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Abstract
The Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) and the Molecular
Mechanics/Generalized Born Surface Area (MM/GBSA) methods calculate binding free energies
for macromolecules by combining molecular mechanics calculations and continuum solvation
models. To systematically evaluate the performance of these methods, we report here an extensive
study of 59 ligands interacting with six different proteins. First, we explored the effects of the
length of the molecular dynamics (MD) simulation, ranging from 400 to 4800 ps, and the solute
dielectric constant (1, 2 or 4) to the binding free energies predicted by MM/PBSA. The following
three important conclusions could be observed: (1). MD simulation lengths have obvious impact
on the predictions, and longer MD simulations are not always necessary to achieve better
predictions; (2). The predictions are quite sensitive to solute dielectric constant, and this parameter
should be carefully determined according to the characteristics of the protein/ligand binding
interface; (3). Conformational entropy showed large fluctuations in MD trajectories and a large
number of snapshots are necessary to achieve stable predictions. Next, we evaluated the accuracy
of the binding free energies calculated by three Generalized Born (GB) models. We found that the
GB model developed by Onufriev and Case was the most successful model in ranking the binding
affinities of the studied inhibitors. Finally, we evaluated the performance of MM/GBSA and MM/
PBSA in predicting binding free energies. Our results showed that MM/PBSA performed better in
calculating absolute, but not necessarily relative, binding free energies than MM/GBSA.
Considering its computational efficiency, MM/GBSA can serve as a powerful tool in drug design,
where correct ranking of inhibitors is often emphasized.
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Introduction
Computational methods that combine molecular mechanics energy and implicit solvation
models, such as Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) and
Molecular Mechanics/Generalized Born Surface Area (MM/GBSA), have been widely
exploited in free energy calculations.1–3 Compared with the rigorous methods such as free
energy perturbation (FEP) and thermodynamic integration (TI) methods,4 MM/PBSA and
MM/GBSA are more computationally efficient. A related approach is the linear interaction
energy (LIE) method,5 which averages interaction energy from the MD simulations to
estimate the absolute binding free energy. Similar to MM/PBSA and MM/GBSA, LIE
restricts the simulations to the two end points of ligand binding. Different from most
empirical scoring functions used in molecular docking MM/PBSA and MM/GBSA do not
need a large training set to fit different parameter for each energy term.6–11 Moreover, both
of MM/PBSA and MM/GBSA allow for rigorous free energy decomposition into
contributions originating from different groups of atoms or types of interaction.12–14

In MM/PBSA or MM/GBSA, binding free energy (ΔGbind) between a ligand (L) and a
receptor (R) to form a complex RL is calculated as:

(1)

(2)

(3)

where ΔEMM, ΔGsol and −TΔS are the changes of the gas phase MM energy, the solvation
free energy and the conformational entropy upon binding, respectively. ΔEMM includes
ΔEinternal (bond, angle and dihedral energies), electrostatic ΔEelectrostatic and van der Waals
energies ΔEvdw. ΔGsolv is the sum of electrostatic solvation energy (polar contribution),
ΔGPB/GB, and non-electrostatic solvation component (non-polar contribution), ΔGSA. The
polar contribution is calculated using either GB or PB model, while the non-polar energy is
estimated by solvent accessible surface area (SASA). The conformational entropy change
−TΔS is usually computed by normal-mode analysis on a set of conformational snapshots
taken from MD simulations.

A common strategy to reduce noise and cancel errors in simulations is to run molecular
dynamics (MD) simulations on the complex only. Snapshots taken from this single
trajectory of MD simulation are used to calculate each free energy component in the above
equations. In such a single trajectory approach, ΔEinternal is canceled between ligand,
receptor and complex, which can significantly reduce the noise in most cases. One can also
use a separate trajectory approach to calculate the energy terms by taking snapshots from
three individual MD simulations of complex, protein and ligand separately.1 In principle,
this approach is more accurate than the single trajectory approach. Meanwhile, it is also
more expensive in terms of computational cost.

MM/GBSA or MM/PBSA has been successfully applied to various protein-ligand15–23 or
protein-protein/peptide complexes24–26 but their performance is system dependent27, 28 In
addition, MM/PBSA or MM/GBSA is sensitive to simulation protocols, such as sampling
strategy of generating snapshots and entropy calculation methods as well as other
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parameters, e.g. charge models, force fields, solute dielectric constant and radius parameters
in continuum solvent models.1 For example, Weis and coworkers studied how the force
fields and the methods to sample conformational space affected the calculated binding free
energies of seven biotin analogues. They found that simulation results are not sensitive to
force fields but explicit water molecules are indispensible in MD simulations.29

Here we systematically investigated the following issues in MM/PBSA and MM/GBSA
methods: (1). The effect of the length of MD simulations; (2). The suitable solute dielectric
constant to calculate the polar solvation energies; (3). The best way to perform the entropy
calculations; (4). Comparison of the performances of different PB and GB models to
evaluate the absolute binding free energy and rank affinities of ligands bound to the same
protein.

