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Abstract
We assess the performance of our previously reported structure-based support vector machine
target-specific scoring function across 41 targets, 40 among them from the Directory of Useful
Decoys (DUD). The area under the curve of receiver characteristic plots (ROC-AUC) revealed
that scoring with SVMSP resulted in consistently better enrichment over all targets families and
outperforming Glide and other scoring functions, most notably among kinases. In addition, SVM-
SP performance showed little variation among protein classes, exhibited excellent performance in
a test case using a homology model, and in some cases showed high enrichment even with few
structures used to train a model. We put SVM-SP to the test by virtual screening 1,125 compounds
against two kinases, EGFR and CaMKII. Among the top 25 EGFR compounds, three compounds
(1–3) inhibited kinase activity in vitro with IC50 of 58, 2, and 10 μM. In cell culture, compounds
1–3 inhibited non-small cell lung carcinoma (H1299) cancer cell proliferation with similar IC50
values for compound 3. For CaMKII, one compound inhibited kinase activity in a dose-dependent
manner among 20 tested with an IC50 of 48 μM. These results are encouraging given that our in-
house library consists of compounds that emerged from virtual screening of other targets with
pockets that are different from typical ATP binding sites found in kinases. In light of the
importance of kinases in chemical biology, these findings could have implications in future efforts
to identify chemical probes of kinases within the human kinome.

INTRODUCTION
The objective of virtual screening1 methods is the identification of compounds that bind and
modulate the function of their target. Virtual screening efforts now routinely lead to active
compounds.1,2 Typically, 104–106 compounds are screened and about 102 of the highest
scoring ligands are acquired for subsequent experimental elimination of false positives.
Compound databases like ZINC (http://docking.zinc.org) have significantly facilitated this
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process.3,4 In virtual screening, these compounds are docked to the target of interest to
generate three-dimensional structures of receptor-ligand complexes. Compounds are then
rank-ordered in a step known as scoring, which attempts to replicate the trend observed if
the compounds were ranked by their experimentally measured binding affinity. Scoring
functions can be classified as empirical,5–7 knowledge-based,8 and force field-based.9
Identifying the scoring function method optimal to the particular target of interest is a
continuing challenge.10,11 The performance of scoring functions varies significantly
depending on the target.12,13 This receptor-dependence is reflected in the constant stream of
new scoring functions that are developed in an effort to improve upon previously-derived
scoring functions.

Here we expand on a target-specific Support Vector Machine (SVM) scoring method that
we have previously reported14 and assess its performance on 41 targets, 40 among them
from the Directory of Useful Decoys (DUD) validation set.15 The difference with our earlier
approach is that we have used our own pair potentials rather than the DFIRE pair potentials.
The DFIRE potentials were obtained from a set of 200 protein-ligand co-crystal structures.
However, our dataset consisted of 2,018 co-crystal structures. In addition, the number of
features (descriptors) included in a vector was reduced from 190 to 135 by excluding atom
pairs that are not observed, such as metal-metal atom pairs for example. The scoring
functions are tailored to each target through the use of support vector machine (SVM)16

algorithm that is trained with statistical knowledge-based data obtained from three-
dimensional structures of receptor-ligand complexes that originate from a positive and a
negative set. In this work, we develop our own pair potentials to serve as features for the
derivation of the SVM models using a positive set consisting of x-ray structures of
compounds bound to their target, and a negative set consisting of decoy molecules docked to
the target for which a scoring function is being developed. This ensures that the resulting
SVM model will favor molecules that are native-like and bind to the target rather than
molecules that adopt binding modes of inactive compounds (decoys). We further test the
method by screening an in-house library of 1,125 compounds in search for inhibitors of a
receptor tyrosine kinase, epidermal growth factor receptor (EGFR),17 and a serine/threonine
kinase, namely calcium-calmodulin-dependent protein kinase II (CaMKII).18 The top
compounds are tested for activity using in vitro assays. Inhibitors of EGFR are further tested
in cell culture for inhibition of a non-small cell lung carcinoma (NSCLC) cell line (H1299)
proliferation.

