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Principal component analysis (PCA) of a large data matrix (153 solvents × 396 solutes) for Ostwald solubility
coefficients (log L) resulted in a two-component model covering 98.6% of the variability. Analysis of the
principal components exposed the structural characteristics of solutes and solvents that codify interactions
which determine the behavior of a chemical in the surrounding media. The pattern revealed by PCA analysis
distinguishes solutes according to the molecular size, functional groups, and electrostatic interactions, such
as polarity and hydrogen-bonding donor and acceptor properties.

INTRODUCTION

Solubility is a key property in almost all fields which are
related to chemistry and is crucial in the production of new
material and substances, assessing environmental risk for
sustainability of environment and health, detecting drug-
likeness, etc. Extensive studies of solute-solvent interactions
and diverse theories unfolding those interactions have formed
the basis for understanding solubility, as is comprehensively
reviewed by Reichardt.1 Despite more than a century of
studies directed toward examining the relationships between
chemical structure and solubility, the challenge of improved
experimental detection, precise computational prediction, and
detailed understanding of interactions between chemicals and
the surrounding medium still remains.2 For instance, a recent
prediction of the intrinsic solubilities of 32 crystalline drug-
like molecules in water using a data set of accurately deter-
mined solubilities of 100 compounds was challenged3 and
resulted in about 100 contributions.4 Only a few of the top
10 successful results have been published,5,6 which present
simple and straightforward models and reveal problems in
modeling of solubility as well.

The current study continues to analyze Ostwald solubility
coefficients (log L; Here and throughout the text, a decadic
logarithm is denoted by log) and is the fourth part of our
series entitled “A General Treatment of Solubility”. The first
two parts focused on the theoretical foundations, data
gathering, and multilinear quantitative structure-property
relationship (QSPR) modeling of a series of solvents7 and
solutes.8 The third part utilized the derived QSPR models
and provided a systematic approach to predict missing data
points using a combination of QSPR and principal compo-
nent analysis (PCA) methods.9 Using this combined ap-
proach, several regions of the data matrix were filled by

predictions from QSPR models. Where simple QSPR predic-
tions were not possible, the data gaps were filled by a
combination of PCA and QSPR. The detailed scheme
explaining each step of the analysis is thoroughly described
in Part 3 of ref 9, Figure 1 therein. The first four steps have
been completed in the previous three parts. The current
manuscript is the last in the series and follows the final step
(no. 5), which is the analysis and discussion of principal
components (PCs) and their scores and loadings.

The definition of the Ostwald solubility coefficient (log
L) expresses the distribution coefficient of a solute distributed
between a liquid solvent and gas phase, and it is related to
the solute’s free energy of solvation according to eq 1:7
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Figure 1. Validation of previously estimated values.

∆GS ) -2.3RT log L ) -2.3RT log ( cl

cg
) (1)

J. Chem. Inf. Model. 2010, 50, 1275–1283 1275

10.1021/ci1000828  2010 American Chemical Society
Published on Web 07/01/2010



where cl and cg are the solute’s concentrations in the liquid
and gas phases, respectively. This relationship is valid for
standard states of unit concentration in the gas phase and in
solution, and the dependence is linear with respect to log L
at a constant temperature.

The free energy of solvation is considered to consist of
four main components (eq 2):1,10,11 the cavity formation term
(∆Gcavity), dispersion interactions (∆Gdisp), free energy of
electrostatic interactions (∆Gel), and a term which takes into
consideration the formation and reorganization of hydrogen
bonds (∆GHB). The first two terms in eq 2 are related to the
bulk characteristics of the solute, and together they are the
major energy contributors to solvation free energy. This also
holds for systems which are normally known to be very polar
and strongly hydrogen bonded (HB).12 Both terms (∆Gcavity,
∆Gdisp) can be regarded as characteristics of nonspecific
interactions. The term for electrostatic interactions (∆Gel)
involves, in addition to the pure electrostatic Coulomb
interactions, other interaction forces such as ion-dipole,
strong dipole-dipole, and ion-pair formation, etc.1,13,14 The
HB forces are also electrostatic by nature.15 Hence, it can
be concluded that the last two terms comprise the electrostatic-
specific interactions.

As discussed in our earlier work (ref 7, Figure 1 and
discussion), the molecular descriptors closely reflect the terms
of the free energy of solvation. The cavity formation term
can be satisfactorily modeled with the use of topological and
geometrical descriptors, semiempirically derived molecular
polarizability, and entropy. Electrostatic and quantum chemi-
cal descriptors contribute significantly to both nonspecific
and specific solvation either through atomic charges, charged
surface areas, dipole moments, reactivity indices, or other
similar structural parameters. Descriptors designed for HB
include molecular surface areas that were confined by
hydrogen-bond donor or acceptor sites as well as those that
merely count such sites derived from atomic charge consid-
erations. This provides a framework that enables construction
of QSPR models for significant scores and loadings of the
PCA model. Such an approach facilitates the discussion of
the main structural characteristics influencing intermolecular
interactions that determine the distribution of solutes between
the solvent and its gas phases. Pattern analysis of score plots
provides the second framework for the study and description
of the PCA model. Description of the pattern according to
chemical constitution enables validation of the solute and
solvent classification. Such an analysis, based on a large and
structurally wide-ranging data set, provides insight into
important structural characteristics influencing the interac-
tions and determining the solubility.

