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ABSTRACT. A novel approach for the quantification of drug similarity is proposed which makes use of 

the surface polarities, i.e. conductor surface polarization charge densities , as defined in the quantum 

chemically based Conductor-like Screening Model for Realistic Solvation (COSMO-RS). The histogram 

of these surface polarities, the so-called -profiles have been proven to be the key for the calculation of 

all kinds of partition and adsorption coefficients, and therefore of relevant ADME parameters as 

solubility, pKa, logBB, and many others. They also carry a large part of the information required for the 

estimation of desolvation and binding processes responsible for receptor binding and enzyme inhibition 

of drug molecules. Thus, a large degree of similarity with respect to the -profiles appears to be a 

necessary condition for drugs of similar physiological action. Driven by this insight, we propose a -

profile based drug similarity measure SMS for the detection of new bioisosteric drug candidates. In 

several examples we demonstrate its statistical and pharmaceutical plausibility, its practicability for real 

drug research projects, and its unique independence from the chemical structure, which enables scaffold 

hopping in a natural way. 

 

INTRODUCTION. Bioisosteric transformation is one of the most frequently used approaches to the 

design and optimization of compounds with biopharmacological importance. Both, scaffold hopping and 

group interchange converge seamlessly in this approach. Current computational approaches to 

bioisosteric transformation are so far a posteriori classifiers that deduct rules, which are then applied in 

a project-dependent manner. We describe the development and application of an a priori method for the 

prediction of bioisosters. We assume that bioisosters must have similar physico-chemical properties that 

rule their interactions with different environments like solvents, membranes, and ultimately protein 

receptors. These interactions define their biological effects and biopharmacological properties. We built 

our method, therefore, upon COSMO-RS, a general and fast methodology for the a priori prediction of 

thermophysical data. Cheap unimolecular quantum chemical calculations combined with exact statistical 

thermodynamics provide the information necessary for the evaluation of molecular interactions. Thus, 

we can represent molecules detached from their chemical structures as electronic surfaces. For the rapid 

comparison of COSMO surfaces, they are projected into 1D -profiles. Suitable similarity metrics are 

then developed based on -profiles. Empirical data of many thousand bioisosteric transformations is 

used to validate the method and to further optimize the free parameters of the similarity metrics. Finally, 

the method is applied to bioisosteric transformations of functional groups and for virtual HTS.  

A number of biological targets of pharmaceutical interest are currently beyond the scopes of 

experimental 3D structure determination. Examples for such targets are membrane-standing proteins 

like ion channels and G-protein coupled receptors. The design of potent modulators for such targets is 

though not a hopeless task. Ligand-based design of compounds makes use of the structural information 

of well-characterized compounds that is used at different levels of abstraction for subsequent 

intermolecular similarity calculations1-3. Ideally, selection of target ligands should follow the concepts of 

ligand efficiency4-6. Two scenarios of ligand-based design strategies can be envisaged. Firstly, ligands 

with improved potency and/or improved biophysical properties ultimately related to their ADME-Tox 

profiles are searched within the class of ligands described by the scaffold. Secondly, alternative 

structural classes are explored for backup or patent busting purposes, a concept termed scaffold hopping. 

Both approaches are intimately related to the concept of bioisosterism, i.e., the introduction of structural 
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changes into a given active compound leading to a derivative that maintains broadly the bioactivity at 

the given receptor in question following the well-known active analogue principle.  

The search for novel and better bioisosters has been the challenge for medicinal chemistry over the 

past decades. On the one hand a lot of experience has been gained via trial-and-error. A survey of 

successful bioisosteric transformations is accessible in form of the Bioster database7. This is a well-

suited dataset for method development in the bioisosterism field8,9. A posteriori analyses of successful 

bioisosteric transformations led to the common classical and non-classical categorizations of 

bioisosters10,11. On the other hand, some a priori concepts tried to rationalize bioisosterism based on 

physical concepts like Grimm’s hydride displacement law12,13. Newer non-classical definitions focus on 

certain aspects of the compound structures like molecular shape, topology, pharmacophoric patterns, and 

electronic isosters14. However, none of the currently available bioisosteric approaches is built on a solid 

physicochemical basis.  

Ultimately, a suitable method must provide an intermolecular similarity measure that ranks proven 

bioisosteric pairs of compounds high while random pairs rank low. It can then be used for picking 

tentative bioisosters for a target ligand from compound databases. Furthermore, intermolecular 

similarity is used as objective function for the design and optimization of target-focused compound 

libraries.  

 

 

 

MATERIALS AND METHODS 

 

COSMO-RS. While almost all computational chemistry methods used in drug design are based either 

on the force-field concept or on decomposition concepts as group-contributions or fingerprints, a rather 

orthogonal and fundamental approach has been developed over the past 15 years which is based on 

quantum chemistry combined with dielectric continuum solvation and statistical thermodynamics. Being 

developed in an industrial computational chemistry lab, this Conductor-like Screening Model for 

Realistic Solvation (COSMO-RS)15-17 was originally considered for the quantification of environmental 

and technical partition behavior, before it was recognized a very generally applicable and most 

predictive model for fluid phase thermodynamics in the chemical engineering community. In the light of 

its applicability in wide ranges of chemistry its applicability to biophysical properties became apparent, 

and it has been proven in several papers on solubility, physiological partition properties as logBB or 

intestinal absorption, and pKa during the past years18-21, and its extension towards the problem of ligand 

receptor binding appears attractive and is presently being exploited. While detailed descriptions of the 

COSMO-RS theory have been given elsewhere, the basic concept of the methods is outlined in the 

following. 

