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Abstract
Advanced high-throughput screening (HTS) technologies generate great amounts of bioactivity
data, and this data needs to be analyzed and interpreted with attention to understand how these
small molecules affect biological systems. As such, there is an increasing demand to develop and
adapt cheminformatics algorithms and tools in order to predict molecular and pharmacological
properties based on these large datasets. In this manuscript, we report a novel machine-learning-
based ligand classification algorithm, named Ligand Classifier of Adaptively Boosting Ensemble
Decision Stumps (LiCABEDS), for data-mining and modeling of large chemical datasets to
predict pharmacological properties in an efficient and accurate manner. The performance of
LiCABEDS was evaluated through predicting GPCR ligand functionality (agonist or antagonist)
using four different molecular fingerprints, including Maccs, FP2, Unity and Molprint 2D
fingerprints. Our studies showed that LiCABEDS outperformed two other popular techniques -
classification tree and Naive Bayes classifier - on all four types of molecular fingerprints.
Parameters in LiCABEDS, including the number of boosting iterations, initialization condition,
and a “reject option” boundary, were thoroughly explored and discussed to demonstrate the
capability of handling imbalanced datasets, as well as its robustness and flexibility. In addition, the
detailed mathematical concepts and theory are also given to address the principle behind statistical
prediction models. The LiCABEDS algorithm has been implemented into a user-friendly software
package that is accessible online at http://www.cbligand.org/LiCABEDS/.

1. INTRODUCTION
As a complement to modern high-throughput screening, one of the primary goals of virtual
screening and cheminformatics techniques is to explore the enormous chemical and
biological properties in a time-efficient manner as well as to help reduce the cost of

*Author to whom correspondence should be addressed: Sean Xie, xix15@pitt.edu; Tel.: +1-412-383-5276; Fax: +1-412-383-7436.
Supporting Information Available: The Supporting Information is divided in four parts. The structures of the compounds and the
generation of training and testing datasets are given in part 1. An outline of computational protocol is provided in Part 2. Part 3 lists
the performance of computational models and molecular descriptors on each testing dataset. Part 4 describes the effect of training
iterations on training and testing errors, together with more details regarding cross-validation. This information is available free of
charge via the Internet at http://pubs.acs.org/

NIH Public Access
Author Manuscript
J Chem Inf Model. Author manuscript; available in PMC 2012 March 28.

Published in final edited form as:
J Chem Inf Model. 2011 March 28; 51(3): 521–531. doi:10.1021/ci100399j.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.cbligand.org/LiCABEDS/
http://pubs.acs.org/


experimental screening1. In particular, great emphasis is placed on the “druggability” or
“drug-likeness” of compounds using cheminformatics tools in the early stages of drug
development, with the hope of increasing the probability of “lead” compounds, or their
derivatives, to pass through the later phases of drug clinical trials2.

Despite numerous molecular properties and various mathematical models, the prediction of
ligand binding activity and biological properties can be addressed by two types of
approaches: a classification model for categorical response and a regression model for
continuous response. For example, some pharmaceutical properties, such as mutagenicity,
can be modeled by ligand classification3. To build up a quantitative structure-property
relationship (QSPR) model, pattern recognition methodology can be applied to map
molecular descriptors to continuous value or categorical value via regression or
classification 4. These molecular descriptors are usually binary or continuous vectors
describing various aspects of molecular attributes or structural patterns. Many ligand
properties pertaining to drug discovery have been successfully modeled with hundreds of
molecular descriptors or fingerprints through statistical or machine learning techniques5. As
one of the representative regression models, Comparative Molecular Field Analysis
(CoMFA)6 applies partial least square regression to make predictions from the principal
components that are linear combinations of electrostatic and steric energy fields at 3D grids.
CoMFA was successfully applied in the prediction of membrane flux7, modeling structure-
pharmacokinetic relationships8 and antagonist binding affinities at cannabinoid receptor
subtype9. A CoMFA model was also developed to distinguish 5-HT1A agonists and
antagonists10, which is also one of the focuses in this manuscript. Another classification
technique, Naive Bayes classifier, has also been used to model quantitative structure-
selectivity relationships11.

Despite the advance of cheminformatics methodology, it remains a challenge to develop a
robust, reliable, and interpretable ligand classifier to tackle different scenarios in computer-
aided drug design. Although any regression method like CoMFA can be adapted as a ligand
classifier, such an approach often suffers from overfitting due to the model complexity of
the regression method. In addition, the ability to find a 3D bioactive conformer remains as
one of the limits 12. Many existing modeling methods may require researchers to perform
variable selection. However, variable selection is still a complicated procedure that
ultimately has a large effect on the final predictive model. Free parameters are manually
specified in most computational models, for example, the number of components in the
CoMFA method. Besides, cross-validation is often carried out to find optimal values of
those parameters, but this practice could be computationally inefficient, and its performance
also heavily relies on the choice of cross-validation datasets.