The present study consists of the following parts: (i)
external validation of previous predictions with new experi-
mental data; (ii) PCA model development and detailed outlier
analysis, (iii) analysis of scores and loadings using QSPR
models and molecular descriptors therein; and (iv) pattern
analysis of common chemical spaces of the solutes in terms
of chemical constitution.

DATA AND METHODS

Solubility Data. The data matrix used in this work was
adapted from a previous publication in this series.9 One

duplicate, 1-nitropropane (compound ID - cID123), was
found and removed. As a result, the matrix of the logarithm
of Ostwald solubility coefficients (log L) consisting of 153
solvents × 396 solutes was formed. The total matrix now
comprises 60 588 data points of which 4540 were experi-
mental. The remaining data points were calculated according
to the combined QSPR and PCA methodology as described
in detail.9 In addition, the following improvements were
made: (i) 1285 new experimental data points were included
into the data matrix replacing the previous estimated values9

and (ii) 24 previous experimental values were replaced with
new ones due to improved measurements (see Supporting
Information for detailed description). After this update, the
final data matrix comprises 5825 experimental log L values.
The whole data set of compounds used in the work is rather
diverse. For example, the data set includes 17 unique
chemical classes defined by their functional groups (see
Supporting Information, Table S1).

Principal Component Analysis. The dimensionality of
the original data matrix was reduced by the multivariate PCA
technique into a small number of orthogonal principal
components (PC).16,17 The data matrix was expanded as a
sum of the principal components defined by scores and
loadings:

In eq 3, D is the data matrix, T and P are the score and
loading matrices, respectively, and tn and pn are the score
and loading vectors for a given component which are
expanded to their elements ti,n and pn,j, respectively. The
indices i and j correspond to observations (solutes) and
variables (solvents), respectively, and n is the number of
principal components. In the current study, the PCA imple-
mented by the SIMCA-P software18 was used to analyze the
total data matrix of log L values. The obtained scores and
loadings enable contribution analysis of the variance based
on solutes and solvents, respectively. The graphical plots of
the score and loading vectors also reveal relationships
between the objects and variables. In our case, the score plots
summarized a pattern among the solutes (observations), and
the loading plots summarized a pattern for the solvents
(variables). The loading plot also enables interpretation of
the pattern seen in the score plot. Hence, the patterns of these
two presentations aid in the analysis of regularities encoded
by the chemical structure.

A vital issue for the PCA model is the identification of
strong and moderate outliers, which could skew the model.
Strong outliers can be traced in plots of PC scores, while
moderate outliers can be found by inspecting the model
residuals. Generally, the strong outliers tend to significantly
shift (rotate) the PCA model toward them. An appropriate
statistical method for identifying such outliers is Hotelling’s
T2,19 a generalization of the Student’s t-statistic. T2 is
graphically presented as an ellipsoid of T2 range on score
plots and indicates deviations far from defined confidence
intervals (95 or 99%). Strong outliers can also be spotted
by the distance to the model X (DModX). Observations with
a DModX over a critical value (D-Crit) are outliers to the
PCA model. The probability of these observations belonging
to the model (PModX) is less than 5%.20

∆GS ) ∆Gcavity + ∆Gdisp + ∆Gel + ∆GHB (2)
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PCA is a maximum variance projection method that is
usually associated with a large number of variables. The data
is generally preprocessed to provide all scales with equal
weight, usually via the unit variance scaling method, where
the data is standardized, centralized, and normalized using
a sample standard deviation, variance, and mean. In our case,
the nature of the experimental data did not require prepro-
cessing of the log L values, because all data was measured
at the same dimensional scale and the measurement error is
nearly uniform. In addition, such preprocessing of the data
could result in a loss of information20-22 as well as decrease
the sensitivity of the PCA toward some important charac-
teristics of the chemical objects.