1) In a first step all chemical compounds of a liquid (or pseudo-liquid) ensemble are considered as 

embedded and swimming in an infinite, perfect conductor. This state of the compounds can be 

very well treated by quantum chemical calculations combined with dielectric continuum 

solvation models, the most efficient and natural choice for the latter being the Conductor-like 

Screening Model COSMO22. For the quantum chemistry, density functional theory has been 

proven to provide a good compromise of computational efficiency and reliability, because the 

much faster semi-empirical methods suffer from severe deficiencies in the solvation 

electrostatics, especially if hypervalent elements as sulfur or phosphorous come into play. By 

such combination of methods the self-consistent state of a molecule within such virtual 
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conductor, i.e. its energy, its geometry and electron distribution, and the surface polarization 

charges of the conductor on the molecular surface, can be calculated at almost the same costs as 

in the gas-phase23.  

2) This state of molecules in a conductor has proven to be a very useful reference for the 

understanding of molecular behavior in the liquid. Much better suited than the traditional 

reference state of an isolated molecule in vacuum. The conductor surface polarization charge 

density  is a very good local measure of molecular surface polarity, carrying more information 

than the often considered electrostatic potential (ESP). Examples of COSMO surfaces color 

coded by  are given for water, caffeine, and theophylline in figure 1. The regions of strongly 

negative molecular polarity are displayed in red. It is important to recognize that the negative 

molecular regions carry positive polarization charge density , because  is just compensating 

the molecular electrostatic field and has, thus, opposite sign. The strongly positive molecular 

regions carrying negative  are colored blue, while the neutral parts of the molecules with  close 

to zero appear green. 

 

Figure 1. COSMO surfaces color coded by the polarization charge density   for water, caffeine, and 

theophylline 

 

3) A big conceptual advantage of the conductor reference state is the fact that the molecules 

together with their polarization charges now are electrostatically perfectly non-interacting, 

because no electric field can escape through the solute - conductor interface. As long as we leave 

at least a thin film of conductor between the molecules, we can build any geometrical 

configuration of the molecules without changing the energy of the system. By allowing for small, 

volume conserving and energetically irrelevant deformations of the surfaces we can finally build 

densely packed, liquid like systems of the molecules as schematically shown in figure 2, but still 

assuming an infinitely thin film of conductor separating and screening the molecules from each 

other. If we suppose that the small deformations required for the close packing do not 

significantly influence the energy and the polarization charge densities, our ensemble now still 

has the same energy as in the dilute state in the conductor, but each surface segment  with 

polarization  of a molecule has a nearest neighbor segment  with , i.e. we only have direct 

face to face segment pairs.  
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Figure 2. Schematic visualization of COSMO-RS contacts and interactions on the molecular cavity  

 

 

4) Since in nature there is no conductor between the molecules, in the next step the thin film of 

conductor between the surface segments has to be removed. As shown in the COSMO-RS papers 

in more detail, we can do this segment pair by segment pair. In this way we can consider the 

energy difference going along with the removal of the conductor between a segment pair (,n) as 

a local surface interaction of the neighboring molecules, and we can quantify its electrostatic and 

hydrogen bond contributions per unit surface area as 

        2)'(
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where  and ’ are the polarization charge densities of the interacting surfaces. While the 

electrostatic misfit part can be quite accurately derived from theoretical arguments, the hydrogen 

bond energy term must be considered as an empirical but physically plausible expression. Given 

the very few parameters in these formulae, the interaction energy of a fixed configuration of our 

ensemble of molecules relative to its conductor reference state can, thus, be calculated as an 

integral of all local pair-wise surface interactions. 

4.) For a liquid system we have to calculate the thermodynamic averages of the relevant 

configurations of our ensemble. Normally this requires the generation of large numbers of such 

ensembles, as done in MC or MD simulations. But due to the local pair-wise surface 

interactions description, the thermodynamics can be reduced to an ensemble of independently 

interacting surface segments. For this purpose we just need the surface polarization charge 

density distribution pX(), the so-called -profile, of each compound X which tells us how 

much surface of which polarity  is available on the surface of compound X. Since these -

profiles are of central importance for our new similarity approach, a collection of -profiles is 

shown in figure 3. These -profiles turned out to be very useful fingerprints of molecules. Next 

we denote the normalized -profile of a solvent S by pS(). For a pure solvent pS() is just the 

normalized -profile of the solute molecule, and for a mixture it is trivially generated from the 
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mole fraction weighted -profiles of the components. Based on  pS() the statistical 

thermodynamics of the interacting surface pairs can be solved efficiently and exactly from the 

integral equation 
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where S() is the chemical potential of an additional surface segment in the ensemble S, and aeff 

is the size of an effective contact segment. The function S(), called -potential further on, has 

to be derived recursively from eq. 3 due to its appearance on both sides of the equation. The -

potential describes how much a solvent S likes additional surface of polarity . As explained in 

more detail elsewhere these -potentials express a wide range of important aspects of the 

interaction capabilities of the solvent, including electrostatics, hydrogen bonding, and 

hydrophobicity. Finally the chemical potential of a compound X in solvent S is calculated from 

the -profile of the solute and the -potential of the solvent as 
X

combS

X

S

X

S dp ,)()(          (4) 

where X
S,comb is a usually small correction for size effects of solute and solvent, thus, a 

combinatorial contribution, depending on volumes and surface areas of solute and solvent. 