Thus, reliable and robust ligand classifiers are needed to aid scientists and researchers in
discovering compounds with desired properties in both the lead discovery as well as the
drug development process. In this regard, we report our recent work in developing boosting-
based classifier for prediction of pharmaceutical properties. The adaptive boosting
algorithm, or Adaboost, introduced by Freund and Schapire13, is a general method used to
produce a “strong” classifier by combining a series of “weak learners”. Sharing certain
resemblance with the support vector machine (SVM) algorithm, Adaboost is also a
maximum-margin classifier and tends not to overfit the training data14. Advantageously, the
number of boosting rounds is the only essential parameter in Adaboost training, which
simplifies the computational process of machine learning algorithms. In spite of the
advantages, this algorithm has rarely been applied and discussed in drug discovery. In this
study, we presented a novel ligand classifier, LiCABEDS, by adaptively boosting sets of
decision stumps based on 2D molecular fingerprints. In our established algorithm, important
features are automatically selected and weighted accordingly to build “weak learners” in
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model training. The performance and the characteristics of our novel algorithm are
demonstrated and tested through the application on modeling ligand functionality for
serotonin receptors or 5-hydroxytryptamine (5HT) receptors, belonging to an important
family of G protein-coupled receptors (GPCRs). In addition, across-target studies indicate
the potential application of LiCABEDS on orphan receptors. In this manuscript, we also
describe the detailed mathematical concepts of the LiCABEDS algorithm. It is anticipated
that LiCABEDS, as a general-purpose ligand classifier, can be applied to model more
biochemical and pharmacological properties. The model development is free of
conformation search and is readily automated with the robustness of 2D molecular
fingerprints. Its performance and application are described below. Finally, the algorithm is
implemented in a freely available and user-friendly software package, allowing the easy
importing of datasets and model development. The fully functioning software package is
available online to the scientific community.

2. MATERIALS, METHODS AND CALCULATIONS
2.1. Computational Methods

The detailed mathematics concepts of Ligand Classifier of Adaptively Boosting Ensemble
Decision Stumps (LiCABEDS) and its application on modeling ligand functionality are
described below. As case studies, LiCABEDS was used to model the ligand functionality for
the 5HT-subtype GPCR families by predicting a given ligand to be either an agonist or an
antagonist. For a parallel study, the performance of LiCABEDS was compared to two other
popular data-mining methods: classification tree15 and Naive Bayes classifier16. The
underlying theory of these two methods is also introduced in this section.

2.1.1. Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps
(LiCABEDS)—Adaptive boosting, initially introduced by Yoav Freund and Robert
Schapire13, is a general machine learning technique to create a strong classifier by
combining a series of “weak learners” for improving the accuracy of prediction. In
LiCABEDS, “decision stumps” are designed to be the weak learners. As illustrated in Figure
1a, the “decision stump” denotes a heuristic classification hypothesis that a compound will
be classified as an agonist (+1) if the ith bit of fingerprint (xi is equal to a target value (t); or
as an antagonist (−1), otherwise.

Instead of using the graphic representation, a “decision stump” can be formulated by a
function: y(x, i, t) = 2I (xi = t) −1, where I is an indicator function, I(Z) = 1 if the statement
Z is true; I(Z) = 0, otherwise. x is the molecular fingerprint vector, i is the index of the
fingerprint, and t is the target value. For example, if xi, the ith bit of fingerprint, is equal to
the target value t, then I (xi = t) = 1 and y(x, i, t) = 1 (agonist). If xi, the ith bit of fingerprint
is different from t, then I (xi = t) =0 and y(x, i, t) = −1 (antagonist).

Different from many other machine-learning algorithms, LiCABEDS, as an ensemble
method, is designed to achieve stronger classification power by boosting many “weak”
classification hypotheses. As illustrated in Figure 1b, a series of “decision stumps” with
corresponding weights am vote for the final prediction, which can be formulated as the
weighted summation of the outcome of every “decision stump”:

(1)
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sign(z) = 1 if z > 0, or −1 otherwise. The unknown variables, am, im and tm, for each weak
classifier m can be “learned” from training datasets using the following algorithm:

1. Initialize the sample weights for each training compound n, wn = 1/N, n = 1,
…,N, N is the total number of training compounds.

2. For each round of calculation m = 1,…,M

Find im, tm for weak learner ym by minimizing the weighted error function

(2)

where argmin is the function to return the arguments which minimize the
object function, Xn is the descriptor vector for compound n; ln = ±1 is the
label of compound n. im, tm uniquely define a “decision stump”, and their
optimal values can be found by enumerating all possible combinations of
im, tm.

Evaluate the quantities:

(3)

am becomes the weight for the “decision stump” m. Then update
the weights of training compounds for next round of calculation:

(4)

The number of training steps, M, is the only parameter that must be specified manually in
the algorithm. Cross-validation is one of the options to specify the optimal value of M,
Moptimal. Training error is steadily minimized as M increases. While the training algorithm
aims to minimize the exponential loss function, boosting algorithm may have potential to
overfit the training data as pointed by others 17. Despite such potential, Freund and Schapire
have shown the underlying mechanism that adaptive boosting does not often suffer from
overfitting 14. Discussion is given later on the difference between a large value of M (by
default) and Moptimal in order to address the overfitting issue.

Training compound datasets may potentially be overwhelmed by one category of training
samples. In this case, the majority class is usually favored in the prediction. To minimize the
effect of disproportionate training samples in each category, balanced class weight can be
set as an alternative initialization condition to equal initial weight. In other words, the total

weights for each class are equal at the initialization step: . For
example, all the labeled agonists in the training set may have initial weights 1/N+1, where
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N+1 is the total number of agonists in the training data. Similarly, all of the antagonists may
have an initial weight 1/N−1.

