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Abstract
A software package, termed “CYANOS”, has been developed to facilitate the data management
and data mining for natural product drug discovery efforts. This system allows for the
management of data associated with field collections, culture conditions, harvests, extractions,
chemical separations, and biological evaluation. This software utilizes a MySQL database for data
storage, which allows for reporting and data mining via third party tools. In addition, a web-based
interface was constructed to allow for multi-user access from a variety of desktop platforms. The
code for this system is freely available and has been released under the Illinois Open Source
license.
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Chemoinformatics has been recognized as an important part of drug discovery efforts. A
review by Brown1 defined chemoinformatics as the process “to transform data into
information, and information into knowledge”. This knowledge is then used to improve
decision-making in a drug discovery effort. In particular, the two decisions that Brown
emphasized were “what to test next” and “what to make next”. Typically, a chemoinformatic
approach for a drug discovery effort will utilize the chemical structure data of the
compounds in the screening library and bioinformatics of a target to produce the
“information” and “knowledge” as defined by Brown.2 For synthetic libraries, these
chemical data are easily obtained since the structure of the compounds are defined when the
library is created.

This is rarely the case for natural product drug discovery efforts, where the structural
information of an active constituent is not known until after multiple rounds of bioassay-
guided fractionation. In addition, natural product samples are typically complex mixtures
and not a single chemical entity. Techniques have been developed to short cut the process of
bioassay-guided fractionation and thereby decrease the time from initial extraction to when
the structures are determined of the active components.3–6 While these techniques may
speed the identification of active components, they often increase the amount of data
generated for each sample analyzed. Thus, it is important to effectively manage the data
generated, in order to improve decision-making through data mining and aid prioritization
during the natural product drug discovery effort.
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The use of simple files and spreadsheets, along with a directory structure standard, can
simplify the data management of the various pieces of information. However, the process of
searching and data mining becomes increasingly difficult, especially if the data are stored in
a variety of file formats, e.g. Microsoft Excel, PDF, and plain text. It was with these
challenges in mind that we began the development of a data management system that would
store and maintain data as well as allow for searching and data mining to improve data
access and report generation for natural product drug discovery efforts.

Requirements
We established four requirements for the design of this data management system.

1. It must allow multiple researchers to work together and combine their data in real
time.

2. The data should be easily accessible for generating reports and data mining.

3. The data schema and program functions should facilitate the dereplication of
natural products.

4. The system should provide programming interfaces and a development library to
allow further customization for specific deployments of the application.

In this article, we describe the logical design and give a high level view of the
implementation of this data system. Further details of the implementation and developer
information can be found at http://www.uic.edu/labs/orjala/cyanos. The logical design of
CYANOS included various entities and associated attributes, listed below, that are important
in natural product drug discovery efforts. Figure 1 depicts the entity relationship diagram
(ERD) for these objects.

LOGICAL DESIGN
Sample Information

At the heart of the data is the sample that is evaluated biologically and chemically. In a
natural product drug discovery effort, there are three main classes of samples: crude extracts,
fractions, and pure compounds. From a hierarchical standpoint, extracts are the children of
harvested biomass and are the parent of fractions, via a chemical separation. Fractions in
turn can be the parent of further fractions as well as purified compounds. In the case of all
three classes, daughter samples can be created for storage libraries or sample submission for
biological evaluation. A single sample class was defined that would contain common
information for all samples, e.g. location, label, date, and amount. Specific attributes and
relationships were then used to define the sample as a crude extract, fraction, or pure
compound. The source material and resulting fractions of a chemical separation were also
linked to the separation record, which stored data relating to the chromatographic
parameters. All samples had transaction histories, which linked daughter samples and
allowed a view of the full history of any particular sample. Sample collections, either
physical or logical, were defined to help organize samples and these sample collections were
then grouped into sample libraries.

Compound Information
In order to facilitate dereplication of compounds previously isolated, a data class was
defined for compound information. A compound record would contain the key chemical
attributes, i.e. formula weight, mono-isotopic mass, molecular formula, SMILES string, and
the 3D structure in MDL format. When a particular compound was purified from a sample,
the relevant sample record was linked to the associated compound record. Since sample
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records were linked to other records in the database, e.g. strain and bioassay, one could
retrieve relevant biological information for a particular compound.