Hence the important part of the chemical potential of a solute X in a solvent S is expressed as a 

surface integral of the solvent -potential over the surface of the solute X, since pX()d just is 

the amount of surface area of polarity  on the surface of X.  
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Figure 3. Solvent -Profiles. These profiles show the amount of molecular surface in a given interval 

of polarization charge density . 

 

In this way COSMO-RS gives access to the chemical potentials of almost arbitrary compounds in 

almost arbitrary liquid phases using the -profile of the solute as the only information. While chemically 
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well defined phases as water, octanol, alkane, etc. and the corresponding partition coefficients are 

directly accessible by the COSMO-RS theory, partitioning between physiological phase as blood and 

brain and other ADME properties can be derived from the -profiles with a slightly more empirical 

extension, the -moment approach. Finally it has been shown that even drug solubility can be calculated 

from the -profiles, using the chemical potential X
X of the drug in its virtual liquid state as the most 

important input. 

 

Since solubility and ADME properties can be well described from the -profile alone, we can expect 

that two compounds with similar -profiles should have similar ADME characteristics. But we must be 

aware that the binding of a drug to a receptor involves constraints regarding to the 3D-relations of the 

various polar, hydrogen bonding, and hydrophobic interaction sites. This information is not included in 

the -profile any more. Nevertheless, it is at least a necessary while not sufficient requirement for 

strongly binding ligands of a receptor that they have roughly the same amount of surface area available 

for the various interaction modes. Thus, it is at least plausible that a drug candidate with a similar -

profile as a known strongly binding ligand has a good chance to be strongly binding as well. 

Summarizing the above considerations, we consider it as a plausible assumption that similarity of -

profiles should be a powerful measure for the assessment of drug similarity. 

 

 

APPLICATION OF COSMO-RS TO PROTEIN-LIGAND INTERACTIONS. COSMO-RS provides 

access to chemical potentials (Gibbs free energies) of almost arbitrary compounds in almost arbitrary 

phases. This grants direct access to important chemo-physical and bio-physical properties like phase 

partition (e.g. n-octanol water partition as expressed in logP) and thermodynamic solubility in different 

solvents (e.g. intrinsic aqueous molar solubility logS). COSMO-RS provides furthermore a sound basis 

for the computation of chemical potentials in mixed phases based on statistical thermodynamics 

(COSMOtherm). This allows the treatment of more complex compartment partitions including 

extracellular matrix / cellular membranes, intestinal lumen / blood, blood / brain.  

Non-covalent reversible protein-ligand interactions can well be described by the thermodynamic cycle 

given in Figure 4 for ligand A binding to receptor P forming the ligand-receptor complex AP24. The 

complex formation is determined by the binding free energy Gbinding under thermodynamic equilibrium 

conditions.  

 

Gbinding = Gcosmo – GA,aq – GP,aq + GAP,aq    (5) 

 

 

Binding free energy Gbinding and complex dissociation constant KD can be interconverted following 

 

Gbinding = -RTlnKD        (6) 

 

where R is the gas constant and T is the temperature. 
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Figure 4. Thermodynamic cycle for the equilibrium binding free energy Gbinding of ligand A binding 

to receptor P forming the non-covalent complex AP. 

 

The rigorous statistical thermodynamic treatment of ligand, receptor, and ligand-receptor complex as 

homogeneous pseudo-liquid phases represents the only approximation. Obviously, at the atomic level, 

protein-ligand interactions can be hampered by steric hindrance due to the anisostropic character of the 

protein although electronic complementarity in the COSMO concept is given and would consistently 

lead to energetically favorable interaction.  

 

DATA SETS. A virtual screening database of >3.5 Mio unique compounds was compiled from 

various in-house, medchem, and vendor databases. COSMOfrag25 was used to calculate approximate -

profiles for all compounds. This database is dynamically maintained and updated with new screening 

compounds. The search for bioisosters of groups and entire molecules was performed with this database. 

The BioSter database7 contains data on successful bioisosteric transformations for various receptors 

and chemical classes. This dataset was previously used for the evaluation of methods to distinguish 

between bioisosteric pairs and random pairs of molecules8,9. These molecular pairs were extracted from 

the database and approximate -profiles were calculated using COSMOfrag. Obvious prodrugs, 

ambiguous pairs, and molecules, for which no -profiles could be calculated, like ions, were removed 

from the set. A list of random pairs was prepared from the same set of molecules by scrambling the right 

column of the pair table. The final sets contained 6041 bioisosteric pairs and 5823 random pairs. All 

similarity and energy calculations were run on these two sets.  

 

BIOPHYSICAL CONCEPT OF BIOISOSTERIC TRANSFORMATIONS. Medicinal chemistry uses 

bioisosteric transformation as a tool for the replacement of certain functional groups with alternatives 

that display higher potency, better specificity, improved safety and other pharmacological properties or 

for the design of novel bioactive compounds via scaffold hopping for backup and patent busting 

purposes like therapeutic copies of commercialized drugs26.  Common concepts deduce rules from 

datasets that describe previously successful bioisosteric transformations and these rules are then applied 

to prioritize the synthesis and characterization of analogues27. Our approach attempts to provide a 

biophysical fundament for bioisosteric transformations and will allow as such the a priori prediction of 

bioisosters. 

In ligand-based drug design approach the receptor is assumed to be constant while the ligand is the 

variable. The bioisosteric transformation of ligand A to ligand B, both binding to receptor P, can be 

Aaq

Acosmo

Paq

Pcosmo

A-Paq

A-Pcosmo

Gbinding

Gcosmo

-GAP,aq-GP,aq-GA,aq
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formulated as a thermodynamic cycle (see Figure 5). For ligand-based drug design purposes, A can be 

regarded as the target-ligand while B is the result of the bioisosteric transformation applied. This 

approach allows the calculation of the energetic cost of the bioisosteric transformation GAP,BP,binding.  