In a typical PCA investigation, the number of principal
components sufficient for the model should be detected. There
are several standard guidelines available20,23 for detection of
the number of optimal PCs. In the present analysis, the scree
test was used, which allows one to plot the eigenvalues
graphically with respect to the number of PCs. In principle,
the scree test suggests that the optimum number of PCs is
located at the point where the smooth decrease of eigenvalues
appears to level off to the right of the plot.22

Multilinear Regression Analysis. The identification of the
most significant and mutually orthogonal molecular descriptors
related to the scores and loadings should indicate the structural
features that determine solubility. For this purpose, multilinear
regression (MLR) analysis can be employed to build QSPR
models where scores and loadings are used as dependent
variables. For the characterization of chemical structures of the
solutes and solvents, more than a thousand molecular descriptors
were calculated (for detailed descriptions, please refer to Parts
1-3)7-9 using Codessa Pro.24 Each score vector can be
regarded as a solute property; similarly, each loading can be
regarded as a solvent property. Elucidation of the most
significant multilinear relationships for scores and loadings from
the large number of descriptors requires a robust method. We
chose the best multilinear regression (BMLR) approach,25 which
utilizes forward selection of the best few descriptors related to
the dependent variable and has proven to be a reliable method
for QSPR model development.26-28 At the beginning of the
BMLR procedure, the descriptors with missing values were
removed. This was followed by construction of the best two-
parameter regression and then the best three-parameter regres-
sion, etc., based on the statistical significance, orthogonality (R2

< 0.1), and noncollinearity criteria (R2 < 0.6) of the selected
descriptors. The descriptor scales were normalized and centered
automatically, with the final result given in natural scales. The
final model has the best representation of the activity in the
given descriptor pool within the given number of parameters.
The quality of the models was assessed by the coefficient of
determination (R2), leave-one-out cross-validated coefficient of
determination (R2

CV), leave-many-out cross-validated coefficient
of determination (R2

CVMO), Y scrambled (10 000 randomization
steps) coefficient of determination (R2

SCR), Fisher’s criterion (F),
and the squared standard error of the regression (S2).

RESULTS AND DISCUSSION

Validation of Predicted Ostwald Partition Coeffici-
ents. The 1285 new experimental data points (Supporting
Information, SI-A) obtained during the preparation of this
manuscript were used to test the previously calculated log L

values.9 This external validation shown graphically in Figure
1 had the correlation coefficient R2

val ) 0.585, which is
reasonably significant considering the large number and
diversity of data points.

This validation discloses several large outliers with predic-
tion residuals higher than 3.05 log L units (that is, two times
the standard deviation) and highlights data points outside of
the 95% confidence region. The following groups of com-
pounds lie outside of the domain of most organic solutes:
(i) small inorganic gaseous solutes and (ii) phosphates
(cID469s471) in water. Group (i) is overestimated, where
SF6 (cID194) has the biggest deviation (red circles), others
are CF4 (cID221), CO2 (cID212), CS2 (cID161), and SO2

(cID198) (red triangles); group (ii) is underestimated (red
boxes). Those groups of compounds were not well covered
by the QSPR models used for the predictions because they
had seven or fewer experimental log L data points and
therefore, their log L values were not adequately estimated
in Part 3.9

Within the domain of organic solutes, outliers underesti-
mated by more than 3.05 units (colored in orange circles)
consist of dimethyl sulfoxide (cID63) and acetylsalicylic acid
(cID543) in water (cID116); dimethyl sulfoxide (cID63) in
chloroform (cID92); and eicosane (cID313) in N,N-dimeth-
ylformamide (cID88). Those organic solutes overestimated
by more than 3.05 units (colored in orange circles) include
ammonia (cID321), 2,5-dimethylhexane (cID187), trans-
stilbene (cID2), and 4-chlorobenzoic acid (cID340) in water
(cID116); methyl iodide (cID203) and ethyl iodide (cID184)
in aniline (cID90); difluorodichloromethane (cID530) in N,N-
dimethylformamide (cID88); difluorodichloromethane (cID530)
in N-methyl-2-pyrrolidone (cID405); and 2,2,2-trifluoroet-
hanol (cID72) in 2,2,2-trifluoroethanol (cID72).

Excluding all 75 outliers indicated above, the squared
correlation coefficient between the new 1210 experimental
values and the previously estimated log L produced the highly
significant R2

val ) 0.881. Therefore, considering the amount
and diversity of the compounds in the external validation
set, one can presume our previous predictions7-9 are reliable.
This demonstrates potential for the approach that encouraged
analysis of the results and further exploration of the log L
matrix.

Principal Component Model. In contrast with Part 3,9

we did not use preprocessed (standardized, centralized, and
normalized) data. The PCA model (M1) for the full raw data
matrix (153 solvents × 396 solutes) led to surprisingly good
results in comparison with a previously reported PCA
model.9 As can be seen from Table 1, the first PC alone
covered 97.1% of the data variability. The addition of the
second PC improved the model to include 97.9% of the total
variance in terms of R2X(cum). Further, each consecutive
component provided less than 0.5% improvement. Following
the scree test discussed above, the remaining components
did not cover enough variance to be considered significant.
Thus, only the first two PC’s of model M1 were used in the
next step. For completeness, the first 10 components and their
eigenvalues are provided in Table 1. Figure S1 of the
Supporting Information depicts a score plot for the first two
scores of model M1.