Strain Information
For our project in particular, we were working with cultured cyanobacteria as the source for
natural products. Thus, it was important to capture culture information, which included
strain attributes (strain), culture conditions (inoculation), and harvest information (harvest).
In addition, it was important to maintain all information related to the collection of
biological material from the field as well as the strain isolation information for strains
unique to our culture collection. This was implemented by creating separate records for
collections and isolations, then create relationships from collections to isolations, allow
iterative isolation records, and finally link the isolation record to a strain. Since biological
diversity often leads to chemical diversity, it was important to maintain taxonomic
information in the data management system to improve searching and reporting functions of
the software. Taxonomic data, i.e. kingdom, phylum, class, order, and family, was separated
from strain information but linked via the genus.

Biological Activity Data
Ultimately, biological activity is the driving force for any natural products drug discovery
project. A single class was defined to store assay data. The assay record contained important
attributes, e.g. date, target and activity threshold, and separate records would store the data
for samples evaluated, which included parent sample/strain, concentration, and activity
value. The determination of active vs. inactive was performed on demand using the stored
attributes of the assay. Occasionally, the data reported from an assay is indefinite, e.g. IC50
< 3 μg/mL. From a computing standpoint, a standard primitive, e.g. a floating-point number
or integer, could not properly store this value. To accommodate indefinite values, the sign,
i.e. less than (<), greater than (>), or none, of a value would be stored along with the
numerical value for any activity data point.

External Data
Aside from the basic attributes of each record, e.g. date, weight, source, and activity, it was
also important to be able to link records to external data files, such as HPLC-UV
chromatograms, mass, and NMR spectra. For samples, extracts, fractions, and compounds,
one can link data files for HPLC chromatograms, MS, and NMR data. Separation records
could be linked to chromatographic data, while strains could be linked to external URLs and
photos. Assay records could be linked to raw data files and reports. For any of the external
data files, any binary or text format was acceptable, and thus one could link proprietary, raw
data, e.g. a Bruker FID or Agilent Chemstation datafile, or a standard representation, such as
a PDF report or PNG/BMP graphic.

Project management
A project class was defined to allow researchers to organize data based upon the associated
project. The stored attributes of the project class was the project code, a short name or label,
and a brief description of the project. The project would link the associated data via project
codes stored in records of field collections, isolations, strains, inoculations, harvest, samples,
separations, and bioassays.

REPORTING AND DATA MINING
The ultimate value of storing data in a relational database is the ability to rapidly access
select data elements for report generation and data mining. A variety of third party tools, e.g.
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Crystal Reports and Microsoft Excel, are available to generate reports from and data mine
using an SQL based database. For simple reporting, we found that Microsoft Excel (via
Pivot Tables) and OpenOffice.org (via Data Pilot) worked well to generate query-based
reports, which could be re-generated on a regular basis. Example reports from our database
are shown in Tables 1 and 2. These simple reports were useful for creating status reports as
well as tracking strains from the time they are added to the collection through cultivation,
harvest, extraction, and biological evaluation.

Reports generated from the database are valuable for tracking the progress of a project,
however greater value arises from data mining. Data mining can be defined as the process of
elucidating relationships in a large dataset, which has been indicated as an important part of
chemoinformatics for drug discovery.7 A key relationship for natural product drug
discovery efforts is that of biological diversity (taxonomy) and biological activity. The
report query for Table 2 can be modified, as shown below, to report activity data and thus
calculate hit rates for various taxonomic groups (Table 3). This query utilizes a custom SQL
function, named ACTIVE, to determine in the stored value satisfies the activity threshold
stored with the assay information. This function returns the number “1” for values that
satisfy the activity threshold and “0” for values that do not. A report using DataPilot
(OpenOffice.org) or Pivot Tables (Microsoft Excel) could use a count of culture IDs
(s.culture_id) to determine the number of strains evaluated and the sum of the active field to
reveal the number that produced an active extract.