For such an investigation, it is necessary to choose a set of reliable test systems. We
performed MM/PBSA and MM/GBSA calculations with various protocols and parameters
for 59 ligands bound to six different proteins. These systems were selected because they
have been well characterized by X-ray crystallography, and reliable experimental binding
free energies have been obtained for a number of ligands. Moreover, systems like avidin and
P450cam have been studied by several theoretical techniques, such as FEP, LIE, and MM/
PBSA,28–32 and we can compare our results with the previous studies.

Materials and Methods
1. Preparation of complexes

The MM/GBSA or MM/PBSA calculations were applied to six different protein systems,
including α-thrombin (7 ligands), avidin (7 ligands), cytochrome C peroxidase (18 ligands),
neuraminidase (8 ligands), P450cam (12 ligands) and penicillopepsin (7 ligands). The
experimental binding data and the PDB entries for the six proteins are listed in Table S1 in
the supporting materials. The chemical structures of the ligands are shown in Figure S1 in
the supporting materials. The protonated states for all ligands are shown in Figure 1 in the
Supporting Materials.

For ligands bound to α-thrombin, cytochrome C peroxidase, neuraminidase and
penicillopepsin, MD simulations were performed based on the crystal structures of the
complexes. The starting structures of the six avidin analogues (b2–b7) were generated based
on the avidin-biotin complex (PDB entry: 1avd33). The biotin molecule in the crystal
structure was manually mutated to the other ligands. It has been shown that the neutral form
of the guanidinium group in b2 and b5 biotin analogues is dominant when it is bound to the
protein.34 Therefore, the neutral form of the guanidinium group was used in our simulations.
The crystal structures of the nine P450cam ligands were used for MD simulations. Starting
structures of the other three P450 ligands (e3, e5 and e6) were obtained by manually
modifying the ligand (e1) in the crystal structure of 2cpp35 with the conformation of the
protein unaltered. The preparation of the models was accomplished in the SYBYL molecular
simulation package.36

In the cytochrome C peroxidase complexes, the lone-pair electrons of the epsilon nitrogen in
His175 form resonant bonds with the iron ion and the hydrogen atom is located at the delta
nitrogen of His175. In the P450cam complexes, lone-pair electrons of the sulfur atom in
Cys357 form resonant bonds with the iron ion and this cysteine residue is thus deprotonated.
All the crystal water molecules were kept in the simulations.

The atomic partial charges of all ligands were derived by semiempirical AM1 geometry
optimization and subsequent single-point Hartree-Fock (HF)/6-31G* calculations of the
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electrostatic potential, to which the charges were fitted using the RESP technique.37 The
reason why we chose AM1 for optimization, not usually used HF/6-31G(d), is to reduce
computational cost.38 The optimization and the electrostatic potential calculations were
conducted by Gaussian03.39 Partial charges and force field parameters of the inhibitors were
generated automatically using the antechamber program in AMBER9.0.40

In molecular mechanics (MM) minimizations and MD simulations, the AMBER03 force
field was used for proteins41 and the general AMBER force field (gaff) was used for ligands.
42 The force field parameters developed by Giammona were used for the heme groups in the
cytochrome C peroxidase and the P450cam systems.43 To neutralize the systems, counter
ions of Cl− or Na+ were placed in grids that had the largest positive or negative Coulombic
potential around the protein. The whole system was immersed in a rectangular box of TIP3P
water molecules. The water box was extended 9 Å from solute atoms in all three
dimensions.

2. Molecular Dynamics (MD) Simulations
In MM minimization and MD simulations, particle mesh Ewald (PME) was employed to
treat the long-range electrostatic interactions.44 The dielectric constant was set to 1.0 and the
cutoff for nonbonded interactions was set to 8Å. Before MD simulations, the complexes
were relaxed by 5,000 cycles of minimization procedure (500 cycles of steepest descent and
4500 cycles of conjugate gradient minimization). After minimization, the system was
gradually heated in the NVT ensemble from 10 K to 300 K over 20 ps. Initial velocities
were assigned from a Maxwellian distribution at the starting temperature. We then
performed 5 ns NPT MD simulations with a target temperature of 300 K and a target
pressure of 1 atm. Temperature was controlled by the Andersen temperature coupling
scheme45 and the pressure was controlled by the isotropic position scaling protocol applied
in AMBER.46 The SHAKE procedure was employed to constrain all hydrogen atoms, and
the time step was set to 2.0 fs.47 After equilibration, the coordinates of the complexes were
saved every 2 ps. The MM optimization and MD simulations were accomplished by using
the sander program in AMBER9.0.46