The observations (solutes) of the PCA model were
analyzed to eliminate outliers that can influence the analysis
of the model. Strong and moderate outliers were eliminated
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using raw residuals, such as distance to the model X
(DModX) and Hotelling’s T2 statistics. Distance to the model
X (Supporting Information, Figure S2) identifies both moder-
ate and strong outliers. Moderate outliers according to the
DModX (Supporting Information, Table S2) have values
between D-Crit[2] (1.151) and two times the value of
D-Crit[2]. Strong outliers are those that have more than twice
the value of D-Crit[2] (Supporting Information, Table S2).
The strong outliers were small gaseous compounds (SF6

(cID194), CF4 (cID221), and N2O (cID370)), phosphates
(cID469-471), and water (cID116). They were also the
biggest outliers in the external validation (see previous
section). According to DModX, a total of 67 strong and
moderate outliers were removed from the final analysis.

For the PCA model M1, the T2Crit value within a 95%
confidence interval is 6.05 within 2 PCs (Supporting
Information, Figure S3). Thus, 22 compounds with a value
higher than T2Crit were considered to be highly deviating
points because they are too far away from the origin of
the PCA model plane. The eliminated compounds include:
(i) long aliphatic chains, such as eicosane (cID313), one
ester (cID490), and long aliphatic alcohols, like 1-hexa-
decanol (cID311); (ii) bulky para-substituted benzenes like
haloperidol (cID142); (iii) 3 phosphates (cID535-537);
and (iv) water (cID116) (see Supporting Information,
Table S3).

Seventy-six solutes were defined as outliers by these two
criteria and eliminated. The remaining data matrix consisted
of 320 solutes × 153 solvents. Next, a new PCA model (M2)
based on the refined data was constructed (shown in Table

1), where PC1 still describes 97.8% of the variability and
PC2 extends to 98.6%. PCA model M2 is used for further
analysis.

Some moderate outliers remained in PCA model M2.
Their influence on the model was assessed using leverages
as an additional criterion. A leverage is defined as a
measure of the influence of a point (observation) on the
PCA model in X-space (OLevX). The sum of leverages
is equal to the number of principal components in the
model (i.e., the sum of leverages of a one-component
model is 1, for a two-component model the total sum is
2, etc.) Observations with high leverage are in the
periphery of a data set and significantly influence the PCA
model. Table 2 shows the five biggest leverages along
PCA model M2, each with a value over 0.02. It can be
seen that larger compounds (e.g., decane and undecane)
have higher leverage, as they tend to have different
Ostwald solubility coefficients than the rest of the
compounds. The full set of these long aliphatic hydro-
carbons formed a “line” on the score plot, and their
DModX is small, indicating that their high leverage is
acceptable. The influence of these five compounds on
model M2 is between 1-1.5%. Thus, they do not affect
the model enough to be considered outliers and should
not be removed. For all remaining solutes, the influence
is less than 1%, which means that the variance among
the observations (solutes) is equally distributed. For
completeness, leverages of all solutes are provided in the
(Supporting Information, Table S4).

The contributions of the variables (solvents) can be
evaluated by analyzing the cumulative fraction of the
variations explained by the selected component (R2VX(cum)).
This reveals only 7 solvents with R2VX(cum) less than 0.95.
Only two of the seven solvents, perfluorooctane (cID565)
and water (cID116), have R2VX(cum) values are less than 0.9
(0.82 and 0.88, respectively). Thus, the solvent series is well
described, and each contributes significantly to the model.
Statistics for all the variables (solvents) are provided in the
Supporting Information (Table S5).

Analysis of Scores and Loadings. As discussed above,
the first two PCs account for 98.6% of the total data
variance. The physical meaning of the respective scores
and loadings was analyzed via construction of QSPR
models. The optimal model for the score vector of the
first PC consisted of two molecular descriptors: gravitation
index (all bonds) and HA dependent HDCA-1. Based on
all 320 solutes, this model had an excellent squared
correlation coefficient R2 ) 0.96. The graphical repre-
sentation of the predicted and actual score values is
depicted in Figure S4 of the Supporting Information, and
the correlation equation is given in Table 3 (model 1).

The two descriptors in the QSPR equation have justified
physicochemical meanings. The gravitation index (all bonds),

Table 1. First 10 Principal Components of PCA Models M1 and
M2a

comp
no. eig R2X R2X(cum) Q2 Q2(cum) S2X

PCA model M1
1 131.72 0.9708 0.971 0.9703 0.970 0.713
2 5.82 0.0079 0.979 0.2407 0.977 0.525
3 3.00 0.0041 0.983 0.1378 0.981 0.427
4 2.30 0.0031 0.986 0.1338 0.983 0.353
5 1.38 0.0021 0.988 0.0823 0.985 0.302
6 1.23 0.0017 0.990 0.0785 0.986 0.262
7 0.77 0.0010 0.991 0.0145 0.986 0.237
8 0.71 0.0010 0.992 0.0583 0.987 0.214
9 0.48 0.0006 0.992 0.0045 0.987 0.199
10 0.42 0.0006 0.993 0.0031 0.987 0.186