 

GAP,BP,binding = GAP,BP,cosmo – GA,B,aq – GP,aq + GAP,BP,aq  (7) 

 

All terms of this thermodynamic cycle are directly accessible via COSMO-RS and COSMOtherm 

under the principle assumption of interacting pseudo-liquid molecules. The protein desolvation term 

GP,aq cancels out. For compounds A and B with identical -profiles, the mixed phase desolvation 

term GAP,BP,aq becomes zero, as well as the protein-ligand interaction terms GAP,BP,cosmo do. 

 

 
Figure 5. Thermodynamic cycle for the bioisosteric transformation of target ligand A to B both 

targeting receptor P. 

 

The success of a bioisosteric transformation can, thus, be quantified prior synthesis by computing 

GAP,BP,binding. For practical purposes, successful bioisosteric transformations should not exceed 1-3 

kcal/mol (about two log orders of magnitude in the binding constant KD). The final goal is to gain access 

to the estimated energetic cost of a bioisosteric transformation to be used to rank different 

transformations in virtual screening. 

 

COSMOtherm defines the energetics of molecular interactions on the basis of pairwise  interactions, 

thus, the unimolecular -profiles of the ligands in question define ultimately the energetic contributions. 

Consistently, the more similar the -profiles of A and B become, the more the ligand-depending 

contributing terms cancel out. The next chapter focuses on different intermolecular similarity methods 

based on -profiles.  

 

SIMILARITY COEFFICIENTS. COSMOtherm represents the -profiles by 61 real values for the 

relevant -range from  = -3 e/nm² to  = 3 e/nm². We initially started from this 61 bin representation 

which represents a one-dimensional structure-free holographic electronic profile. We term -profile 

based similarity methods COSMOsim. 

A large set of coefficients is available1,28 to calculate intermolecular distances based on binary, 

integral, or floating point vectors containing chemical information. One of the widely used coefficients 

is the Tanimoto coefficient, which has been found useful for distance measures of binary and integral 

vectors encoding molecular descriptors. In order to compare -profiles we started with examining the 

Baq
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-GBP,aq-GP,aq-GB,aq
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suitability of the Tanimoto coefficient. Usually, the binary variant of the Tanimoto coefficient is used. 

However, extension to non-negative floating point values is straightforward: 

 

(8)  

 

The Tanimoto coefficient Tc is the intermolecular similarity, where l 

is the number of bins, NA,i and NB,i are the surface areas 

corresponding to bin i in molecule A and B, respectively.  

 

Equation 8 reveals that the usability of the Tanimoto coefficient suffers when many bins are non-zero 

and few bins differ largely. In such cases very high similarities are computed that neglect substantial 

differences. In order to illustrate these consequences, a congeneric set of n-alcohols (n-propanol through 

n-hexadecanol) was prepared, the corresponding -profiles were computed for all compounds in the set 

(Figure 6), and Tc was calculated using n-propanol as target ligand. Despite the very different molecular 

sizes of n-propanol and n-hexadecanol high, physically implausible, Tc values result (Figure 7).  

 

Figure 6. -profiles of a congeneric series of n-alcohols. 
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Figure 7. -profile based similarities of a congeneric series of n-alcohols compared to n-propanol 

using different COSMOsim coefficients. 

 

A straightforward solution to this problem appeared to be the utilization of the relative molecular 

sizes. The molecular size is here defined as the molecular surface area (COSMO surface) that equals the 

sum over all bins of the -profile. We call the novel similarity measure Tanimoto prime coefficient, Tc’: 

 

),max(

),min('

BA

BA

CC
SS

SS
TT     (9) 

 

Where Tc is the Tanimoto coefficient, SA and SB are the COSMO surface areas of compounds A and 

B, respectively. 

 

The bin-based Tanimoto similarity of -profiles suffers from a few theoretical weaknesses. Firstly, its 

values quite strongly depend on the fineness of the discretization of the -range, while a theoretically 

robust similarity definition should be almost independent of the discretization level. Secondly, since 

only the ratio of deviation and sum of the two -values of a bin enters the definition of bin similarity, 

bins with small values of the similarity may have the same influence on the Tanimoto similarity 

coefficient as bins with large values, while under physical aspects bins with small values should be less 

important. Finally, the bin-based similarity definition totally disregards the physical neighborship 

relation of -bins. If one compound has a high intensity in bin i while the other has a high intensity in 

bin i+1, the Tanimoto coefficient considers this as dissimilarity, while such slightly shifted peaks would 

still cause rather similar physicochemical behavior. 

 

Based on these considerations we defined another similarity measure that we call -match similarity 

(SMS). The basic idea behind it is the matching of most similar surface area pairs, starting with the most 

polar segments present in either of the two -profiles and proceeding to the least polar ones. In the first 
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step the most polar piece of surface available in the two -profiles is matched with the same area of the 

most polar surface segment of the same polarity sign of the other compound. Now the minimum area 

aseg of the two matched surface segments is subtracted from both -profiles and a contribution dSMS as 

given in eq. 10 is added to the raw similarity measure SMS0: 
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where  and ’ are the two -values matched in this step. In order to better understand this expression 

it is useful to consider it first for the two parameters b and c set to zero. In this case the formula 

apparently gives a contribution identical to the matched area, if the two matched -values are identical. 