SELECT s.culture_id, a.target, t.ord, MAX (ACTIVE (ad.activity +
ad.sign, a.active_level, a.active_op)) AS “Active”
FROM assay_info a
JOIN assay ad ON (ad.assay_id = a.assay_id)
JOIN species s ON (ad.culture_id = s.culture_id)
LEFT OUTER JOIN taxonomic t ON (s.genus = t.genus)
GROUP BY s.culture_id, a.target;

The results from our data revealed that only the orders Nostocales and Stigonematales had
active members in each assay. In the case of the whole cell assays; i.e. H460, HT-29, MCF7,
and SF268; the hit rate for either of these two orders was at least twice that of any other
taxonomic order. These results would indicate that members of Nostocales and
Stigonematales, which comprise of all the heterocyte-forming genera, are a good source of
biologically active extracts for these targets. Based upon these results, strain isolation efforts
could be modified to ensure that any Nostocalean and Stigonematalean cyanobacteria found
in field collections would become part of the culture collection.

This query is not limited to the taxonomic order of the strain. It would also be possible to
report and group the activity data by other taxonomic groups, e.g. family or genus.
Furthermore, it would be valuable to group activity data by culture medium or culture
source. In the case of our data, we were interested to determine, if strains acquired from
outside collections had similar hit rate as those strains recently isolated in house. We had
hypothesized that strains acquired from other collections would have a lower hit rate. We
based this hypothesis on the premise that many of these strains have been cultured from
numerous years and the lack of competition or other selective pressures has resulted in a
reduction of secondary metabolite production. The previous query was modified, as follows,
and when the results were grouped by source, it was possible to calculate the hit rate for
each source, i.e. UIC or Non-UIC (Table 4).
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SELECT s.culture_id, a.target, t.ord, MAX(ACTIVE(ad.activity +
ad.sign, a.active_level, a.active_op)) AS “Active”,
IF(s.culture_source LIKE ‘UIC%’, ‘UIC’, ‘Non-UIC’) AS ‘Source’
FROM assay_info a
JOIN assay ad ON (ad.assay_id = a.assay_id)
JOIN species s ON (ad.culture_id = s.culture_id)
LEFT OUTER JOIN taxonomic t ON (s.genus = t.genus)
GROUP BY s.culture_id, a.target;

The results revealed that the strains acquired from other collections (Non-UIC) displayed a
hit rate similar to and in many cases greater than the hit rate displayed by strains recently
isolated from the field (UIC). These results were contrary to our hypothesis and indicate that
strains acquired from other collections can be as valuable as strains that are recently isolated
from the field. Based upon these results, we have decided to continue to supplement our
culture collection with strains acquired from other collections.

The data mining of biological activity is not limited to basic strain attributes, e.g. taxonomic
order or source, but can also link chemical information. In particular, initial fraction data can
be added to the database and the query can be modified, as shown below, to relate the
bioassay hit rates with fractionation values, e.g. fraction number. For this example,
separation data tagged as “PREFRACTIONATION” were performed using a standardized
protocol.

SELECT d.culture_id, f.fraction_number, a.target
FROM assay d
JOIN assay_info a ON (d.assay_id = a.assay_id)
JOIN separation_product f ON (f.sample_id = d.sample_id)
WHERE active (d.activity + d.sign, a.active_level, a.active_op) = 1
AND f.tag = ‘PREFRACTIONATION’;

The results of this query (Figure 2) displayed a small trend of activity for fractions 3–5. The
report also showed activity associated with fractions 7–8, further analysis of these fractions
revealed interference due to pigments. Based upon these results, we have modified our
screening protocol to include an extra cleanup step for fractions 7–8 and thereby reducing
the number of false positives due to interference. This evaluation is preliminary, since the
number of active fractions is low (N = 28). As more assay data is generated and added to the
database, the query can be re-evaluated easily. In addition, it would be possible to organize
the data by other fields, so, for example one could evaluate and compare the fraction activity
trends for strains in different taxonomic orders.

Results from the first data mining query (Table 3) revealed that extracts from cyanobacteria
of the orders Nostocales and Stigonematales displayed the highest hit rate. Given this
activity trend, we decided to evaluate our collection efforts for overall efficiency, i.e. the
number of strains produced per collection, as well as taxonomic diversity. In particular, we
were interested in determining which months would be the best to collect cyanobacteria in
the orders Nostocales and Stigonematales. Two queries were created for this data mining
exercise. The first query was used to report the total number of collections for each month of
a year and the second was used to determine taxonomic information of strains isolated from
those collections.