Heuristically, the absolute value of  indicates the degree of confidence
in the prediction, because a relatively large population of “decision stumps” vote for the
corresponding class. On the other hand, a low absolute value of A indicates uncertainty in
the prediction. Better prediction accuracy is anticipated by avoiding uncertain cases, which
we also refer to as “reject option”. In our study, a prediction is only made for a test
compound if |A|>c, where c is rejection threshold. Otherwise, an “unknown” label is
assigned to the test compound.

2.1.2. Classification Tree—Classification tree is a straightforward and effective data-
mining technique. It has been widely applied to different areas of computer-aided drug
design, such as virtual screening18, drug-likeness prediction19 and ligand blood-brain-barrier
passage20.

A classification tree consists of a set of split criterions and leaf nodes. The split criterions
control the region that a ligand belongs to, while the leaf nodes represent classification
hypotheses that are derived from training datasets in the same regions. The structure of a
decision tree can be induced from training datasets in a greedy manner. By recursively
partitioning the entire training dataset into regions, impurity impurity(t) is minimized
regarding each possible partitioning t:

where s is the new region created from split t, and . In this study, splitting
rule is chosen from xi = 0 or xi = 1, where xi is the ith bit of descriptor vector. p̂s (j) is the
maximum likelihood estimator of a ligand being j, j = 0 or 1 (0 represents antagonists, and 1
represents agonists), in region S. Training data can be perfectly fitted by growing the tree
until 100% purity is achieved at each node. To avoid overfitting, k-fold cross-validation is
commonly employed to control the “height” of a decision tree. After “pruning” the whole
tree according to the cross-validation score that is defined as the percentage of correct
predictions on cross-validation sets in this study, the optimal tree structure will be used to
make predictions for novel ligands.

2.1.3. Naive Bayes Classifier—The Naive Bayes classifier method is a simple
classification method based on applying Bayes’ theorem with independence assumptions16.
The method relies on the assumption that the presence or absence of a particular feature or
class is unrelated to the presence or absence of any other feature. This independence
assumption, with regard to molecular fingerprints simplifies the estimation of the likelihood
function, which makes the method applicable to many computer-aided drug design tasks,
such as virtual screening21 and selectivity prediction11. In this study, Naive Bayes classifier
was used to model the probability of one ligand being an agonist or an antagonist, given its
molecular fingerprint: Pr(Cl|Fp) where Fp is the molecular fingerprint vector, and Cl = 1 for
agonist or 0 for antagonist. By applying Bayesian theory, Pr(Cl|Fp) ∝ Pr(Fp|Cl) Pr(Cl), the
predicted class of a given ligand is antagonist, C̑l = 0, if Pr(Cl = 0|Fp) ≥ 0.5; and C̑l = 1,
otherwise. Pr(Fp|Cl ) can be approximated by applying the independence assumption to
molecular fingerprints:
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where Fp is the ith bit of fingerprint.

Due to the difference between Molprint 2D and other types of fingerprints, the equation used
in calculating the likelihood was also different. For example, we had Molprint 2D string
“2;0-1-0; 2;0-2-2;” and Maccs fingerprint “0101” for a testing compound (only for
illustration). The likelihood of the Molprint 2D fingerprint was calculated as:

The likelihood of Maccs key was calculated as:

The presence or absence of predefined Maccs features are considered in the likelihood
calculation, while only present Molprint 2D features are modeled in the calculation.

2.2. Calculation
2.2.1. Dataset Preparation, Molecular Fingerprint and Computation Protocol—
To evaluate the performance of LiCABEDS, all the labeled human 5-HT1A, 5-HT1B, 5-
HT1D, and 5-HT4R agonists and antagonists were retrieved from the GLIDA database 22.
The ligand quantity and their properties are summarized in Table 1 (properties were
calculated using the Sybyl8.0 www.tripos.com). With the published compound datasets, the
prediction accuracy of different data-mining methods along with different molecular
descriptors was assessed on the labeled agonists and antagonists of the human 5-HT1A
subtype G-Protein Coupled Receptor (GPCR) by ten rounds of calculation. For each round
of calculation, three classification methods were compared, including LiCABEDS,
classification tree, and Naive Bayes classifier. Each was trained on the same randomly
selected training compounds. The set of training compounds was composed of 75% labeled
agonists and antagonists (827 5-HT1A agonists and 446 5-HT1A antagonists). The remaining
25% ligands (275 5-HT1A agonists and 149 5-HT1A antagonists) were used as a testing
dataset in order to evaluate the prediction accuracy of different methods. The prediction
accuracy was estimated by comparing the predictions to the real ligand labels (agonists or
antagonists). With Molprint 2D21, 23 as descriptor, the across-target ligand functionality
prediction was also made by LiCABEDS. In this case, a LiCABEDS model was trained on
all the labeled human 5-HT1A ligands (totally 1697 ligands), and then predictions were made
on the ligands for human 5-HT1B, 5-HT1D, and 5-HT4R receptors. The details regarding the
datasets can be found in Supporting Information Part 1.