3. MM/PBSA calculations
The gas-phase interaction energy between the protein and the ligand, ΔEMM, is the sum of
electrostatic and van der Waals interaction energies. The solvation free energy ΔGsolvation is
the sum of polar (ΔGPB) and non-polar (ΔGSA) parts. The ΔGPB term was calculated by
solving the finite-difference Possion-Boltzmann equation using Delphi II.48 In Delphi
calculations, the grid spacing was set to 0.5 Å, and the longest linear dimension of the grid
was extended at least 20% beyond the protein. The Parse radii were employed for all atoms.
49 The Pauling van der Waals radii 1.35 and 1.95 Å50 were used for F and Br, respectively.
For Fe in the heme group, the van der Waals radius in the force field was used. The value of
the exterior dielectric constant was set to 80, and the solute dielectric constant was set to one
of the three values: 1, 2 or 4.24 The non-polar contribution was determined based on solvent-
accessible surface area (SASA) using the LCPO method:51 ΔGSA=0.0072 × SASA. For the
calculations of ΔEMM, ΔGGB, and ΔGSA, 625 snapshots evenly extracted from the single
MD trajectory of complex from 0 to 5 ns were used.

3. MM/GBSA Calculations
In the MM/GBSA calculations, the gas-phase interaction energy (ΔEMM) and the non-polar
(ΔGSA) part of the solvation energy were calculated in the same way as in the MM/PBSA
calculations. The electrostatic solvation energy (ΔGGB) was calculated by using GB models.
A value of 80 was used for the exterior dielectric constant, and 1, 2 or 4 was used for the
solute dielectric constant for comparison. Three GB models implemented in AMBER9.0
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were used, including the pairwise GB model of Hawkins and coworkers (referred as
GBHCT)52, 53 with parameters developed by Tsui and Case,54 and two modified GB models
developed by Onufriev and colleagues (referred as GBOBC1 and GBOBC2).55

5. The entropy calculations
The normal-mode analysis was performed to evaluate the conformational entropy change
upon ligand binding (−TΔS) using the nmode program in AMBER9.0.46 Because the normal
mode analysis is computationally expensive, we only considered the residues within a 12 Å
sphere centered at the ligand and these residues were retrieved from an MD snapshot for
each ligand-protein complex. The open valences were saturated by adding hydrogen atoms
using the tleap program of AMBER9.0.46 The corresponding ligand and receptor were
extracted from the reduced complex structure. Then each structure was fully minimized for
100,000 steps using a distance-dependent dielectric of 4rij (rij is the distance between two
atoms) to mimic the solvent dielectric change from the solute to solvent until the root-mean-
square of the elements of the gradient vector was less than 5 × 10−4 kcal·mol−1·Å−1. To
reduce the computational demand, 125 snapshots were taken from 0 to 5 ns to estimate the
contribution of the entropy to binding. The final conformational entropy was obtained from
the average over the snapshots. It should be noted that different from the other energy terms
the entropy contribution is computed in a way independent of the internal dielectric
constant.

Results and Discussion
1. Binding free energies calculated by MM/PBSA

We first calculated the binding free energies of the six protein systems using the MM/PBSA
method. As the first try, the binding entropy was averaged over 45 snapshots from 0.2 to 2
ns, and the other energy terms were averaged over 225 snapshots from 0.2 to 2 ns. We
investigated how the interior dielectric constant affected the performance of MM/PBSA.
Three different solute dielectric constants (1, 2 and 4) in the PB calculations were used and
the best value was determined by comparing the correlation coefficients between the
calculated and the experimental binding free energies.

For the six systems studied here, the best correlations are shown in Figure 1, and the
calculated binding free energies and five energy components are listed in Table 1. In terms
of the correlation coefficients, the accuracy of MM/PBSA varied for different systems. The
binding free energies between avidin and its ligands from simulation correlate very well
with experimental values (correlation coefficient r=0.92). For three other systems, α-
thrombin, neuraminidase and P450cam, MM/PBSA achieved relatively satisfactory
performance (r = 0.68~0.81). MM/PBSA did not perform well on cytochrome C peroxidase
(r = 0.27) and penicillopepsin (r = 0.41).

The success of MM/PBSA on the avidin system is not surprising. The seven ligands have
homologous chemical structures and their experimental binding free energies span a wide
range, from −4.5 to −20.4 kcal/mol. The system has been widely studied by several
methods, including FEP,30 LIE,32 and MM/PBSA.18, 20, 28, 29 All the computational results
showed good correlation with the experimental values. In this system, it was observed that
the large change of the electrostatic interaction upon binding was compensated by the
desolvation energy (Table 1), which is common in many systems.

The correlation coefficient (r = 0.72 at εin= 1 and r = 0.69 at εin= 2) of the P450cam system
is acceptable. Almlöf et al. studied the P450cam using the LIE method and they achieved a
correlation coefficient of 0.96.31 It should be noted in the LIE analysis, two scaling
parameters (α and β) for van der Waals and electrostatic interactions, and a constant term (γ)
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were adjusted by linear correlation. That is to say, in LIE, different energy has different
weight. Therefore, it is not surprising to see that the correlation given by MM/PBSA is
worse than that given by LIE.

