHF2 6.22
32a 2-Me Me CF3 6.10 75a 4-Cl Me CH2F 6.39
33 2-OMe Me CF3 4.00 76 4-Cl Me CHO 5.80
34 2-F NH2 CF3 7.00 77 4-Cl Me CN 6.64
35 2-Me NH2 CF3 6.70 78 4-Cl Me COOC2H5 5.24
36 3-F-4-OMe Me CF3 6.82 79 4-Cl Me C6H5 6.62
37 3-Cl-4-OMe Me CF3 6.89 80 4-Cl Me CH2OC6H4-4-Cl 7.52
38 3-Cl-4-SMe Me CF3 7.40 81 4-Cl Me CH2SC6H4-4-Cl 7.30
39a 3-Cl-4-NMe2 Me CF3 6.50 82a 4-Cl Me CH2OMe 5.43
40 3-F-4-NMe2 Me CF3 6.48 83 4-Cl Me CH2OH 5.08
41 3-Cl-4-NHMe Me CF3 6.18 84 4-Cl Me CH2SMe 6.50
42 3-Cl-4-Me Me CF3 7.52 85 4-Cl Me CH2CN 5.81
43 3-F-4-Me Me CF3 6.96

a Test set compounds.

Table 3. Descriptors, Ceofficient, Standard Error, andt-Test Values
for the Linear Modela

no. descriptor coefficient SE t-test

0 intercept -0.98 1.45 -0.676
1 logKow 0.657 0.028 23.529
2 pKa 0.062 0.028 2.255
3 ELUMO -0.687 0.131 -5.245
4 EHOMO 0.085 0.151 0.56
5 NHdon 0.069 0.071 0.965

a R ) 0.911, RMS) 0.335,N ) 153,F ) 143.452.

Table 4. Performance Comparison between MLR, RBFNN, and
SVM (LOO Cross-Validation)

MLR RBFNN SVM

R 0.911 0.945 0.947
RMS 0.352 0.260 0.257
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nodes) of RBFNN is 18. For the SVM model with an RBF
kernel function, there are three parameters,ε, γ, and C, to
be determined. Detailed descriptions of the process for
selecting parameters and their effects on the generalization
performance have been described in our previous works.10,19

Their influences on the performance are shown in Figures
4-6. Theγ, ε, andC for this data set were fixed to 0.1, 0.1,
and 1200, respectively. The corresponding number of support
vectors is 90.

The predicted results of the nonlinear models are shown
in Table 1 and Figures 3 and 7. The comparison of the
correlation models obtained with SVM, RBFNN, and MLR
are summarized in Table 6. It is very clear that SVM and
RBFNN models show similar correlation performance and

outperform the MLR model. The performance of RBFNN
is a bit better than that obtained by SVM.

Data Set 2. For this data set, two types of molecular
descriptors were used to build QSAR models based on three
modeling methods. In the first case, all the molecular

Table 5. Descriptors, Ceofficient, Standard Error, andt-Test Values
for the Linear Model (Training Set)a

no. descriptor coefficient SE t-test

0 intercept -0.237 1.434 -0.165
1 logKow 0.651 0.029 22.829
2 pKa 0.049 0.029 1.717
3 ELUMO -0.704 0.131 -5.361
4 EHOMO 0.149 0.15 0.99
5 NHdon 0.047 0.077 0.618

a R) 0.924, RMS) 0.31,n ) 131,F ) 146.05, prob> F < 0.0001.

Figure 1. Predicted vs experimental toxicity by MLR.

Figure 2. The selection of the optimal width for RBFNN.

Figure 3. Predicted vs experimental toxicity by RBFNN.

Figure 4. The selection of the optimal gamma for SVM (ε ) 0.1,
C ) 1000).