Chlipala et al. Page 5

J Chem Inf Model. Author manuscript; available in PMC 2012 January 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



SELECT c.collection_id, MONTH(c.date)
FROM collection c
GROUP BY MONTH(c.date)
ORDER BY MONTH(c.date); 

SELECT s.culture_id, MONTH(c.date), t.ord
FROM species s
JOIN isolation i ON (s.culture_source = i.isolation_id)
JOIN collection c ON (c.collection_id = i.collection_id)
JOIN taxonomic t ON (t.genus = s.genus); 

The results from this query (Figure 3) revealed that the month of July was the most
productive, in terms of total number of collections, however the month of June had a higher
percentage of strains per collection (46% vs. 27%). In addition, collections from the month
of June produced higher percentage of strains in the order Nostocales (44% vs. 24%) than
any of the summer months, i.e. June, July, and August. Based upon some initial observations
of material collected, we had hypothesized that early summer was dominated by green algae,
e.g. Spirogyra, and cyanobacteria would be more prevalent in the late summer. However,
these results (Figure 4) have shown that early summer is just as important, if not more so,
than the rest of the summer collection season. Based upon these results, we now schedule
our collection trips in the Midwest for both early and late summer.

Data mining is not limited to the examples shown here. The current database schema allows
one to add chemical data, e.g. MDL data files and SMILES strings, and link these entries to
sample records, which would then be linked to other records, e.g. strain and bioassay. The
following example query would report compounds isolated from strains along with the
taxonomic order and culture source.

SELECT s.culture_id, t.ord, IF(s.culture_source LIKE ‘UIC%’, ‘UIC’,
‘Non-UIC’) AS ‘Source’, ch.name
FROM sample sa
JOIN species s ON (sa.culture_id = s.culture_id)
JOIN compound ch ON (ch.compound_id = sa.compound_id)
LEFT OUTER JOIN taxonomic t ON (s.genus = t.genus); 

The chemical data stored within the database is not limited to simple reporting of the data.
Chemoinformatic functions and queries can be used to create data mining queries that
directly utilize the stored chemical data. The following example uses the myChem8 package
to allow matching of stored chemical data using a SMARTS query.9 The SMARTS query in
the example would match compounds with an aldehyde moiety. Software packages, such as
Marvin and iBabel, are available that can generate SMARTS queries using a drawn
structure. 10,11

SELECT s.culture_id, t.ord, IF(s.culture_source LIKE ‘UIC%’, ‘UIC’,
‘Non-UIC’) AS ‘Source’, ch.name
FROM sample sa
JOIN species s ON (sa.culture_id = s.culture_id)
JOIN compound ch ON (ch.compound_id = sa.compound_id)
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LEFT OUTER JOIN taxonomic t ON (s.genus = t.genus)
WHERE MATCH_SUBSTRUCT(‘[CX3H1](=O)’, ch.smiles) = 1; 

Reporting geospatial information
In the previous data mining examples, results were used generate report tables and
categorical plots. The inclusion of position data, i.e. latitude and longitude, in collection
records allows one also to visualize trends as a function of geographic location. The query
for Figure 3 can be modified, as shown below, to report taxonomic diversity with associated
geographic information. The results of this query could be imported into a geographic
information system (GIS), such as GRASS or Quantum GIS.12,13 Once the data is
accessible to a GIS, the results of the query could be plotted on a map, which would give
one a view of taxonomic diversity in relationship to geographic location (Figure 5).

SELECT s.culture_id, MONTH(c.date), t.ord, c.latitude, c.longitude
FROM species s
JOIN isolation i ON (s.culture_source = i.isolation_id)
JOIN collection c ON (c.collection_id = i.collection_id)
JOIN taxonomic t ON (t.genus = s.genus); 

The query can be further modified, as seen below, to report strains that are considered active
in a biological assay and the associated assay target. The results of this query would then
allow one to visualize biological activity as a function of the geographic location of the
original collection.