The correlation coefficient for neuraminidase (r = 0.68 at εin= 4) is not as good as that for
avidin. One possible reason is that, compared with the avidin test set, the binding free
energies of the neuraminidase ligands fall into a much narrower range, from −3.7 to −11.5
kcal/mol, than those of the avidin ligands.

There are 18 ligands in the cytochrome C peroxidase system, and their binding free energies
range from −3.9~−7.0 kcal/mol. As shown in Figure 1, the correlation coefficient is only
0.27, which means that MM/PBSA is not efficient to rank the binding affinities. The
predictions on cytochrome C peroxidase are poor, since the ligands are dissimilar, while
those of, for example, avidin are similar, and the binding free energy ranges relatively
narrowly (−3.85 to −7.07 kcal/mol). Moreover, the force field parameters used for the heme
group and the radii used in the PB calculations for the Fe ion are not as accurate as those for
other molecules. Similar as cytochrome C peroxidase, P450cam has a heme group in the
binding pocket. The prediction on P450cam is better due to the following reasons. First, the
binding free energies of the P450cam inhibitors fall into a wider range, from −5.5 to −11.8
kcal/mol. Second, the P450cam inhibitors are hydrophobic. The relatively small contribution
of the electrostatic and polar solvation energy to binding effectively reduces the magnitude
of fluctuations.

Compared with avidin and neuraminidase, the other two systems, α-thrombin and
penicillopepsin, are more challenging because their ligands have quite diverse chemical
structures (Figure S1 in the supporting materials). With respect to the correlation coefficient,
the prediction for α-thrombin is satisfactory. It should be noted that in Figure 1a the data are
not evenly distributed and one sample (a5, benzamidine) deviates from the others
significantly. In order to estimate the capability of MM/PBSA to rank the binding affinities
of the candidate molecules, the Spearman correlation coefficient (rs), which calculates the
correlation between two sets of rankings, has been calculated for the α-thrombin inhibitors.
However, the low Spearman correlation coefficient of 0.29 means that the predictions from
MM/PBSA cannot give effective ranking for the studied molecules. The calculated binding
free energy for a5 is unfavorable (5.20 kcal/mol) compared with other ligands. If we exclude
benzamidine in correlation, the correlation coefficient will decrease from 0.81 to 0.01. In
summary, for this case, MM/PBSA did not make reliable predictions for ligands with
diverse structures. Ligands a5 and a7 are positively charged in neutral aqueous solution,
while a1 to a4 do not have charged centers. Ligand a6 has two charged centers, but its net
charge is zero. The charged states of a5 and a7 might be the essential reason for the poor
predictions. The polarization of the charged molecules to the binding interface is quite
different from the neutral ones. Therefore, it is necessary to use different solute dielectric
constants to characterize the local environment of the binding interfaces. With the same
parameters for all ligands, the systematic errors associated with different types of ligands
cannot be canceled efficiently.

The correlation coefficient (r=0.41 at εin= 2) indicates that the prediction for the
penicillpepsin system is not satisfactory either. Although the charged state of all
penicillpepsin ligands was the same, diverse chemical structures still led to unsatisfactory
predictions.

In summary, we found that MM/PBSA achieved satisfactory performance on ligands with
similar chemical structures, such as in the cases of avidin and P450. For ligands with diverse
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structures such as those of α-thrombin and penicillpepsin, the accuracy of MM/PBSA
calculations varied upon systems.

2. Impact of the value of the solute dielectric constant
In MM/GBSA or MM/PBSA, the dielectric constant (εin) of unity (1.0) is normally used for
solute. But for macromolecules, especially for the highly-charged binding interface, higher
εin values are used for considering electronic polarization effect. We have compared the
binding free energies computed using three different solute dielectric constants, 1.0, 2.0 and
4.0. The correlation coefficients between the calculated binding free energies and the
experimental data are listed in Table 2. It is obvious that the predictions are sensitive to the
value of solute dielectric constant. For example, for the avidin system, εin=1 made the best
correlation (r = 0.92), which was much better than those using εin=2 or 4 (r = 0.67 or 0.51).
For the six systems studied here, if the correlation between the experimental binding free
energies and the predicted value was used as the criterion, εin= 1 performed best for avidin,
cytochrome C peroxidase, and P450cam; εin= 2 performed best for penicillopepsin; while
εin= 4 performed best for the other two systems, neuraminidase and α-thrombin. One thing
we need to point out is that MM/PBSA or MM/GBSA is usually used to rank the binding
affinities for some systems rather than give the accurate predictions of the absolute binding
free energies. Here, we used the single trajectory protocol to estimate the total binding free
energies, and the changes of the conformational energy for ligand and protein upon ligand
binding were not included. So it is reasonable that the prediction will be quite different from
the true values.