In this study, four types of molecular fingerprints were generated for each compound,
including Maccs key24, Unity (www.tripos.com), FP225, and Molprint 2D 21, 23 fingerprint.
The Maccs key fingerprint was calculated by Chemistry Development Kit (CDK)26 and the
Unity fingerprint was calculated by Sybyl 8.0 (www.tripos.com). Openbabel25 was used to
generate the FP2 fingerprint, and Molprint 2D package was used to generate the Molprint
2D fingerprint. Variable selection was not carried out before model trainings, so all the
dimensions of these molecular fingerprints were exposed to the learning algorithms. To
ensure a fair amount of overlapping in Molprint 2D patterns, a three-layer atom environment
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was used for predicting ligand functionality for the human 5-HT1A receptor, while a two-
layer atom environment was preferred for across-target predictions. Each feature defined by
Molprint 2D was mapped to a unique bit in the descriptor vector by an in-house program
(see Supporting Information Part 2).

The implementation of the classification tree presented in this study came from a Tree
package in “R” 15, 27. To avoid overfitting, a tree node was not split unless more than ten
training compounds were observed in the parent node and more than five were present in
both child nodes. Lastly, each classification tree was “pruned” according to ten-fold cross-
validation scores. The implementation of Naive Bayes classifier on the Molprint 2D
fingerprint was from the Molprint 2D software package. An in-house Naive Bayes classifier
was also developed for other fingerprints. The implementation of LiCABEDS is discussed in
the following section (2.3. LiCABEDS Software Package).

LiCABEDS models were initially developed using a large value of M (M=10000), for all
fingerprint types to ensure a convergence of training error. Furthermore, the influence of M
was studied, and optimal values of M were determined by running cross-validation with
10% of training compounds as a cross-validation set. LiCABEDS models were developed
using balanced weights when compared to Classification Tree and Naive Bayes classifier on
human 5-HT1A ligand datasets. Next, equal weights were compared to balanced weights as
initialization conditions, which was conducted on the same training and testing datasets.
Finally, the prediction accuracy was assessed with the “reject option” boundary ranging
from 0 to 3.

2.3. LiCABEDS Software Package
A user-friendly interface was developed for LiCABEDS in order to simplify the steps
involved in project management, model training and making predictions. The software
integrates automated importing of training and testing datasets. The training module features
automatic cross-validation, flexible initialization and interruptible model development. The
“Reject option” is also implemented for making predictions. The graphical user interface
allows for flexible model editing, prediction browsing, and result exporting. In addition, a
work session can be saved to local hard disk, so that the previous workspace can be restored
by the program. The program has been tested on Intel i7 860 2.8GHz CPU to evaluate the
computational time. To iterate 10000 steps on 1697 compounds, model training takes 44
minutes for Molprint 2D fingerprint, 5 minutes for FP2 or Unity fingerprints, and 1 minute
for Maccs fingerprint. The calculation time for model training is related to the amount of
training samples, the number of boosting iterations and the dimension of descriptors. Once
the model is established, the predictions can be made instantly by the program. More details
regarding the software can be found in Supporting Information Part 2, and the user manual
is available on our website.

3. RESULTS AND DISCUSSION
According to the distribution of physical properties listed in Table 1, simple classification
hypotheses do not distinguish agonists from antagonists very well, if even at all. On the
other hand, molecular fingerprints encode a large amount of chemical information regarding
structural patterns of small molecules. The strength of the LiCABEDS method lies in its
ability to robustly process this fingerprint information and make better predictions on the
small molecules. In this section, we discuss the performance of different fingerprints and
computational models. The effect of different parameters in LiCABEDS is also discussed in
detail.
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3.1 Classification Accuracy of LiCABEDS, Classification Tree, and Naive Bayes Classifier
Even if the predictions are made in the same descriptor space, the derived decision
boundaries of different machine learning algorithms rarely agree, because of the discrepancy
of underlying model assumptions, as well as object optimization functions. The results of
systematic comparisons among classification tree, Naive Bayes classifier and LiCABEDS
are plotted in Figure 2. A summary of the results can also be found in Table 2, which reports
the distribution of prediction accuracy out of ten rounds of calculation on human 5-HT1A
ligands (more details can be found in Table S1 in Supporting Information Part 3).

As shown in Figure 2 and Table 2, LiCABEDS uniformly outperforms both classification
tree and Naive Bayes classifier regardless of the choice of molecular fingerprints. First,
LiCABEDS exhibits the highest average prediction accuracy on ten different testing
compound datasets. When Unity and FP2 fingerprints are used as the descriptor, the highest
number of mistakes made by LiCABEDS on testing sets is still lower than the lowest of the
Tree or Naive Bayes classifier methods. With the Molprint 2D fingerprint as descriptor, the
lowest accuracy from LiCABEDS is 0.894, which is almost the same as the highest accuracy
from Naive Bayes classifier, 0.896 (shown and highlighted in Table S1). Not only does
LiCABEDS show the highest average prediction accuracy, but also it possesses the lowest
standard deviation on four kinds of fingerprints. This indicates model stability as well as
model reliability. This is further seen in the standard deviation of prediction accuracy from
LiCABEDS. As listed in Table 2, the standard deviation is 0.008 on the Molprint 2D
fingerprint, while the standard deviation of both the Classification Tree and Naive Bayes
classifier methods is 0.013. A similar pattern is also observed using the other three types of
molecular fingerprints. The standard deviation from LiCABEDS ranges from 0.010 to 0.016
using the FP2, Unity and Maccs fingerprints. On the other hand, the standard deviation of
both the Tree and Naive Bayes methods range from 0.018 to 0.027 using these three
fingerprints. Therefore, LiCABEDS is less affected by the distribution of training
compounds compared to the Tree and Naive Bayes methods.