Otherwise the contribution to the raw similarity index is reduced by a Gaussian function. Hence the 

similarity strongly decreases with increasing mismatch of the two -values. The parameter a is a 

measure for the -mismatch tolerance. Repeating the described procedure until no surface area is left in 

one of the -profiles, we finally get a raw similarity coefficient SMS0. At the end of the procedure we 

will have a residual surface area ares left in the bigger of the two compounds. The maximum value of 

SMS0 can be the value of the smaller of the two components. This can only be achieved if the two -

profiles are identical. By the two parameters b and c we can introduce two different ways to increase the 

sensitivity of the -similarity measure in the polar  regions, which might be useful considering the fact 

that especially the hydrogen bond interactions contribute very strongly in the polar regions and make 

these more important for drug similarity than the less polar regions.  A positive value of b decreases the 

-tolerance in the polar regions, while a positive value of c increases the weight of surface area of polar 

segments compared with less polar segments. 

 

If we calculate the maximum achievable values of the raw similarity of the two compounds, i.e. their 

raw self-similarities, and denote them by SMS1 and SMS2, respectively, then we can define our final 

expression for the -match similarity coefficient SMS by 
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where d is a parameter responsible for the treatment of the residual surface area ares: For d = 0 ares is 

considered as maximal dissimilar, for d = 1 it is treated as maximal similar.  

 

The presented definition of the -match similarity fulfills all requirements of a similarity metrics, i.e. 

it is unity if applied to identical compounds, asymptotically takes a value of 0 for very dissimilar 

compounds, and it is commutative with respect to the compounds. Furthermore, it is rather independent 

of the bin discretization of the -range, reasonable weights its contributions according to the surface 

areas, and introduces a mismatch tolerance with respect to . Reasonable values for the four parameters 

a, b, c, and d of the SMS definition will be presented in the next chapter. 

 

SMS PARAMETER OPTIMISATION. A genetic algorithm was used in order to optimize the four 

free variables a, b, c, and d in the SMS similarity calculation using empirical data of the Bioster 

database. The target function for the GA-optimization was the maximization of the separation of random 
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versus bioisosteric pairs. Therefore, the corresponding similarity values were split into 51 bins covering 

the SMS similarity range from 0 to 1. The overlapping gray zone g was defined as follows and the GA 

was used to maximize 1-g. 

 





50
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m

n

m

n
g      (12) 

 

200 generations of GA optimization with 20 unique individual parameter sets per generation were 

performed starting with random values for a (1.0 ≤ a ≤ 5.0), b (0 ≤ b ≤ 0.01), and c (0 ≤ c ≤ 0.01). For 

each individual parameter set, the intermolecular similarity values were recalculated for the bioisoster 

and random data sets, and the individual g values were calculated thereupon. The individual solutions 

were than sorted by g, and a next generation of individual parameter sets was created by applying 

crossover and mutation to the binary genomic representations of the better-than-average solutions. 

In a first approach d was held fixed to 0 while in a second independent run d was also optimized 

within (0 ≤ d ≤ 1). In order to check for the possible effects of the four parameters, the GA was re-run 

but this time to maximize g, thus, leading to the worst model possible. The resulting parameters along 

with the parameter-free metrics Tc and Tc’ are shown in Table 1. The optimized parameter sets lead to 

practically indistinguishable separation values. To limit the number of free parameters, the three 

parameters model with d set to zero was used throughout the article for the COSMOsim SMS 

calculations. 

 

Table 1. Overview on SMS parameters and statistics on separation of bioisosteric and random 

molecular pairs. 

model a1 b2 c3 d4 g5 
bioisosters         

avg SMS ± stdev 

random              

avg SMS ± stdev 

worst 1.096 0.009430 0.001310 0.993 0.745 0.570 ± 0.155 0.471 ± 0.142 

best 3 parameters 2.533 0.000350 0.009960 fixed 0 0.424 0.697 ± 0.191 0.382 ± 0.207 

best 4 parameters 2.561 0.000124 0.009990 0.130 0.424 0.713 ± 0.180 0.416 ± 0.197 

Tc - - - - 0.406 0.726 ± 0.126 0.528 ± 0.112 

Tc' - - - - 0.395 0.636 ± 0.165 0.369 ± 0.145 

1 -tolerance, 2 -tolerance of polar surface, 3 weighting of polar surface, 4 size tolerance, 5 gray zone 

overlap 

 

 

 

ENERGETIC COST OF BIOISOSTERIC TRANSFORMATION. A bioisosteric transformation of A 

to B can hardly be performed in practice without affecting the electronic nature of the compound. Such 

changes will have a more or less drastic effect on the various energetic contributions to the relative 

binding free energies (eq. 5). For practical purposes, a bioisosteric transformation can be regarded as 
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successful if B does not loose more than around one to two log orders of magnitude in binding affinity. 

A factor of 10 to 100 in KD corresponds to a change in binding free energy by 1.3 to 2.7 kcal/mol at 

room temperature.  

It is conceptually straightforward to suppose that the change in binding free energies upon bioisosteric 

transformation becomes small as the intermolecular similarity approaches unity. The underlying 

distance metric, however, can have substantial influence on the meaning of small. In order to give a 

qualitative estimation on the energetic cost of bioisosteric transformation GA,B,binding in different 

similarity metrics concepts one would ideally compute all terms of the thermodynamic cycle given in 

Figure 5. This is currently not possible with reasonable efforts.  