The unsigned mean errors (UMEs) of the predictions are listed in Table 2. The lowest UME
was coincident with the highest correlation coefficient in the cases of cytochrome C
peroxidase, neuraminidase and penicillopepsin. Therefore, an optimal solute dielectric
constant is not only important for ranking ligands but also for calculating the absolute
binding free energies. For the six systems we studied, three had a UME value with the best
correlation lower than 4.0 kcal/mol, one between 5.0 and 6.0 kcal/mol, one between 7.0 and
8.0 kcal/mol and one larger than 19 kcal/mol. These relatively large UMEs compared with
the binding free energies suggested that absolute binding free energy calculated by MM/
PBSA usually have large deviation from the experimental values, although it made
reasonable predictions for some systems.

Unfortunately, there is no universal dielectric constant suitable for all the six protein
systems. We thus investigated the inhibitor/protein binding interfaces in order to find a
possible way to choose an optimal solute dielectric constant.

For neuraminidase, εin= 4 made the best predictions. Neuraminidase has a highly-charged
binding pocket (Figure 2), characterized by nine charged residues, including five Arg’s
(Arg119, Arg153, Arg226, Arg294, Arg372, net charge is +1), three Glu’s (Glu120, Glu278
and Glu279, net charge is −1), and one Asp (Asp152, net charge is −1). More importantly,
three charged residues (Arg119, Arg294, and Arg372) can form strong ion-ion interactions
with the negatively charged center of the ligand.56 Therefore, a relatively larger value of
solute dielectric constant is justified to consider the strong electronic polarization of the
binding interface. This observation is consistent with the previous studies for the predictions
of the ligand/DNA system, where εin= 4 was shown to be a better choice than lower values.
57

For α-thrombin, εin= 4 also achieved the best correlation coefficient (r = 0.81). But as noted
above, the high correlation was due to the unbalanced distribution of the ligand samples. It is
not conclusive whether εin= 4 is the best choice for all α-thrombin ligands. The binding
pocket of α-thrombin includes three charged residues, Asp189, Asp194 and Glu217. Strong
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ion-ion interactions were found between Asp and the positively charged center of a5/a7 in
the crystal structures. In contrast, no ion-ion interactions were found between the protein and
the ligands a1~a4. It is questionable to use a universal solute dielectric constant to
characterize the complicated binding interfaces of the α-thrombin complexes. The calculated
binding free energies for the α-thrombin ligands based on εin = 1 and εin = 2 are listed in
Table S2 in the supporting materials, and those based on εin= 4 are listed in Table 1. As
shown in Table S2, εin = 1 or 2 is a good choice for ligands a1 to a4, but not for ligands a5
and a7. It is clear that ligands a5 and a7 prefer a larger dielectric constant. When εin = 1, the
predicted binding free energies for a5 and a7 are very positive, and they are only marginally
positive when εin = 4. In a5/α-thrombin complex, strong ion-ion interactions are observed
between a5 and Asp189, and a crystal water molecule is observed to mediate the interactions
between a5 and Phe227. The strongly polarized binding interface of protein/a5 needs to be
characterized by a high εin value. Therefore, the solute dielectric constant is not only
dependent on the target protein but also on the ligand. Even for the same target protein,
different εin values may be necessary to characterize different target-ligand binding
interfaces. According to the UMEs, maybe εin = 2 is a better choice than εin = 4.

For penicillopepsin, εin = 2 is a good choice. In the binding site of penicillopepsin, one
negatively charged residue, Asp77, is observed to form strong ion-ion interactions with the
positively charged center of the inhibitors.

For avidin, P450cam and cytochrome C peroxidase, εin=1 showed the best performance. For
avidin, no charged residues are founded in the binding pocket. For cytochrome C
peroxidase, one charged residue (Asp235) is found in the binding pocket, but no ion-ion
interactions were found between the protein and the ligands. Similarly, for P450cam, the
binding pocket has one charged residue (Asp297), but no ion-ion interactions were found
between P450cam and ligands.

Based on our analysis, a high solute dielectric constant, such as 4, is usually recommended
when the binding interface is highly charged, for example, several charged residues exist in
the binding pocket and especially strong ion-ion interactions are formed between the protein
and the ligand. When the binding interface is moderately charged, for example, two or three
charged residues exist in the binding pocket or effective ion-ion interactions are formed
between the protein and the ligand, a moderate solute dielectric constant, such as 2, is
preferred. When the binding pocket is hydrophobic and no ion-ion interactions are formed
between the protein and the ligand, the solute dielectric constant of 1 is the best choice.

Obviously, the solute dielectric constant is directly determined by the binding interface.
Therefore we characterized the interface properties, and studied the quantitative
relationships between the interface properties and the values of the solute dielectric constant.
The interface properties were characterized by the following steps: (1). Define the strong
polar/polar interaction pairs between the protein and the ligand. In the calculations, O, N and
S were defined to be the polar atoms. If the distance between a polar protein atom and a
polar ligand atom is less than a cutoff (5 or 6 Å was used here), the interactions for this
polar/polar atom pair are assumed to be strong. (2). Calculate the solvent accessible surface
area (SASA) for each complex and the corresponding uncomplexed protein using the
MSMS program with a probe radius of 1.4 Å.58 The SASA difference (SASAD) of the
protein is the interface area. (3). Calculate the total SASAD for the protein atoms which
were found in the strong polar/polar interaction pairs (defined as PSASAD). Figure 3 shows
the correlations between the PSASAD and the dielectric constants for the six protein/ligand
systems. Good correlation can be observed. It suggests that PSASAD may be a useful
measurement to help choose the solute dielectric constant in the MM/PBSA calculations.
Here we only analyzed six protein/ligand systems. There is no doubt that further studies are
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necessary to correlate the relation between the interface properties and the values of the
solute dielectric constant.