SELECT DISTINCT s.culture_id, MONTH(c.date), t.ord, c.latitude,
c.longitude, a.target
FROM species s
JOIN isolation i ON (s.culture_source = i.isolation_id)
JOIN collection c ON (c.collection_id = i.collection_id)
JOIN taxonomic t ON (t.genus = s.genus)
JOIN assay a ON (a.culture_id = s.culture_id)
JOIN assay_info ai ON (a.assay_id = ai.assay_id)
WHERE active(a.activity + a.sign, ai.active_level, ai.active_op) = 1;

The query can also be modified to link chemical data. A simple query, as shown below,
could return the name of the compounds isolated with associated geographic data

SELECT DISTINCT s.culture_id, ch.name, c.latitude, c.longitude FROM species s
JOIN isolation i ON (s.culture_source = i.isolation_id)
JOIN collection c ON (c.collection_id = i.collection_id)
JOIN sample sa ON (sa.culture_id = s.culture_id)
JOIN compound ch ON (ch.compound_id = sa.compound_id); 

The results from the queries listed previously can also be used to visualize trends based upon
taxonomic order, month of the collection, as well as the geographic coordinates. All of the
queries can be reevaluated on a regular basis to provide updated results and thus simplifying
the process of generating reports.
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Dereplication
The ability to quickly identify known compounds is a very important part of natural product
research. To aid this process, we developed two search engines, one to search using mass
spectroscopic data and another utilizing 1H NMR data. The MS search form (Figure 5)
allows queries based upon an m/z value, a specified deviation (in Da or ppm), and a list of
possible adducts (including a molecular ion, “M”). The MS search engine will then build a
query that utilizes the stored monoisotopic mass values to find compounds that would satisfy
the specified search parameters. This query would calculate the mass of selected adducts,
thus eliminating the need to store values for all possible adducts.

While mass spectrometric data can be very useful in identifying a compound, variability in
both the ionization of compounds and accuracy of different spectrometers can obscure the
true identity of the compounds of interest. On the other hand, 1H NMR data can provide a
clearer picture of the compounds in a sample and the structural features of those molecules.
While it is possible to catalog and search NMR spectra directly,15 a simpler method is to
utilize 1H NMR data to determine the number of key moieties, e.g. singlet methyls and
aromatic protons, and search against the chemical structure data rather than the NMR
spectral data.16 This method of NMR-based dereplication has been successfully utilized by
Lang et al. to dereplicate compounds using the Anti-Marin database.17 Following their
example, the NMR search engine of CYANOS was designed to find compounds using key
chemical moieties (Figure 5). For each moiety, a specific quantity or range can be specified,
e.g. 1–3 or 2+. From an implementation standpoint, CYANOS utilizes the Mychem
extension for MySQL,8 which allows the search engine to utilize SMARTS patterns to find
compounds based upon SMILES strings stored in the database.

The CYANOS dereplication search engine was useful in identifying a known alkaloid from
an extract of a Hapalosiphon welwitschii. LC-MS data revealed a compound with a major
ion of m/z 305.2004 in positive-ion mode. The mass spectrum also revealed an ion of m/z
327.1833. The mass difference of c. 22 indicated that the first ion, m/z 305.2004,
corresponded to the [M+H]+ adduct and the second ion was the [M+Na]+ adduct. A search
of either of these two ions, returned a list of five compounds (1–5) (Figure 6). The 1H NMR
spectrum indicated the presence of a 1,2-disubstituted aromatic ring and adding these
parameters to the search narrowed the list to two compounds (1 and 3). The 1H NMR
spectrum also revealed only four aromatic signals and adding this parameter to the search
reduced the list to a single compound (1, fischerindole U isonitrile). 18

Ultimately, both the MS and NMR moiety search engines in CYANOS are only as useful as
the data stored in the database. To aid the creation of compound data, CYANOS utilizes the
Chemistry Development Toolkit (CDK)19 to generate the molecular formula, formula
weight, mono-isotopic mass, and SMILES string of a compound using chemical structure
data from an uploaded MDL file. This ability to extract and store chemical information from
a MDL file has simplified the process to add compound data to CYANOS and subsequently,
we have employed it to build a focused database of known compounds from cyanobacteria.
Also, it is important to note that CYANOS and its dereplication search engine were not
designed as to replace other chemical databases, e.g. SciFinder and Anti-Marin,17,20 but
rather to provide a simple search engine for unpublished or proprietary compounds that
would not be found in commercial or third party databases.