Molprint 2D was the most predictive descriptor among the four types of fingerprints. In this
study, a total of 6839 features were defined in the whole human 5-HT1A dataset. The length
of the Unity and FP2 fingerprints were 992 and 1024, respectively. The Maccs key had the
shortest bit length of 168. Although Molprint 2D encoded many structural patterns in
comparison to the Unity or FP2 fingerprints, it did not significantly improve the
performance of the classification tree. As the “height” of tree was limited after “tree
pruning” to avoid overfitting, a limited number of features could be considered in the
classification hypothesis. The LiCABEDS method, on the other hand, consisted of 10000
weighted “decision stumps” and many factors contributed to the final prediction. This might
explain the reason why LiCABEDS yielded more accurate and reliable predictions than the
classification tree method.

The Naive Bayes method outmatched the Tree method using Molprint 2D as a descriptor,
but the Tree method outmatched the Naive Bayes method with other fingerprints. As
previously mentioned in the method section, the Naive Bayes models were slightly different
with different fingerprints. Molprint 2D, as an atom environment descriptor, only considered
the features present, while FP2, Maccs and Unity predefined a set of substructures and
modeled both the presence and absence of structural patterns. However, when the Naive
Bayes classifier from Molprint 2D was applied to the other three fingerprints, the test
calculation showed that the result was even worse. The Naive Bayes classifier treated each
dimension in the fingerprint equally. Thus, the performance could be affected by noise from
irrelevant features. The independence assumption in the Naive Bayes model was not
necessarily true for molecular fingerprints, which was one of the factors impairing the
estimation of the likelihood function. In addition, the training algorithm of LiCABEDS
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selected the most predictive “decision stump” and assigned its weight accordingly in order
to build the classifier systematically. In that sense, not all the dimensions of the fingerprint
vectors contributed to the prediction equally, and predictive features and corresponding
“decision stumps” were emphasized with relatively large weights, am. Without much
assumption regarding the fingerprints, LiCABEDS built robust models and produced more
accurate predictions than the Naive Bayes classifier.

3.2 Initialization Condition
As previously mentioned in the Methods section, the equal initial weight in the training
algorithm considers each training compound equally, while the balanced initial weight
considers two compound categories (agonist and antagonist) equally. The two different
initializations in LiCABEDS were compared on the same ten sets of training and testing
compounds with M = 10000. Figure 6 shows the distribution of the overall accuracy of
predictions from combinations of different initialization conditions and molecular
fingerprints. Table 3 lists the average accuracy and standard deviation for each ligand
category, as well as for the whole testing dataset. According to Figure 3 and Table 3, these
two initialization conditions result in differences with respect to the overall performance,
even if equal initial weight is slightly better. As displayed in Table 3, the balanced initial
weight correctly predicts antagonists at a percentage of 87.9%, 86.4%, 83.0% and 79.2%
with Molprint 2D, FP2, Unity and Maccs descriptors, while the equal initial weight predicts
antagonists at the accuracy of 85.6%, 84.8%, 81.6% and 70.2% on the same descriptors. The
opposite pattern is observed for agonist prediction, in which the equal initial weight
uniformly outperforms the balanced initial weight. To explain this, LiCABEDS training
algorithm with equal initial weight aims to minimize the error function by making fewer
mistakes on the training datasets, while balanced weight emphasizes both ligand categories
and each training sample. For example, at the initial step of training algorithm with balanced
weights, the cost to make a mistake is 1/N−1 for one antagonist and 1/N+1 for one agonist.
As there are 827 agonists and 446 antagonists in the training datasets, LiCABEDS may tend
to avoid making mistakes on antagonists because one mistake on an antagonist costs more
than the one on an agonist (1/N−1 > 1/N+1). On the other hand, the equal initial weight
favors the majority category, because the mistake on any training compound costs 1/N.
Although the weights for each training sample are updated in the follow-up training
iteration, the initialization condition still significantly affects the model development. As a
result, the balanced initial weight makes the predictions that are more accurate on
antagonists. In reality, training sets are sometimes overwhelmed by one category of samples,
but correct predictions are still desired for the minority group. The balanced initial weight
seeks a tradeoff between the accuracy for each category and the overall performance, which
makes the algorithm generally applicable to many data mining situations.

3.3 Training Parameter
Besides the initialization condition, another parameter crucial to the LiCABEDS training
algorithm is M, the number of boosting iterations. To minimize overfitting, the optimal
value of M, Moptimal (Moptimal < 10000) can be determined through cross-validation. In this
process, a fraction of the training compounds (10% of the whole training sets) was left out as
a cross-validation set. Moptimal was then compared to the default condition, a large value of
M, M = 10000, on the same training and testing datasets. Models were developed using a
balanced initial weight and the four types of fingerprints. The percentages of correct
predictions on the ten testing datasets are shown in Figure 4. More details regarding cross-
validation and the effect of M on training and testing errors can be found in Table S2 and
Figure S1 of Supporting Information Part 4. According to the distribution shown in Figure 4,
models developed by Moptimal iterations are moderately better than M = 10000 on FP2,
Unity and Maccs fingerprints, but not as good as M = 10000 on Molprint 2D fingerprint.
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Because M = 10000 is much larger than the length of FP2, Unity and Maccs fingerprints,
some dimensions in the fingerprint are overrepresented in the classifier. This may result in
overfitting. If this is the case, running cross-validation could control the overfitting and
improve the performance. However, the length of the Molprint 2D fingerprint used in this
study is 6839, which is at the magnitude of M = 10000. Thus, cross-validation is not
essential for the Molprint 2D fingerprint.