3. Impact of the length of MD simulations
In order to investigate the influence of simulation length on predictions, we conducted a
comparative study of free energy calculations by using ten different lengths of MD
simulations: 0.2~0.6 ns (50 snapshots), 0.2~1.0 ns (100 snapshots), 0.2~2.0 ns (225
snapshots), 0.2~3.0 ns (350 snapshots), 0.2~4.0 ns (475 snapshots), 0.2~5.0 ns (600
snapshots), 1.0~3.0 ns (250 snapshots), 1.0~5.0 ns (500 snapshots), 2.0~5.0 ns (375
snapshots), and 3.0~5.0 ns (250 snapshots). The correlations between the experimental
binding free energies and the predicted values and the standard deviations of the ten
correlation coefficients are summarized in Table 3. The standard deviations of four systems,
including α-thrombin, cytochrome C peroxidase, neuraminidase and P450cam, are larger
than 0.05; that is to say, for these four systems, the length of MD simulations shows obvious
impacts on the predictions. Moreover, it is interesting to observe that extending the
simulation time does not always improve the correlations between the predicted binding free
energies and the experimental values. For some systems, such as neuraminidase, the
predictions based on relatively short MD simulations are even slightly better than those
based on longer MD simulations. After comparing the r0.2~0.6ns and the r0.2~5ns values, we
found that for four systems, including α-thrombin, avidin, neuraminidase and
penicillopepsin, the predictions based on the much longer MD simulations (4.8 ns) are
obviously worse than those based on the shorter MD simulations (400 ps). It should be noted
that in the comparison the predictions for different lengths of MD simulations, the snapshots
were even extracted and then the numbers of snapshots for different MD simulations are
different. In order to check the effect of different number of snapshot for the same MD
simulation length, we compared the predictions based on 600 snapshots from 0.2~6.0 ns and
those only based on 100 snapshots from 0.2~6.0 ns. According to our calculations, the two
predictions yield the same correlation coefficients. That is to say, instead of using 600
snapshots 100 snapshots can also generate stable predictions.

The time evolutions of the RMSD values for the six avidin/ligand systems are shown in
Figure 4. The initial structures for these six complexes were manually modeled, which
justified the longer MD equilibration. The RMSD plots indicate that among all these six
avidin/ligand systems avidin/b5 achieved equilibrium after about 1.5 ns and avidin/b6
achieved equilibrium after about 200 ps. Some of them, such as b3, b4 and b7, seemly did
not reach equilibrium throughout the entire MD simulations. The fluctuations of enthalpies
for these six avidin/ligand complexes are shown in Figure 5. In order to assess the
convergence of the enthalpy, the cumulated mean values are also shown in Figure 5. The
enthalpies are quite variable, but the averaged values became stable quickly after a short
length of MD simulations for most cases (b4 to b7). Comparison between Figures 4 and 5
shows that the conformations of the avidin complexes are continuously tuned to be more
stable but the interaction between the ligand and the protein is not so sensitive to this fine
conformational adjustment. It is well-known that effective sampling is coupled with good
force field. When the force field is not precise enough, long-time conformational collection
is also not meaningful. Therefore, long MD simulations do not necessarily lead to accurate
binding free energy calculations when the single-trajectory protocol is used.

4. Impact of the conformational entropy
In order to investigate the impact of the conformational entropy on calculating relative
binding free energies, we compared the correlations between the calculated and the
experimental binding free energies with and without including the conformational entropy
term (Tables 2 and 4). We found that the inclusion of the entropy term did not always
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improve the prediction accuracy, as shown in the cases of α-thrombin, avidin and
cytochrome C peroxidase. For the other two systems of neuraminidase and P450cam,
considering conformational entropy obviously improved the correlations. For
penicillopepsin, the inclusion of the entropy term only improved the correlations slightly.
This observation is consistent with many previous studies that, without considering
conformational entropy, MM/PBSA could still achieve satisfactory accuracy of ranking
ligand affinities.

In this study, normal mode analysis (NMA) was used to estimate conformational entropy.
Although widely used, NMA is not perfect due to not considering anharmonic effects. One
observation from our calculations is that the calculated entropies fluctuate significantly
between MD snapshots (Figure 6). Such a large fluctuation is usual for the vibrational
entropies computed by NMA.21, 59 Large fluctuations in entropy predicted by NMA may
arise from the mismatch between the minimized geometries of the complex and of the
receptor or ligand.59 Therefore, a large number of snapshots is needed to obtain stable
predictions.