PCA model M2
1 129.81 0.9778 0.978 0.9774 0.977 0.400
2 8.14 0.0078 0.986 0.3189 0.985 0.262
3 2.94 0.0028 0.988 0.1613 0.987 0.214
4 1.76 0.0018 0.990 0.0521 0.988 0.182
5 1.68 0.0016 0.992 0.1267 0.989 0.154
6 1.18 0.0011 0.993 0.1018 0.990 0.134
7 0.78 0.0007 0.994 -0.0105 0.990 0.121
8 0.67 0.0006 0.994 0.0567 0.991 0.110
9 0.52 0.0005 0.995 0.0292 0.991 0.102
10 0.44 0.0004 0.995 0.0282 0.991 0.095

a Eig is eigenvalues; R2X is fraction of sum of squares (SS) of
the entire X explained by the current component; R2X(cum) is
cumulative SS of the entire X explained by all extracted
components; Q2 is fraction of the total variation of X that can be
predicted by the current component; Q2(cum) us cumulative Q2 for
all the x-variables for the extracted components; and S2X is variance
of the X matrix. For component number A, it is the residual
variance of X after component A.

Table 2. Highest Leverages of Observations for PCA Model M2

solute M2.OlevX[2] influence

n-decane 0.029 1.45%
indecane 0.029 1.45%
4-nitrophenol 0.024 1.2%
tert-butylcyclohexane 0.022 1.1%
Nonane 0.020 1.0%
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G2, provides a direct estimation of the mass distribution
within the molecular space of the solute (eq 5).

where mi and mj are the atomic masses of atoms i and j, rij

is the atomic distance between the bonded atoms i and j,
and Nb is the number of chemical bonds in the molecule.
Therefore, this descriptor characterizes size- and bulk-related
properties of the solute molecules.

The HA dependent HDCA-1, HDCA1(Z,all)
HAdep, computes the

hydrogen-donor ability of the solute over its solvent-
accessible surface area (eq 6).

where SD is the solvent-accessible surface area of hydrogen-
bonding donor H atoms, identified by the threshold charge
on a hydrogen atom. A comparison with eq 2 indicates that
these two descriptors are each directly related to their
respective terms; the bulk descriptor G2 characterizes solute
size and is related to cavity formation, while HDCA1(Z,all)

HAdep

describes specific electrostatic interactions and, more im-
portantly, the HB. The derived QSPR model utilizes the same
descriptors as the models for boiling point25 and vapor
pressure29 reported previously. Such similarity is not unex-
pected because all of these properties are interrelated. Boiling
point is connected with vapor pressure through the Clausius-
Clapeyron equation, and according to the ideal gas law,
gas-liquid equilibria depend solely on vapor pressure, and

gas concentration is a denominator in the Ostwald solubility
coefficient. Thus, these properties depend quantitatively on
similar structural features of a compound.

Based on the descriptors calculated for the 153 solvents,
the QSPR equation containing six descriptors was derived
for the loading of the first PC (see Table 3, model 3). A
regression equation is obtained with moderate statistical
parameters, R2 ) 0.68 and F ) 53. Investigation of the
equation shows that water is a strong outlier which strongly
influences the correlation. The descriptors in the model are
polarity parameter, maximum bonding contribution for one
molecular orbital (MO), lowest unoccupied MO energy
(LUMO) energy, G2, total molecular 2-center resonance
energy, and H-donor FCPSA (version2). The moderate
correlation coefficient of the relationship is caused by the
concealed connections between the loadings’ and solvents’
characteristics. In addition, the descriptors of model 3 can
be grouped into terms as described by eq 2, namely,
descriptors related to dispersion, hydrogen-bonding and
electrostatic interactions are identified. However, the values
of the first loading are in a narrow interval (0.0376-0.0963)
compared to the scores (3.924-110.459). Consequently, the
score variation is about 1800 times bigger than that for
loadings, and thus the QSPR model for the first score is more
relevant. This leads to the conclusion that the loading values
for solvents are almost uniform, and indicates that Ostwald
solubility coefficient magnitude is mainly influenced by the
nature of the solute.

Similar QSPR equations were also developed for the
loading and score vectors of the second PC (see Table 3,
models 2 and 4). Here again, the descriptors in the respective
models can be grouped into terms as in eq 2. The descriptors

Table 3. QSPR Models for Scores and Loadings of PCA Model M2

no. X ( X t test descriptor ∆GS components

QSPR Model 1: First Score, Observed Range: 3.924-110.459a

0 1.554 0.559 2.780 intercept
1 0.0698 0.000820 85.050 gravitation index (all bonds) cavity
2 6.166 0.205 30.013 HA dependent HDCA-1 (Zefirov PC) (all) HB

QSPR Model 2: Second Score, Observed Range: -10.683-13.261b

0 12.345 0.516 23.908 intercept
1 0.0838 0.00284 29.483 complementary information content (order 0) cavity
2 -2.544 0.106 -24.090 total molecular electrostatic interaction electrostatic
3 -4.118 0.206 -19.978 total hybridization component of the molecular dipole electrostatic
4 -16.930 1.070 -15.827 polarity parameter (Zefirov) electrostatic