Hypothesis testing was carried out to quantify the difference between Moptimal and M=
10000. The distribution of correct predictions on the testing datasets was examined. The null
hypothesis was “the models trained with and without cross-validation have the same
performance”, while the alternative hypothesis was “cross-validation improves the model
performance”. Student’s t-test showed that the one-sided p-values for the four types of
fingerprints (Molprint 2D, FP2, Unity and Maccs) were 0.954, 0.357, 0.290 and 0.354,
respectively. This result does not significantly favor the alternative hypothesis, indicating
cross-validation does not significantly influence on the prediction generated. Our data
mining studies and the results presented also indirectly support the conclusion that
LiCABEDS is not so susceptible to overfitting in the studied datasets, which is also
supported by boosting theory14. Although cross-validation is not strictly required by
LiCABEDS, parameter tuning may still be beneficial under certain circumstances, such as
the application of LiCABEDS on FP2, Unity and Maccs fingerprints.

3.4 Reject Option
To assess the confidence-rated predictions, LiCABEDS uses the raw value of

 to address the degree of belief for each prediction. By applying the
concept of “reject option”, accurate prediction is anticipated, provided a high absolute value
of A, whereas an “unknown” label is output to prevent uncertain prediction for a low
absolute value of A. To validate this hypothesis, predictions were made on the ten testing
compound datasets with different “reject” boundaries and molecular descriptors. The
difference in the average performance of different “reject option” boundaries is reported in
Figure 5.

When Molprint 2D was used as the descriptor, an average accuracy of 90.1% (Table 2) was
reported without using the “reject option”. As shown in Figure 5A, the average proportion of
predictions made on the testing datasets readily decreases when the “reject” boundary
increases from 0.5 to 2. Because more “unknown” labels are output when a higher boundary
value is specified, a relatively smaller fraction of predictions is made. In the meantime, the
average prediction accuracy increases from the original value of 90.1% (reported in Table 2)
to 91.1%, 92.1%, and 93.8% with corresponding boundaries being 0.5, 1 and 2, respectively.
A similar trend can be observed with the other three types of fingerprints as well. For
example, using the FP2 fingerprint, the predictions are made on 92.3% of the testing
compounds when the boundary is set to 2. An accuracy of 91.1% is obtained from the
“reject option”, which is a noticeable improvement from the original accuracy of 87.9%
(reported in Table 2). Therefore, LiCABEDS is not only able to attain better performance by
making selective predictions, but is also able to estimate the classification risk for testing
compounds through the absolute value of A, or the confidence-rated prediction. In practice,
it is sometimes economical to sacrifice some testing compounds to achieve accurate
predictions. The boundary value can be determined by examining the distribution of A and
leaving a fair prediction ratio.
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3.5 Across-target Ligand Functionality Prediction
In addition to the ligand functionality classification, we have explored the potential of
across-target ligand bioactivity prediction using LiCABEDS program. With the assumption
that agonists and antagonists might share some common pharmacological features for
similar receptor subtypes, the LiCABEDS model, which was developed from human 5-
HT1A ligands on Molprint 2D fingerprint, was used to predict the ligand functionality for
other human 5-HT subtype receptors, including 5-HT1B, 5-HT1D, and 5-HT4R receptors. 5-
HT1A, 5-HT1B and 5-HT1D GPCRs can be classified as serotonin receptor subtype 1 (or 5-
HT1) while 5-HT4R belongs to the family of serotonin subtype four. 5-HT1B receptor has the
shortest evolution distance to 5-HT1A. On the other hand, 5-HT4R receptor has the largest
evolution distance to 5-HT1A of all. As sufficient number of known agonists and antagonists
has been reported for these receptors, the correlation between model predictivity and target
similarity can be studied in order to understand the scope of application of established
models.

The performance of LiCABEDS models for each category of the 5-HT ligands, as well as
entire datasets, can be seen in Table 4. The sequence similarity scores compared to human 5-
HT1A are calculated by blastp28 and Sybyl Biopolymer29, respectively. The calculations
based on the 5-HT1A model show that 85.9% of predictions are correct on 5-HT1B ligands,
with 87.5% accuracy for agonists and 81.6% accuracy for antagonists, respectively. The data
is congruent with the relative high sequence similarity between 5-HT1B and 5-HT1A (blastp
score: 304; Sybyl score: 397.80). Our studies show that the model trained from 5-HT1A
ligands is still predictive for 5-HT1B ligands. However, the overall accuracy for 5-HT1D
ligands drops to 74.5%, which may be attributed to the lower sequence similarity between 5-
HT1D and 5-HT1A (blastp score: 279; Sybyl score: 393.60). 5-HT4R, which possesses the
lowest sequence similarity to 5-HT1A (blastp score: 142; Sybyl score: 340.90), was also
evaluated, and its prediction is not necessarily better than a random guess. The results are
consistent with the known data that the drugs Ergotamine (agonist) and Methiothepin
(antagonist) are active to 5-HT1A, 5-HT1B and 5-HT1D receptors but not to 5-HT4R. The
results may also suggest that LiCABEDS prediction models may have potential of applying
to other targets with limited known ligands, as long as the models are developed for a
closely related receptor family. This concept could extend the application of LiCABEDS to
the drug discovery process targeting at orphan receptors that has no known ligand reported.