As noticed in many previous studies as well as in the current study, the success of MM/
PBSA relies on the cancellation of errors in individual energy components. Limited by the
computational cost of normal mode analysis, we took 45 snapshots for conformational
entropy estimation, far less than the 200 snapshots used in enthalpy calculation when we
calculated the binding free energies using the single trajectory from 0.2 to 2.0 ns. It is
possible that the fluctuation of entropy is synchronized with other terms and errors cannot be
canceled when using different set of snapshots. Therefore, we did another test by calculating
the enthalpic and entropic contributions by using the same 40 snapshots. The correlations
between the predicted and the experimental binding free energies are similar with or without
entropies when compared with the corresponding values shown in Tables 2 and 4. This
observation of no improvement of correlation implied that the errors of normal mode
analysis probably did not get canceled with other terms. However, we need to emphasize
that the single trajectory approach may not be a good choice for the estimates of the
conformational entropy. If the difference between the ligand free in solution and when it is
bound to the protein is significant, the prediction error may be significant. Moreover, as
shown in Figure 6, the entropy shows larger fluctuation, we must emphasize that the
estimation of conformational entropy based on 45 snapshots may not enough to get
converged predictions for some systems.

5. Comparison between MM/PBSA and MM/GBSA
The PB model is theoretically more rigorous than the GB models and MM/PBSA is often
considered to be naturally superior to MM/GBSA for predicting binding free energies. Here,
we compared the performance of these two methods on ranking binding affinities of the six
protein-ligand systems.

The three GB models examined in this study were the pairwise GB model developed by
Hawkins et al. (GBHCT)52, 53 and two modified GB models developed by Onufriev et al.
(GBOBC1 and GBOBC2),55 which were implemented in the AMBER software package.
Based on the correlation coefficients between the calculated and the experimental binding
free energies, GBOBC1 performed better than the other two GB models (Table 5).

Another interesting observation is that the performances of GBOBC1 and GBOBC2 were quite
different. The theoretical frameworks of GBOBC1 and GBOBC2 are the same, and the only
difference between the two models is the values of three parameters for calculating the
inverse of the effective Born radii. The performance of these two GB models on MD
simulations tested on several proteins were comparative in the previous studies,55 although
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further tests on an extensive set of protein structures revealed that GBOBC2 agreed better
with PB in calculating the electrostatic solvation free energy.60 For the six protein-ligand
systems studied here, GBOBC1 performed better than GBOBC2 obviously. GBOBC2 and
GBOBC1 gave comparative predictions for avidin, and GBOBC2 performs better than GBOBC1

on cytochrome C peroxidase. But for the other four systems, GBOBC1 gave much better
predictions than GBOBC2. Overall, our calculations showed that the GBOBC1 model was the
most accurate one among the three GB models to calculate binding free energies.

The predicted binding free energies and the corresponding energy terms calculated by MM/
GBSA based on GBOBC1 are listed in Table S3 in the supporting materials. Same as the
results of Gohlke and Case,26 the electrostatic solvation energy computed by GB was
consistently larger than that computed by PB, leading to lower binding free energy (Table
S3 and Table 1). The possible reason is that the PARSE radii are on average smaller than the
modified Bondi radii, which in turn leads to the dielectric boundary being closer to the
charge centre.27 The unsigned mean errors of the predicted binding free energies given by
MM/GBSA were 21.31 kcal/mol for α-thrombin, 9.30 kcal/mol for avidin, 5.62 kcal/mol for
cytochrome C peroxidase, 4.42 kcal/mol for neuraminidase, 6.07 kcal/mol P450cam, and
10.58 kcal/mol penicillopepsin. These values were larger than those given by MM/PBSA
(Table 2). Namely, MM/PBSA performed better than MM/GBSA on calculating the
absolute binding free energies for the six protein-ligand systems.

We also examined the performance of MM/PBSA and MM/GBSA to rank binding affinities
of ligands, which is often more important in many applications such as drug design than the
absolute binding free energies. As shown in Table 5, MM/GBSA based GBOBC1 gave better
correlations than MM/PBSA for two systems, α-thrombin and penicillopepsin; MM/GBSA
based on GBHCT gave better correlations than MM/PBSA for neuraminidase. For avidin, the
correlations given by MM/GBSA and MM/PBSA are similar. For cytochrome C peroxidase
and P450cam, the correlations given by MM/PBSA were better. The poor predictions of
MM/GBSA for cytochrome C peroxidase and P450cam might be due to the lack of accurate
GB parameters for the Fe ions. For the systems without metal ions in the binding sites, the
MM/GBSA calculations based on GBOBC1 performed better than MM/PBSA to rank the
binding affinities of the ligands.