In order to get still a rough estimation for the energetic cost, the desolvation term GA,B,aq can be 

rapidly computed with reasonable accuracy (~0.5 kcal/mol) as reported previously19. The difference in 

free energy of ligand desolvation provides an estimate for the energetic cost of the bioisosteric 

transformation for one of the three terms of Equation 8. Gaq was calculated for every molecule in the 

bioisoster and random data sets using COSMOtherm29. Subsequently, GA,B,aq was calculated for all 

pairs. 

For a qualitative assessment of the energetic cost the intermolecular similarity values were plotted 

against the GA,B,aq. Funnel-shaped curves are obtained for each similarity coefficient (see Figures 8 - 

10), which shows that the solvation free energy differences do become small as the intermolecular 

similarity approaches unity. As expected, the funnel-shape depends on the metrics. In order to get a 

statistically meaningful quantitative estimation of the energetic cost of the bioisosteric transformation, 

the molecular pairs were binned according to their intermolecular similarities. For each of the 21 bins, 

the mean averages and standard deviations of GA,B,aq were calculated. The results are presented in 

Figure 11. 

Based on the quantitative energetic assessment, reasonable similarity thresholds were derived for the 

various distance metrics at the 1 kcal/mol, 1.5 kcal/mol, and 2 kcal/mol levels. Additionally, the number 

of bioisosteric and random pairs retrieved at these levels were extracted from the similarity calculations. 

 
Figure 8. Free energy of solvation changes upon bioisosteric transformation of compound A into B for 

bioisosteric and random pairs using the COSMOsim Tanimoto coefficient. 
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Figure 9. Free energy of solvation changes upon bioisosteric transformation of compound A into B for 

bioisosteric and random pairs using the COSMOsim Tanimoto prime coefficient. 

 

 
Figure 10. Free energy of solvation changes upon bioisosteric transformation of compound A into B 

for bioisosteric and random pairs using the COSMOsim SMS coefficient. 
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Figure 11. Standard deviation of free energy of solvation changes upon bioisosteric transformation of 

compound A into B for bioisosteric and random pairs using various COSMOsim coefficients. 

 

 

 

PROPER AND IMPROPER BIOISOSTERS. Commonly, bioisosters are seen as pairs of compounds 

that show comparable activity on the target in question. The energetic cost of the corresponding 

bioisosteric transformation is low for all bioisosters. We have shown that for compounds with very 

similar -profiles, i.e., COSMOsim approaching unity, the energetic cost of the bioisosteric 

transformation GA,B,binding becomes small as a result of the different energetic contribution terms 

according to Eq. 7 becoming small. The reverse is, however, not necessarily given: not all fairly 

equipotent ligands need to have similar -profiles. Consistently, the COSMOsim values of such ligand 

pairs are low. The reason can be found in the different energetic contribution terms to GA,B,binding that 

sum up to zero although the single terms do considerably differ from zero and have opposite signs. This 

distinct energetic behavior gives rise to the definition of two principle classes of bioisosters: 

 

1) Proper Bioisosters: All contributions to the energetic cost of the bioisosteric transformation 

according to Eq. 7 are small. They have overall similar physicochemical properties and their 

similarity is principally receptor-independent. A hypothetical example is given below: 

 

GAP,BP,binding = 0 kcal = 0 + 0 + 0 + 0 kcal 

 

2) Improper Bioisosters: The energetic cost of the bioisosteric transformation is small but the discrete 

contributions are not small. They have different biophysical properties and their similarity is 

receptor-dependent. A hypothetical example is given below: 

 

GAP,BP,binding = 0 kcal = 5 - 8 + 15 - 12 kcal 
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The application of COSMOsim methods in vHTS will, therefore, yield proper bioisosters. They can 

fail at the target receptor for steric mismatch or repulsion reasons, which are, though, beyond pseudo-

liquid treatment. We are, therefore, currently extending COSMOsim towards the third dimension and 

first results were recently published30. 

 

SEPARATION OF BIOISOSTERIC FROM RANDOM MOLECULAR PAIRS. The general 

applicability of COSMOsim was evaluated aiming at the numeric separation of the two sets of molecular 

pairs, bioisosteric and random. The different coefficients, Tc, Tc’, and SMS with optimized parameters 

were applied to each molecular pair. Subsequently, the resulting intermolecular similarities were 

evaluated in the normalized and cumulative histograms (Figures 12 – 13).  

  
Figure 12. Separation of known bioisosters from random pairs resulted from the application of 

COSMOsim Tanimoto coefficient to the BioSter dataset (left: normalized distribution, right: cumulative 

normalized distribution).  

  
Figure 13. Separation of known bioisosters from random pairs resulted from the application of 

COSMOsim Tanimoto prime coefficient to the BioSter dataset (left: normalized distribution, right: 

cumulative normalized distribution).  
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Figure 14. Separation of known bioisosters from random pairs resulted from the application of 

COSMOsim SMS coefficient to the BioSter dataset (left: normalized distribution, right: cumulative 

normalized distribution).  