3.6 Model Interpretation
The interpretability of the LiCABEDS model may help us understand the underlying
classification mechanism and significant features regarding ligand properties. The model
developed on the first set of 5-HT1A training compounds, which consist of randomly
selected 827 agonists and 446 antagonists, is used to demonstrate this process. As presented
in the method section, each “decision stump” contributes to the final prediction according to
its weight, am, as described in equation (1). In the LiCABEDS model, four out of 6839
highly weighted Molprint 2D features, which are the few highly weighted ones to
distinguish agonists and antagonists, are listed in Table 5. Feature 1 and 2 are favored by
agonists, while feature 3 and 4 are preferred in antagonists. In order to illustrate the
structural patterns of these features, Figure 6 shows a graphical atom environment according
to the four features. For example, feature 1 (0;0-1-0;0-1-4;1-3-0;2-3-0;) translates to a
substructure of a central sp3 carbon atom (C.3) neighbored by one sp3 carbon atom and one
sp3 nitrogen atom (N.3), and surrounded by three sp3 carbon atoms (C.3) located two or
three bonds away. The Molprint2D features in Table 5 are generated by Molprint2D
software package, and the detailed explanation can be found in original publication21, 23.
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Figure 7 lists seven compounds selected from the testing compound dataset in order to
exemplify the four features. The first three compounds (L008638, L006280, L006274) are
labeled as agonists, and the other four compounds (L022154, L018611, L001620, L018612)
are labeled as antagonists. It is worth pointing out that thousands of features are involved
agonist/antagonist prediction, but only four highly weighted Molprint 2D features are picked
up to illustrate model interpretation. Molprint2D fingerprint (feature) is a highly sparse
descriptor, and the number of features that a compound possesses is equal to the number of
its heavy atoms. The agonists from the testing set, which possess both feature 1 and 2 (listed
in Table 5), are involved in Model Interpretation. The same analogy is applied to
antagonists. Even if the agonists or antagonists do not share the same structural scaffold,
certain substructures may still match in three-dimensional space. Figure 8 displays that
feature 1, 2 from the three agonists are well aligned, with the central carbon atom from
feature 1 labeled in grey and the central oxygen atom from feature 2 labeled in red.
Similarly, Figure 9 displays the alignment of feature 3, 4 for the four antagonists. The result
suggests that those features might be related to ligand functionality and ligand-protein
interaction. The interpretability of LiCABEDS models is rooted in the explanation of each
“decision stump”, especially the highly weighted ones. Therefore, LiCABEDS models can
be easily understood and interpreted, which could potentially guide chemical modification to
achieve better pharmacological or physicochemical profile.

3.7 Model Robustness
Model robustness is the potential to handle diverse training data and provide consistent
predictions. Section 3.1 has shown that LiCABEDS models render the most consistent and
accurate predictions on any of the molecular fingerprints. To analyze the composition of the
classifiers, important dimensions of Molprint 2D fingerprints are extracted from the
LiCABEDS models, which are developed on ten different 5-HT1A training datasets. All the
Molprint 2D features are observed totally more than 50 times in all the models and possess
weights, am, larger than 0.08. To visualize the major components of the classifiers, Figure
10 shows the distribution of occurrence of six important Molprint 2D features that are
favored in agonists, for which LiCABEDS training algorithm may select a feature several
times to minimize generalization error. The occurrence of features mainly ranges from 4 to
7, except dimension 2828. Even if the ten models are developed on the randomly selected
training datasets, only three outliers (labeled as circles in Figure 10, two in dimension 1694,
one in dimension 2828) are identified in the boxplot. Thus, the occurrence of the six major
components has moderate variance in each of the ten models. The stability of the influential
“weak-learners” leads to consistent prediction accuracy, although only a few features are
visualized.