QSPR Model 3: First Loading, Observed Range: 0.0376-0.0963c

0 0.0485 0.00577 8.400 intercept
1 0.0470 0.00462 10.154 polarity parameter (Zefirov) dispersion
2 0.0245 0.00267 9.159 maximum bonding contribution of one MO HB
3 -0.00310 0.000357 -8.685 LUMO energy HB
4 -7.72 × 10-6 1.22 × 10-6 -6.310 gravitation index (all bonds) dispersion
5 0.00120 0.000283 4.223 total molecular 2-center resonance energy electrostatic
6 -0.289 0.0900 -3.213 H-donors FCPSA (version 2) HB

QSPR Model 4: Second Loading, Observed Range: -0.325-0.278d

0 0.222 0.0165 13.481 intercept
1 -8.539 0.493 -17.330 FPSA3 fractional PPSA (PPSA-3/TMSA) (Zefirov PC) electrostatic
2 0.0922 0.00850 10.839 difference (Pos - Neg) in charged partial surface area

(Zefirov’s PC)
electrostatic

3 -0.0126 0.00142 -8.839 maximum atomic force constant electrostatic
4 -0.0509 0.00882 -5.769 total hybridization component of the molecular dipole electrostatic
5 0.00304 0.000625 4.869 count of H-donors sites (Zefirov PC) (all) HB

a R2 ) 0.962, R2
CV ) 0.961, R2

CVMO ) 0.961, R2
SCR ) 0.006, F ) 4020.79, and S2 ) 12.84. b R2 ) 0.910, R2

CV ) 0.907, R2
CVMO ) 0.906,

R2
SCR ) 0.013, F ) 794.86, and S2 ) 1.926. c R2 ) 0.684, R2

CV ) 0.632, R2
CVMO ) 0.624, R2

SCR ) 0.040, F ) 52.652, and S2 ) 1.71 × 10-5.
d R2 ) 0.781, R2

CV ) 0.755, R2
CVMO ) 0.754, R2

SCR ) 0.033, F ) 104.65, and S2 ) 0.00149.

G2 ) ∑
i<j

Nb mimj

rij
2

(5)

HDCA1(Z,all)
HAdep ) ∑

D

SD (6)
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of the second score model are mostly related to electrostatic
interactions, with one descriptor related to cavity formation
(Table 3). The descriptors of the second loading model are
related to electrostatic interactions, accompanied by one
descriptor coding HB directly. Unlike the first loading, which
has a very narrow variation, variation among the second
loading is 10 times larger and shows an equal distribution
of positive and negative loading values (Supporting Informa-
tion, Figure S5). The second loading distinguishes the
solvents according to their potential electrostatic interactions,
which is supported and described through the relationship
with hydrophobicity (Supporting Information, Figure S5).
Therefore, the second PC accounts for the nature of solvents
and describes the solutes’ specific interactions with solvents.

Pattern Analysis of Score Plot. The distribution of solutes
according to the functional groups listed in the Supporting
Information, Table S1, does not exhibit a clear pattern on
the score plot. Figure S1 in the Supporting Information shows
strong overlap between different chemical groups, and
although clustering is present, it is concealed by the
complexity of the data. The next logical step is to simplify
the pattern analysis of the score plot and to explain each
component of the pattern.

The score plot of the first and second scores shows a
separation between aliphatic and aromatic compounds (Fig-
ure 2A). A separate cluster of aromatic compounds in the
aliphatic area contains exclusively benzenes with aliphatic
substituents. Other groups of compounds in the overlapping
area between aliphatic and aromatic compounds include
benzenes with halogen substitutions, heteroaromatic com-
pounds, and benzenes with a maximum of two HB
donor-acceptor sites. Further analysis of the pattern of
aliphatic and aromatic clusters incorporated structural (car-
bon) skeletons of the molecules as well as their saturation
levels together with functional groups and provided the
subsets given in Table 4. This analysis showed that the clear
view of aliphatic and aromatic clusters is shadowed by the
halo-hydrocarbons that are distributed over the PCA model
plane. This is illustrated by Figure 2B, which shows the
distribution of halo-hydrocarbons (Table 4: group IDs of
gID15 and gID16). In Figure 3A and B, the halo-
hydrocarbons have been hidden in order to observe the

patterns provided by the aliphatic (15 groups) and aromatic
(7 groups) clusters (Table 4).