 

GROUP EXCHANGE TRANSFORMATIONS WITH COSMOsim. Group exchange applications are 

useful for the selection of starting materials to be employed in the next generation of compounds 

maintaining the scaffold (and therefore minimizing the chance of steric repulsion and maximizing the 

suitability of the pseudo-liquid treatment). We have selected four small molecules that are found 

incorporated in a plethora of natural compounds and xenobiotics and for which many bioisosteric 

conformations are known, i.e., cyclohexane, naphthalene, thiazole, and propionic acid. The -profiles of 

these compounds were calculated and the -profile database was screened for the most similar 

molecules according to the COSMOsim SMS coefficient. In order to make comparison to well-

established 2D fingerprint similarity techniques possible, we calculated the Tanimoto coefficient based 

on 1024 bit Daylight keys31, often just (wrongly) called Tanimoto-similarity, for the top-ranking 

compounds. The results are given in Figures 15 to 18. 
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Figure 15. Bioisosters as resulted from vHTS using cyclohexane as target. COSMOsim SMS 

coefficients are given below the picture (left) along with the corresponding Daylight key Tanimoto 

coefficient (right). 

 

 

WHOLE MOLECULE TRANSFORMATIONS WITH COSMOsim. A virtual screening application 

of COSMOsim was performed. The target ligand, chlorpromazine, is a member of the tricyclic 

antidepressants class. The most similar compounds of the -profile database, in terms of SMS, are given 

in Figure 19 along with the corresponding Daylight fingerprint Tc values. 
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Figure 16. Bioisosters as resulted from vHTS using naphthalene as target. COSMOsim SMS 

coefficients are given below the picture (left) along with the corresponding Daylight key Tanimoto 

coefficient (right). 

 

RESULTS AND DISCUSSION 

 

COSMO-RS and COSMOtherm provide the basis for a rigorous treatment of the energetic 

contributions protein-ligand interactions. The only necessary assumption is that ligand, receptor, and the 

non-covalent ligand-receptor complex behave as pseudo-liquids or isotropic phases. This implies that 

there is no steric repulsion between ligand and receptor upon complex formation, which is certainly 

valid for many potent, highly efficient ligands4. Steric mismatch and repulsion and their energetic 

consequences are, thus, beyond the scope of COSMOsim. 
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Figure 17. Bioisosters as resulted from vHTS using thiazole as target. COSMOsim SMS coefficients 

are given below the picture (left) along with the corresponding Daylight key Tanimoto coefficient 

(right). 
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Figure 18. Bioisosters as resulted from vHTS using propionic as target. COSMOsim SMS coefficients 

are given below the picture (left) along with the corresponding Daylight key Tanimoto coefficient 

(right). 

 

We have focused our work on the ligand-based design, following the concept of bioisosteric 

transformations, i.e., hypothetical reactions linking compounds A and B. Bioisosteric transformations 

target the same receptor and can, thus, be formulated as the thermodynamic cycle given in Figure 5. This 

thermodynamic cycle provides the basis for the calculation of the energetic cost GAP,BP,binding of the 

bioisosteric transformation based on structure-free 1D -profiles and can be regarded as the biophysical 

background of COSMOsim. 

Table 2. Solvation free energy cost based threshold similarities tsim and number of bioisosters and 

random pairs found to be more similar than tsim. 

COSMOsim 

coefficient 

STDEV(GA,B,solv) 

< 1.0 kcal/mol < 1.5 kcal/mol < 2.0 kcal/mol 
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tsim bioisosters random tsim Bioisosters random tsim bioisosters random 

SMS 0.883 846 0 0.789 2380 120 0.715 3379 357 

Tc' 0.891 191 0 0.789 1152 6 0.689 2522 72 

Tc 0.906 356 0 0.823 1477 2 0.755 2740 83 

 

 

For practical applications, this energetic cost has to be low in the order of a few kcal/mol to not loose 

too much binding affinity. For a large number of successful bioisosteric transformations and random 

molecular pairs we could show that bioisosters do indeed have more similar -profiles than random 

molecular pairs (see Table 2). The simple Tanimoto similarity coefficient was apparently improved by 

the introduction of the relative molecular sizes as outlined in the alcohol example (see Figure 6). The 

number of bioisosteric pairs retrieved at the same energetic cost (see Table 1) was though slightly lower 

for the Tanimoto prime coefficient. The neighborship of bins in the -profile and the resulting 

biophysical impact is completely neglected by both Tanimoto based coefficients. Therefore, we 

developed the sigma match similarity (SMS) metrics that accounts for the biophysical relevance of 

neighboring bins, the distinct importance of polar versus apolar regions, and differences in molecular 

size. 

The four free parameters of the SMS were optimized to achieve maximum separation of bioisosters 

from random pairs. A closer investigation of the parameter sets obtained from the GA optimization as 

given in Table 1 reveals the following trend: 

 

- improved metrics are obtained with a balanced -tolerance (abest3=2.533, abest4=2.561) while 

its neglect leads to a bad separation (aworst=1.096) 

- a harsh decrease of the -tolerance in the polar region leads to bad separation 

(bworst=0.009430) while a slight decrease yields a good separation (bbest3=0.000350, 

bbest4=0.000124)  

- the similarity of polar regions must be weighted higher than that of apolar regions 

(cbest3=0.009960, cbest4=0.009990) otherwise the separation suffers (cworst=0.001310) 

- molecular size should not change for a bioisosteric transformation otherwise the separation 

suffers (dworst=0.993) 

 

These findings are in accordance with previous findings concerning the size of bioisosteric groups10 

and the general importance of polar groups for binding6 and solvation. The most striking difference in 

SMS as opposed to the Tanimoto coefficients is, however, the introduction of the -tolerance parameter 

a that does indeed lead to a great improvement of the method. The application of the various coefficients 

to the bioisoster and random pair molecule sets show that all COSMOsim coefficients can be used for 

the prediction of bioisosters. However, the SMS metrics is to be preferred over the Tanimoto coefficient 

based measures because it is build upon a sound biophysical concept. Moreover, SMS retrieves about 

twice the time bioisosters at the same energetic cost for the bioisosteric transformation as expressed in 

the mean square change in solvation GA,B,solv (see Table 1).  COSMOsim is extremely fast 

(29689/28078/9869 compounds per second on a single CPU 3GHz Pentium 4 for TC/ TC’/SMS) and is 

therefore well suited for the virtual HTS of billions of compounds. We recommend performing explicit 
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calculation at DFT BP-SVP-COSMO-SP using a bioactive conformation of the target ligand in order to 

improve the quality of the target -profile. Moreover,  explicit calculations can be run over night on the 

top ranking compounds since the corresponding DFT-based -profiles provide a basis for the calculation 

of biophysically relevant properties like pKa, logP, logS, etc. with higher accuracy19,20,32. 