Figure 5. The selection of the optimal epsilon for SVM (γ ) 0.1,
C ) 1000).
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descriptors were extracted directly from the review work of
Hansch et al. In the second case, six parameters were
calculated using CODESSA. These descriptors include one
constitutional descriptor, one geometrical descriptor, one
topological index, one electrostatic descriptor, and two
quantum chemical descriptors. The constitutional descriptor
is the relative number of C atoms, which is related to the
constitution and size of a molecule. The geometrical descrip-
tor is YZ shadow/YZ rectangle, which describes the size and
shape of a molecule. The topological descriptor is the average
information content (order 0) which describes the size,
branching, and composition of a molecule and relates to the
dispersion interaction among molecules. The electrostatic
descriptor is the fractional hydrogen bond surface area
(FHBSA). The two quantum descriptors are the maximum

nucleophilic reaction index (nucleoph.react.index) for a C
atom and the max total interaction for O-S bond. These
two descriptors are correlated with the electrostatic and
hydrogen bonding interactions among molecules.

In Hansch’s review work, there are two outliers (com-
pounds 21 and 64) during the MLR analysis. In the Codessa
analysis, we found four outliers (compounds 21, 33, 48, and
73) in the data set. To compare the performance of different
models and the influence of different molecular descriptors,
for each case, QSAR models with 85 (total data set), 83
(removing compounds 21 and 64 from data set), and 81-
(removing compounds 21, 33, 48, and 73 from data set)
compounds were investigated and compared for three dif-
ferent modeling methods. The detailed description of the six
linear models is listed in Tables 7 and 8. The leave-one-out
cross-validation results of different models are shown in
Table 9. To further evaluate and compare the predictive
ability of different models, the 83 compounds from Hansch’s
review were divided into a training set (71 compounds) and
a test set (12 compounds). The linear correlation model
between the structures and activity for the training set is
shown in Table 10. The results of different models are
gathered in Table 11. As can be seen from Table 11, the
results of nonlinear models are better than those obtained
by linear methods. By contrast, the results of SVM are
comparable with those of RBFNN.

CONCLUSION

In the present work, we have compared the performance
of MLR, RBFNN, and SVM in QSAR and QSPR studies
with two data sets. The obtained results show that SVM and
RBFNN can be used to derive statistical models with better
qualities and better generalization capabilities than linear
regression methods. SVM can give similar results compared
with other nonlinear methods such as neural network. The
optimization process of RBFNN and SVM is relatively easy
to be implemented. They can be used as alternative nonlinear

Figure 6. The selection of the optimal capacity factors for SVM
(γ ) 0.1, ε ) 0.1).

Figure 7. Predicted vs experimental toxicity by SVM.

Table 6. Performance Comparison between MLR, RBFNN, and
SVM

method training set test set all

mlr R 0.924 0.834 0.911
RMS 0.30 0.46 0.33

rbfnn (Nc ) 18) R 0.969 0.952 0.965
RMS 0.19 0.29 0.21

svm (nSV ) 90) R 0.961 0.902 0.952
RMS 0.22 0.36 0.24

Table 7. Linear Model between Structure and Activity: (A) 85
Compounds and 4 Parameters, (B) 83 Compounds and 4
Parameters, and (C) 81 Compounds and 4 Parameters

descriptor coefficient error t-test value

(A)a

intercept 10.215 0.785 13.014
ClogP 0.849 0.078 10.821
IY 0.861 0.109 7.868
MgVol -2.07 0.316 -6.546
LX,2 -0.857 0.144 -5.947

(B)b

intercept 10.001 0.666 15.014
ClogP 0.78 0.068 11.537
IY 0.915 0.095 9.667
MgVol -1.843 0.271 6.805
LX,2 -0.891 0.122 -7.287

(C)c

intercept 9.816 0.774 12.69
ClogP 0.791 0.073 10.845
IY 0.863 0.099 8.674
MgVol -1.864 0.293 -6.352
LX,2 -0.801 0.172 -4.659

a N ) 85, R ) 0.887,F ) 73.981,s ) 0.401, prob> F < 0.0001.
b N ) 83, R ) 0.913,F ) 97.003,s ) 0.34, prob> F < 0.0001.c N
) 81, R ) 0.887,F ) 70.03,s ) 0.361, prob> F < 0.0001.
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modeling tools in QSAR and QSPR. As for SVM, only
support vectors (a fraction of training samples) are used in
the generalization process, the SVM adapts particularly to
the problem with a great deal of data in cheminformatics.
Furthermore the proposed approach can also be extended in
other QSPR/QSAR investigations. The study of second data

set also illustrates the importance of molecular descriptors
and their selection in all the modeling tools.
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