Upon examination of the aliphatic compounds alone
(Figure 3A), one does observe some clearly distinguishable
groups as well as other groups that have strong overlap with
each other. A more detailed analysis provides an explanation
regarding the overlap and reveals the pattern. In the upper
left corner, aliphatic compounds form a distinct group of
hydrocarbons (gID1-3) consisting of saturated, unsaturated,
and saturated alicyclic compounds with aliphatic substituents
(Table 4). Hydrocarbons are considered to be nonpolar. The
difference between the three groups can be attributed to the
electronegativity order of hybridized carbon orbitals (sp >
sp2 > sp3) and to the substitution pattern. In following
discussion, one must also consider differences between

Figure 2. Score plots of model M2. (A) Aliphatic and aromatic compounds and (B) halo-hydrocarbons (IDs correspond to Table 4).

Table 4. Two-Level Grouping of Solutes Based on Molecular
Skeleton (Level 1) and Functional Groups (Level 2)a

group id level 1 level 2

1 aliphatic: saturated (aliphatic substitutions only)
2 aliphatic: unsaturated (aliphatic substitutions only,

includes also two cycles for solutes)
3 aliphatic: saturated alicycles (aliphatic substitutions only)
4 aliphatic: ethers (includes four cyclic ethers)
5 aliphatic: amines (includes four cyclic amines)
6 aliphatic: sulfides (includes one thiol for solutes)
7 aliphatic: ketones (includes two cyclic ketones)
8 aliphatic: nitriles
9 aliphatic: aldehydes
10 aliphatic: nitro compounds
11 aliphatic: esters
12 aliphatic: alcohols (includes two cyclic alcohols)
13 aliphatic: amides (includes one cyclic amide)
14 aliphatic: acids
15 aliphatic: halogen substitutions only
16 aromatic: benzenes (halogen substitutions only)
17 aromatic: benzenes (aliphatic substitutions only)
18 aromatic: benzenes (maximum two hydrogen-bond

donor-acceptor sites)
19 aromatic: benzenes (more than two hydrogen-bond

donor-acceptor sites)
20 aromatic: heteroaromatic (one ring only)
21 aromatic: polyaromatic hydrocarbons (PAH)
22 aromatic: heteropolyaromatic compounds

a Following the pattern on the scores plot.

1280 J. Chem. Inf. Model., Vol. 50, No. 7, 2010 TULP ET AL.



aprotic (ethers, ketones, nitriles, aldehydes, nitro compounds,
and esters) and protic (amines, alcohols, and carboxylic acids)
solutes along with the electronegativity of atoms and groups
that cause the compound’s polarity. Electrostatic interactions
are dominant when analyzing the compound pattern along
the diagonal from the upper left to the lower right corner.
The other diagonal from the lower left to the upper right
corners exclusively illustrates the size dependence. Groups
1-3 are followed by the ethers (gID4). Ethers are more polar
than alkenes but not as polar as esters (gID11), alcohols
(gID12), or amides (gID13) of comparable structure. This
positions ethers in between those groupings. There are two
points that severely deviate (Supporting Information, Figure
S9) from the trend of ethers, namely 1,2- (cID458) and 1,4-
dioxane (cID68). The deviation is probably due to the
presence of two oxygens, which leads to differences in
electronic structure and HB characteristics. Cyclic ethers are
miscible in water and similar protic solvents because of the
more exposed oxygen atom for hydrogen bonding as opposed
to aliphatic ethers. The next group visible as one travels from
the upper left to the lower right corner of the plot are amines
(gID5), which is the first protic group and possesses
properties of organic bases. The nitrogen in the amine is
much less electronegative than oxygen in the respective
alcohol. Therefore, the dipole on N-H is much weaker than
the dipole on O-H. This discriminates amines from other
protic solutes. The amine group contains all types of amines:
primary, secondary, and tertiary. Two tertiary amines,
triethylamine (cID198) and trimethylamine (cID493) are not
HB donors and reside in the ether region, creating overlap
between the two subsets. The amine group also contains a
number of cyclic compounds containing a nitrogen atom as
part of the ring system. One of the cyclic compounds,
morpholine (cID460), deviates from the rest (Supporting
Information, Figure S10) because of the additional electro-
negative atom (oxygen) in the compound, resulting in
improved HB acceptor characteristics along with changes
in electrostatic interactions, including polarity. The next small

and overlapping aprotic groups are sulfides (gID6), nitriles
(gID8), and aldehydes (gID9). The chemical properties of
sulfides (or thioethers) are similar to those of the corre-
sponding ethers. Thioethers are positioned slightly further
apart because their dipole moments are somewhat larger in
comparison with those of ethers. The sulfide group also
includes two thiols located near the sulfides (Supporting
Information, Figure S11). The low polarity of the S-H bond
makes thiols comparable to the isomeric sulfides. Nitriles
(gID8) and aldehydes (gID9) form rows of homologues
(Supporting Information, Figures S13 and S14). The aldehyde
group is aprotic and polar due to the electronegative double-
bonded oxygen attached to the carbon, making them more
polar than aliphatic ethers (gID4). Ketones (gID7) form a
large group of aprotic solutes covering a wider area (Sup-
porting Information, Figure S12) than aldehydes because of
the inclusion of cyclic ketones (cyclohexanone (cID77) and
cyclopentanone (cID326)) and 2,4-pentanedione (cID426).
A series of homologous nitro compounds (gID10) reside in
the middle of two large groups: esters (gID11) and alcohols
(gID12). The ester group (gID11) consists of 20 compounds
following the diagonal from the smallest to the largest
compound (Supporting Information, Figure S16). Dimethyl
carbonate (cID392) is located separately, close to the
carboxylic acids (gID14), which may be due to the additional
HB acceptor site.