IMPLEMENTATION DETAILS
The system was implemented using a third party relational database management system
(RDBMS). This provided the advantage of the possible integration of various existing third
party tools that could aid the administration, management, searching, and data-mining of the
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information stored in the database. A variety of RDBMS are available from different
software companies, e.g. IBM DB2, Oracle, Microsoft SQL Server and MySQL, with each
providing robust storage, indexing, and searching functions. We chose to start development
with MySQL v5.0, since the RDBMS and development libraries were freely available.21

A web-based interface was developed to provide the multi-user access as specified by
requirement 1. We utilized Apache Tomcat v5.522 as the web application server. For
software development, we utilized version 1.5 of the Java Development Kit (JDK)23 from
Sun Microsystems, Santa Clara, CA and the Eclipse SDK v3.224. In addition, the software
for the data management objects were separated from the web interface code, in essence
providing a software library that could be used to develop or integrate other applications
(Figure 7). The schema SQL code, web application, and development library for CYANOS
have been released under the Illinois Open Source License. 25

Record identifiers
From an entity relationship standpoint, many of the objects, e.g. inoculation, sample,
separation, and harvest, could be weak entities (Figure 1). A weak entity is defined as an
object where the identifier (primary key) is a combination of the parent object’s key and a
secondary key. For example, an inoculation could be identified by the strain ID and date of
the inoculation. While this system of identification is valid, it can make data management
and cross referencing difficult. Also, if the keys are not chosen carefully, it is possible to
have multiple instances of the same class share the same key, e.g. multiple inoculations of
one strain on the same date. To avoid many of these pitfalls, the main objects in CYANOS,
i.e. strain, field collection, isolation, bioassay, inoculation, sample, separation, and harvest,
were defined as strong entities in which each entity has their own independent, unique key.

In the CYANOS database strains, field collections, isolations, and bioassays have a
manually entered, alphanumeric identifier with a maximum length of 32 characters. For
inoculations, harvests, samples, and separations, the MySQL database server automatically
generated the identifier in the form of a serial number for each new record created. Each of
the “serial number” classes, i.e. inoculations, harvests, samples, and separations, maintained
their own sequence of serial numbers thus, a number itself was not unique to a particular
class. The serial number field was defined as an unsigned 64-bit integer and allows numbers
from 0 to 264 − 1 (approximately 1.84 × 1019).

Data entry and collaboration
The developed web application allowed for data entry through the use of online web forms
or the upload of Microsoft Excel XML or OpenOffice.org spreadsheets. The online forms
were well suited to low throughput tasks, such as creating a strain, making a harvest, or
creating an extract, while spreadsheet uploads allowed for the quick entry of results from
biological evaluations or the creation of sample libraries and separations. Given that the web
site was accessible to anyone with a suitable web browser, tasks were efficiently delegated
to members of the team. For example, the culture specialist in our research group was
responsible for adding new strains, inoculating growths and harvesting the material. Using
this system the culture specialist was able to enter relevant information into the database and
other members of the group were able to view this data and associate these records with
extracts, chemical separations, and biological activity data.

Online access and security
The web-based interface made the database instantly accessible by any computer via a web
browser. This “instant access” was crucial in promoting the sharing of data among members
of the project, however this could also allow unauthorized users access to our data. The
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application code and associated database do not, in themselves, require access to the
Internet. If remote access is not required, one could setup the system as standalone or place
the system on a network with no access to the Internet. In the case of other, less secure
networks, e.g. the Internet, the web application is compatible with existing network firewalls
and standard network encryption technologies, e.g. SSL and VPN. Our installation of
CYANOS, utilizes both a firewall to control traffic and SSL to protect data transmission
between web browsers and the server. In addition to these basic network security
procedures, we have implemented a simple user/password authentication and authorization
system. A set of basic roles was defined to restrict access to various parts of the data, e.g.
culture vs. bioassay vs. sample, with permission bits to refine access for read, write, create,
and delete actions. In addition, we setup a project specific authorization system to allow one
the ability to restrict roles and permissions based upon the associated project of a specific
record. Additional details of the authorization system can be found in the product
documentation on our website (http://www.uic.edu/labs/orjala/cyanos).