In this work, we observed that MM/GBSA gives better correlations than MM/PBSA in most
systems. In principle, PB is more theoretically rigorous than GB, but it does not mean that
MM/PBSA can give better predictions than MM/GBSA. Maybe two reasons can be used to
explain the observations. First, here, the Parse parameter set was used to define the dielectric
boundary. However, previous studies have shown that Parse parameter set cannot give good
predictions of solvation free energies for amino acid side chain analogs and some relatively
complicated functional groups.1, 61 It is well known that the Parse radii are based on the
Pauling van der Waals radii.49 In Parse radii set, each element is defined as an atom type. It
is possible that a single radius for an element is insufficient. For example, the single radius
for carbon works well for simple aliphatics, while usually less well on heterocyclic and
aromatic systems.49 It is necessary to develop more reliable radii for PB based on a larger
set of experimental data for a set of more elaborately defined atom types. Second, the GB
parameters were usually fitted from the experimental values. The prediction errors of GB
can be well reduced by defining more atom types.

Conclusions
In the present study, we have evaluated the performance of MM/PBSA to calculate and rank
the binding free energies of 59 ligands for six different protein systems. Our results showed
that MM/PBSA gives good predictions for homologous ligands, and has a variable
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performance for ligands with diverse structures. We found that the MM/PBSA predictions
are very sensitive to solute dielectric constant, which is directly related to the characteristics
of the binding interface. In general, for highly-charged binding interface, a higher solute
dielectric constant (εin = 4) is preferred; for moderately-charged binding interface, a
moderate solute dielectric constant (εin = 2) is preferred; and for hydrophobic binding
interface, a low solute dielectric constant (εin = 1) is preferred. The optimal solute dielectric
constant is critical for different protein/inhibitor systems. We proposed a simple
measurement, called PSASAD, to guide the choice of this important parameter. There is no
doubt that further tests on a larger data set are necessary to choose the most optimal solute
dielectric constant. Compared with the solute dielectric constant, the predictions of MM/
PBSA are less sensitive to the length of MD simulations. However, the MD simulation
lengths still have obvious impact on the predictions; moreover, longer MD simulations are
not always necessary to achieve better predictions.

Our calculations showed that inclusion of the conformational entropy was crucial for
predicting absolute binding free energies but not for ranking the binding affinities of similar
ligands. Since the conformational entropy calculations showed large fluctuations, a large
number of snapshots are required for reliable calculations, and it is necessary to develop
more efficient methods to evaluate conformational entropy.

Finally, we compared the MM/PBSA and the MM/GBSA approaches. Three GB models
were used to calculate the electrostatic solvation energy, and they showed variable
performances. The GB model developed by Onufriev (GBOBC1) gave better accuracy than
the other two GB models (GBOBC2 and GBHCT). Although MM/GBSA achieved worse
predictions for the absolute binding free energies than MM/PBSA, it showed better
performance to rank the binding affinities for systems without metals.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The correlations between the binding free energies calculated by MM/PBSA and the
experimental values for (a) α-thrombin inhibitors, (b) avidin, (c) cytochrome C peroxidase,
(d) neuraminidase, (e) P450cam and (f) penicillopepsin.

Hou et al. Page 16

J Chem Inf Model. Author manuscript; available in PMC 2012 January 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The 3-D structure of the neuraminidase binding site. The ligand d1 is shown in ball-and-
stick representation, the Arg residues are shown in green stick representation, and the Glu
and Asp residues are shown in purple stick representation. The three Arg residues that can
form strong ion-ion interactions with ligands are labeled. The figure was generated using the
Discovery Studio molecular simulation package.61
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Figure 3.
The correlation between the best performed solute dielectric constants and the PSASAD
values for six complexes, α-thrombin/a1, avidin/b1, cytochrome C peroxidase/c1,
neuraminidase/d1, P450cam/e1 and penicillopepsin/f1. PSASAD was calculated based on a
cutoff of (a) 5 Å or (b) 6 Å to define polar/polar interactions between the protein and the
ligand. In this figure, the solute dielectric constant εin is 1 for avidin, cytochrome C
peroxidase and P450cam, 2 for penicillopepsin and α-thrombin, and 4 for neuraminidase.
For α-thrombin, εin= 4 is chosen based on the correlation coefficient; but as noted in the text,
εin= 1 or 2 may be a better choice for ligands a1 to a4.
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Figure 4.
The RMSD values in the MD trajectories of the six avidin/ligand complexes.
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Figure 5.
The fluctuations and the accumulated mean values of enthalpies for the six avidin/ligand
complexes.
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Figure 6.
The fluctuations and the accumulated mean values of entropies for the six protein-ligand
systems.
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Table 4

The correlations between the enthalpies and the experimental binding free energies

εin=1 εin=2 εin=4

α-thrombin 0.54 0.77 0.87

avidin 0.92 0.77 0.66

cytochrome C peroxidase 0.30 0.08 −0.13

neuraminidase −0.42 0.06 0.65

P450cam 0.59 0.65 0.65

penicillopepsin 0.25 0.35 0.32
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