Alcohols (gID12) form the largest single group and contain
26 compounds. Their polarity is comparable with esters and
they also possess HB donor properties. The diverse substitu-
tion pattern of alcohols results in a wide distribution in the
plot area. Amides (gID13) form a small separate group with
four compounds, and their polar properties resembling esters
and alcohols place them in the same area of the scores plot.
Although amides are considered to be more polar than acids
(gID14), they are positioned before acids in the pattern,
which is probably due to the HB donor capabilities of acids
in comparison with amides. A row of homologous carboxylic

Figure 3. Score plots of model M2. (A) Aliphatic compounds and (B) aromatic compounds (IDs correspond to Table 4).
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acids (gID14, Supporting Information, Figure S14) is a group
that can be easily distinguished in the pattern.

When observing aromatic compounds separately (Figure
3B), one can identify benzenes with aliphatic substituents
(gID17) as a distinct group in the upper left corner, ordered
along the diagonal from benzene (cID29) to hexamethyl-
benzene (cID430), with all combinations of substitution in
between (Supporting Information, Figure S22). Single-ring
heteroaromatic compounds (gID20) and substituted benzenes
having a maximum of two HB donor-acceptor sites (gID18)
are adjacent and slightly overlap each other. Of the het-
eroaromatic compounds, only furan (cID298) deviates from
the general trend, perhaps because it is the only compound
in the group that contains an oxygen atom in the ring. All
other heteroaromatic compounds contain nitrogen (Support-
ing Information, Figure S25). A group of substituted
benzenes with a maximum of two HB donor-acceptor sites
(gID18) consists of benzenes containing a single-electro-
negative aprotic or protic substituent, and disubstituted
benzenes where the second substituent is a methyl group
(Supporting Information, Figure S23). The next group
consists of benzenes with more than two HB donor-acceptor
sites (gID19) in the lower right corner of the score plot. The
group contains two monosubstituted benzenes, benzoic acid
(cID118) and fenuron (cID533), and the remaining solutes
are mostly di- and para-substituted derivatives of benzoic
acid or benzaldehyde. Polyaromatic hydrocarbons (gID21)
form a separate group, followed by the heteropolyaromatic
compounds (gID22). This group includes one deviating
secondary amine, diphenylamine (cID433), placed here due
to its electrostatic interactions (two π-systems and hydrogen-
donor site).

CONCLUSIONS

Construction and analysis of our two-component principal
component analysis (PCA) model for Ostwald solubility
coefficients produced an explained variance of 98.6%. Most

of the variance (97.8%) is covered by the first component.
Quantitative structure-property relationship (QSPR) analysis
indicates that the principal components describe multiple
solubility interactions rather than a single solute-solvent
interaction. The first component represents cavity formation
and hydrogen-bond (HB) interactions which can be codified
by the gravitational index and the hydrogen donor charged
surface area molecular descriptors. The second component
covers weaker and more specific electrostatic interaction
types. Analysis of the pattern observed in the score plot
provides a detailed explanation for each chemical group.

Despite the multi-effect nature of scores and loadings, in
addition to the explained pattern of the score plots, two
general types of interactions graphically represented in the
score plot can be discerned. First, the diagonal from the lower
left to the upper right corner in Figure 4A describes the size
of the molecule, i.e., the nonspecific interactions which
contribute to the cavity formation and the dispersion force
energy terms in eq 2. In Figure 4A, this trend is illustrated
with the molecular volume. Second, the diagonal from the
upper left to the lower right corner of Figure 4B indicates
specific interactions that are related to the polarity of
functional groups (electronegativity of atoms) which con-
tribute to the HB, the electron pair donor/acceptor, and other
specific interaction forces. The trend is illustrated according
to the groupings given in Table 4. However, we could not
identify any single property or molecular descriptor which
both quantified the electrostatic interactions and also showed
the complex nature of specific interactions.

External validation of the previously published predicted
Ostwald solubility coefficients provides a significant cor-
relation, R2

val ) 0.881, between the 1210 data points. This
exemplifies the relevance of the proposed methodology of
combining QSPR and PCA techniques for estimating solu-
bility in this series of publications. In principle, this approach
could be used for the prediction and analysis of other large
sets of experimental values.

Figure 4. Score plots of model M2. (A) An arrow indicates the growth of molecule size. Data points are colored according to the molecular
volume. (B) An arrow indicates the growth of polarity, electronegativity, and strength of electrostatic interactions. Data points are colored
according to the grouping of solutes given in Table 4.
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