System requirements
CYANOS can be installed on any system that supports the required services, i.e. Apache
Tomcat v5.5 with Java v1.5 and MySQL v5.0.21–23 There are no strict hardware
requirements for CYANOS, other than the ability to run the previously mentioned services.
The instance of CYANOS used for this publication was installed on a computer system with
dual 800 MHz Intel Pentium III processors and 512 MB of RAM. The operating system for
this machine was Fedora Core 6, although we have successfully installed CYANOS on
Windows XP and Mac OS X systems. The CYANOS web application binary requires 13.8
MB of disk space and our database currently utilizes approximately 10 MB of disk space,
which contains 235 assay records with 9966 associated activity data points, 4556 sample
records, 373 separation records, 472 strain records, 844 collection records, 1359 isolation
records, 2991 inoculation records, 730 harvest records, as well as user and project records.
This system hosted both the database and web-interface portions of CYANOS and was more
than sufficient for a group of 9 users. This system also provided file and print share services
for our group, thus CYANOS can be installed on an existing network server.

CYANOS has additional software dependencies, which include JavaMail, CDK v1.0.4,19
Apache Commons Fileupload v1.2,26 Apache Lucene v3.0.0, 27 and Jericho HTML Parser
v3.1.28 In addition, the NMR dereplication search engine requires Mychem extension for
MySQL. 8 All distribution packages include Apache Lucene and the Jericho HTML Parser
in the CYANOS web application binary, thus it is not necessary to install these requirements
separately. Other distribution packages are available that also include CDK and Apache
Commons Fileupload in the CYANOS web application binary. It is important to note that all
of these software packages have separate licenses and even though the components may be
included in the CYANOS application binary, their use is still covered by their respective
license.

Conclusions
Chemoinformatics has become an important part of drug discovery efforts. Typically, these
informatic systems require detailed knowledge of the compounds to be screened. For many
natural product drug discovery efforts this would create an “informatic gap” since these
efforts often culminate with the identification of compounds, rather than begin with this vital
chemical information. We found that CYANOS could fill that gap by allowing us to manage
data from field collection, through isolation, strain deposition, growth, harvest, extraction,
multiple rounds of fractionation with associated biological evaluation to the ultimate
purification of a compound. It is important to note that once the compound has been
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purified, a traditional chemioinformatic system could be utilized to manage the drug
development effort.

The multi-user nature of the CYANOS system also allowed for real-time data collaboration.
This allowed the delegation of various tasks, but at the same time allowed each member to
record the data in a central repository so that it would accessible to other members of the
team. Thus, when a strain was assigned to a member of the team for isolation and structure
elucidation work, that member would have quick access to the data regarding the source,
previous growths, initial extracts, and biological evaluations. We also found that CYANOS
would allow members of the team to easily keep track of their work, e.g. number of crude
extracts screened during a time period, and be able to detect any potential gaps, e.g. crude
extracts that have yet to be evaluated in the various assays. The ability to unify data from
various members of the team has been a great asset, which has allowed CYANOS to show
its value as a platform for reporting and data mining. This has allowed researchers in our
group to effectively manage their data so that they could more readily transform their data
into information, which has led to improved decision making.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Overview of the CYANOS data objects and their relationships.
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Figure 2.
Example data mining report of the bioassay hit rate of first round fractions grouped by target
and fraction number.
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Figure 3.
Example data mining report for strains isolated from field collections grouped by taxonomic
order and month of collection. The black line displays the total number of collections for
each month.
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Figure 4.
Map of collections sites in the Great Lakes region. All collection sites are marked with by a
black square (■) and collections yielding cyanobacteria of the order Nostocales are overlaid
with a white triangle (▲). The map was generated using the GRASS GIS package12 with
Natural Earth vector map data.14
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Figure 5.
Screen shot of CYANOS dereplication search forms.
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Figure 6.
Structures of compounds from the dereplication search results
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Figure 7.
Detailed view of the implementation of CYANOS showing the currently developed web-
based application (top) and a hypothetical custom application (bottom).
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