The assessment of the group transformation applications reveals clearly that COSMOsim perceives 

molecular similarity in a way medicinal chemists do. The results given in Figures 15 and 16 underline 

the apolar aliphatic and aromatic characters and sizes of cyclohexane and naphthalene bioisosters, 

respectively. These simple bioisosteric transformations are, though, not at all perceived by the Daylight 

key (substructure) based similarities. Similar results are expected for Unity or MDL keys but one has to 

keep in mind that these methods were mainly developed as hash keys and bioisosterism is beyond their 

scope although they are widely used for this purpose33. The two polar group examples reveal further 

advantages of the structure-free comparison COSMOsim. Well-known bioisosters of thiazole (see 

Figure 17) like oxazole and pyridine appear in the top-ranking list as expected while the structure-based 

approach would miss them in every virtual screening. It is important to stress that the same structure-

based approach would likely fail to rank larger compounds containing thiazole and pyridine as 

functional groups as well. The propionic acid example (see Figure 18) paints a good picture on how 

electronics and molecular size are reflected in COSMOsim. Obviously, quite a few hits are carboxylic 

acids of similar size, i.e., trivial structure derivatives and as such well perceived by the Daylight key 

method. COSMOsim, however, retrieves additional well-known bioisosters like carbamic and 

hydroxamic acids, enoles, phosphinic, boronic, and sulphenic acids, and acidic heterocycles like 

tetrazoles and oxadiazolones. To our knowledge, COSMOsim is the only method that retrieves the latter 

non-classical bioisosters a priori. 

The bioisosteric transformation of chlorpromazine should exemplify the suitability of COSMOsim to 

the discovery and design of therapeutic copies. Chlorpromazine is one of the oldest tricyclic 

antidepressants found more than 50 years ago by chance34. Apart from its antidopaminergic activity, it 

antagonizes furthermore histamine, 5-hydroxytryptamine, acetylcholin, and cannabinoid receptors. Since 

its discovery, a plethora of bioisosters has been discovered and designed that focus on one or the other 

CNS activity. The top ranking compounds in Figure 19 show clearly that many of the strategies 

employed in medicinal chemistry are perceived by COSMOsim, i.e, small variations around the same 

scaffold, ring substitutions, side chain length variations, and various approaches to rigidify the 

molecules26. Again, the structure-based screening would have omitted most of the chlorpromazine 

analogues found by COSMOsim. This example shows impressively that bioisosteric transformations 

introducing only small electronic changes can yield a huge variety of distinct proper bioisosters. 
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Figure 19. Bioisosters as resulted from vHTS using chlorpromazine as target. COSMOsim SMS 

coefficients are given below the picture (left) along with the corresponding Daylight key Tanimoto 

coefficient (right). 

 

The energetic cost of a bioisosteric transformation can be measured experimentally in a biological 

assay after chemical synthesis. In virtual screening target-focused solutions are ranked according the 

corresponding fitness values, for example COSMOsim values. It is important to know what the energetic 

cost of a bioisosteric transformation can be and how this cost depends on the intermolecular 

COSMOsim similarity. Unfortunately, the Bioster database does not contain any information on binding 

or inhibition constants that could serve to calculate the energetic cost of the corresponding bioisosteric 

transformations. It can be assumed, however, that bioisosteric pairs do not differ by more than two log 

orders of magnitude in their inhibition which corresponds roughly to 2,7 kcal/mol. This value is in the 

order of magnitude of the solvation energy changes at relevant similarity levels according to Table 1. 

We can, therefore, conclude that the energetic changes in solvation of the protein-ligand complexes 

GAP,BP,aq and the protein-ligand binding GAP,BP,cosmo are of the same magnitude. Consistently, 

bioisosteric transformations with high COSMOsim will likely lead to proper bioisosters of no additional 

steric repulsion is introduced. Also, the energetic cost drops as the proper bioisosteric pair becomes 

more similar. 
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It should be underlined that other physicochemical molecular properties (logP, logS, etc.) follow the 

same thermodynamic cycle for a bioisosteric transformation shown in Figure 5 by substituting the 

protein receptor P with another pure or mixed isotropic or anisotropic phase of interest (water, octanol, 

blood, brain, etc.). Successful bioisosteric transformations will, therefore, yield compounds with overall 

similar properties with exception of their chemical structure. 

For isotropic phases steric repulsion does not exist. Anisotropic phases like proteins can, however, 

display the steric mismatch and repulsion issues and consistently a proper bioisosteric transformation 

will eventually not work for a given receptor (while it might well work for another receptor). The 

biological assay remains to provide the ultimate proof. COSMOsim was successfully employed in a 

variety of projects for group transformations and target-focused library design where it already delivered 

a variety of potent inhibitor families for different targets. 
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