4. CONCLUSION
We have reported a novel ligand classification algorithm, Ligand Classifier of Adaptively
Boosting Ensemble Decision Stumps (LiCABEDS), and thoroughly investigated it through
the case studies of ligand functionality prediction for the GPCR 5-HT subtypes. The
performance of LiCABEDS is compared to the Classification Tree model and Naive Bayes
classifier using four types of molecular fingerprints: Molprint 2D, FP2, Unity and Maccs.
Our results show that LiCABEDS uniformly produces the most accurate and consistent
predictions, especially with Molprint 2D fingerprints as the descriptor. Additionally, unique
characteristics of LiCABEDS make it applicable to model various ligand properties. The
flexible initialization conditions of LiCABEDS allow the development of predictive models
and emphasize minority categories on unbalanced training datasets. Parameterization is
usually a complicated procedure in many machine-learning algorithms, however, model
development in LiCABEDS is simplified because the number of boosting iterations, M, is
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the only parameter required for model training. The result from cross-validation suggests
that a large value of M still yields satisfactory performance, which makes the model training
process simplified in practice. Another valuable characteristic of LiCABEDS is the “reject
option”, which returns the degree of confidence for each prediction. Higher prediction
accuracy can be achieved by rejecting some “low-confident” testing samples. The capability
of LiCABEDS is further demonstrated through the application on a cross-target prediction.
The interpretation of LiCABEDS models may reveal the correlation between structural
pattern and molecular properties of interest. The robustness of LiCABEDS models is further
demonstrated by examining the principal components of “decision stumps”. Lastly,
LiCABEDS has been implemented into an easy-to-use and freely available
(http://www.CBLigand.org/LiCABEDS/) software platform that provides a graphical user
interface for automating model development and predictions. As a general classifier,
LiCABEDS may also have great potential for modeling and predicting other ligand
properties, such as ADME prediction and other applications on in-silico drug design
research. These are ongoing projects and will be reported in future studies.
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Figure 1.
(a) Illustration of a “decision stump for ligand function prediction, based on molecular
fingerprint. In this model, agonists are labeled as +1 and antagonists are labeled as −1. (b)
Illustration of the composition of LiCABEDS.
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Figure 2.
The box-plot showing the distribution of prediction accuracy from ten rounds of calculation.
M: Maccs key; U: Unity fingerprint; F: FP2 fingerprint; A: Molprint2D fingerprint. Tree
stands for classification tree, NB stands for Naive Bayes classifier and boost is short for
LiCABEDS.
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Figure 3.
Boxplot showing prediction accuracy with different initialization conditions. aefp stands for
Molprint2D, b stands for balanced initial weight and e stands for equal initial weight.
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Figure 4.
The boxplot showing the effect of M, number of boosting rounds. The x-axis denotes the
choice of fingerprint and M. aefp stands for Molprint2D fingerprint. cv means that number
of boosting rounds is set to Moptimal. The label without cv means M=10000 by default.

Ma et al. Page 19

J Chem Inf Model. Author manuscript; available in PMC 2012 March 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
The plot showing average prediction accuracy and percentage of prediction made on testing
compounds. Each figure corresponds to a type of fingerprint. X-axis denotes the value of
decision boundary.
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Figure 6.
Four sample Molprint 2D features in graphic representation. Each feature depicts a central
atom and its atom environment up to a specific topological distance. The atom environment
in Molprint2D is defined as the quantity of heavy atoms surrounding the central atom.
Heavy atoms are distinguished by Sybyl atom types.
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Figure 7.
Compounds used to exemplify four features in Figure 9. L008638, L006280 and L006274
are labeled as agonists, and the other four are antagonists.
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Figure 8.
3-D alignment of three agonists.
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Figure 9.
3-D alignment of four antagonists.
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Figure 10.
The boxplot showing the occurrence of the six major LiCABEDS components in ten 5-
HT1A models
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Table 2

The sample mean and standard deviation of prediction accuracy from different computational models and
molecular fingerprints.

Model Tree Naive Bayes LiCABEDS

Fingerprint

Maccs 0.759 ± 0.026 0.685 ± 0.027 0.799 ± 0.016

Unity 0.810 ± 0.023 0.753 ± 0.023 0.869 ± 0.013

FP2 0.831 ± 0.018 0.771 ± 0.021 0.879 ± 0.010

Molprint2D 0.820 ± 0.013 0.883 ± 0.013 0.901 ± 0.008
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Table 3

The sample mean and standard deviation of prediction accuracy for each category of ligands, using equal
initial weight and balanced initial weight.

Agonist Antagonist Overall

Molprint 2D Balanced weight 0.913 ± 0.018 0.879 ± 0.041 0.901 ± 0.008

Equal weight 0.924 ± 0.018 0.856 ± 0.038 0.900 ± 0.009

FP2 Balanced weight 0.888 ± 0.021 0.864 ± 0.026 0.879 ± 0.010

Equal weight 0.901 ± 0.021 0.848 ± 0.029 0.882 ± 0.009

Unity Balanced weight 0.891 ± 0.018 0.830 ± 0.023 0.869 ± 0.013

Equal weight 0.901 ± 0.020 0.816 ± 0.022 0.871 ± 0.014

Maccs Balanced weight 0.803 ± 0.025 0.792 ± 0.033 0.799 ± 0.016

Equal weight 0.860 ± 0.018 0.702 ± 0.049 0.805 ± 0.020
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Table 5

List of important features, indices in the bit vector and weights in the sample LiCABEDS model. The
interpretation of the listed features are presented graphically in Figure 6.

Bit Index Molprint 2D featurea Weight

Feature 1 3474 0;0-1-0;0-1-4;1-3-0;2-3-0; 0.869

Feature 2 808 8;0-1-1;1-1-2;1-1-27;2-2-0;2-2-2; 0.328

Feature 3 362 8;0-1-1;1-1-0;1-1-27;2-3-0;2-1-2; 0.343

Feature 4 4322 18;0-2-0;0-1-2;1-2-0;1-2-2;2-2-2;2-2-4;2-1-7; 0.639

a
Features listed in this table are extracted from Molprint 2D software package.
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