Results
Developing an SVM Model

The derivation of a successful SVM model depends on the careful choice of objects that
comprise the training set, and the features extracted from these objects. While a number of
efforts have employed SVM to rank compounds,19–23 our approach is a significant departure
from these methods in several respects. First, our SVM models are trained using three-
dimensional structures of protein-ligand complexes. Second the features used to derive the
SVM algorithms consist of pair potentials obtained following the approach used to derive
knowledge-based statistical scoring function. Third, our method combines tailoring of
scoring functions with machine learning.

The process of generating an SVM model begins with the creation of a training dataset that
consists of a negative and a positive set. Features extracted from each of these sets train the
SVM algorithm. In the context of structure-based molecular design, negative and positive
sets are defined as a collection of inactive and active compounds bound to their target,
respectively. SVM represents each complex as an N-dimensional vector in space, with N
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corresponding to the number of features. During training, the SVM algorithm will attempt to
find a hyperplane that separates these points in hyperspace.

As mentioned above, our approach is unique as we define training set objects as three
dimensional structures of receptor-ligand complexes. To select features, we rationalized that
pair potentials that are the basis of common knowledge-based statistical functions such as
PMF8 and DFIRE24 are the best option, as they are able to capture the nuances of the
receptor-ligand interaction as we reported previously.14 In this work, however, as described
in the Supporting Information, we derived our own pair potentials. The selection of pair
potentials as features offers a number of advantages, such as obviating the need to compute
physico-chemical terms like solvation, entropy and enthalpy terms, which can be time-
consuming and result in large errors.

The next step in deriving an SVM model is to create the two sets of objects that will
constitute the training set. We focus on the training set as a means to tailor the SVM
algorithm to each individual target. In the context of developing target-specific scoring
functions to distinguish between active and decoy molecules, an ideal positive set would
consist of a priori known active molecules, while the negative set would consist of decoy
molecules bound to the target of interest. While obtaining structures of decoy molecules
bound to a receptor can be achieved in a straightforward manner with molecular docking, it
is typically not the case that a sufficiently large set of three dimensional structures of active
compounds bound to the target of interest is available. In an effort to tailor the scoring
function to its target, we defined the positive set to consist of a collection of structures that
shared strong homology to the target protein. The SVM models derived with this approach
are referred as SVM-SP. Further efforts to tailor the scoring functions to their receptors led
us to dock 5,000 decoy molecules were docked onto the target receptor as described in more
detail in the Supporting Information. We have found that 5,000 decoy molecules resulted in
best performance. The expectation is that the algorithm will be trained to disfavor molecules
that adopt decoy-like binding modes to the target.

Assessing Performance of SVM-SP
The Directory of Useful Decoys (DUD) provides a useful list of targets along with a library
containing a set of known ligands and decoy molecules for validation of the SVM scoring
methods. The ratio of decoy to ligand for each target is 36. A tool that is commonly used to
assess the performance of a scoring function is the receiver operating characteristic (ROC)
plot.25 An ROC curve is constructed by ranking the docked complexes, selecting a set of
compounds starting from the highest scoring compounds, and counting the number of active
compounds. This process is repeated a number of times for a gradually increasing set of
compounds selected from the ranked list. In an ROC plot, the farther away the curve is from
the diagonal, the better the performance of the scoring function. The area under the ROC
curve, which we refer as ROC-AUC, can also be used as a representation of the performance
of the scoring function. A perfect scoring function will result in an area under the curve of 1,
while a random scoring function will have an ROC-AUC of 0.5.

Following the docking of each set of decoys and ligands to its target within DUD using the
program AutoDock426 the resulting complexes were scored with SVM-SP, ChemScore,5
GoldScore,6 PMF,27 X-Score,28 DFIRE29 and AutoDock.26 The Glide program was used for
the docking to generate the Glide scores. Figure 1A provides the mean ROC-AUCs for each
scoring function obtained over all 40 targets within DUD for SVM-SP scoring and other
scoring functions. The results reveal that SVMSP showed best overall performance with a
mean ROC-AUC of 0.80, followed by Glide (0.68), ChemScore (0.66), GoldScore (0.64),
AutoDock (0.64), PMF (0.58) and DFIRE (0.49). To gain insight into the performance of
scoring functions for individual targets, ROC-AUCs of DUD proteins are shown in a color-
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coded map in Fig. 1B. It is worth mentioning that the better performance observed by SVM-
SP is not completely unexpected since the scoring function is tailored to each target. It is
possible that better enrichment would have also been observed for other scoring functions
had DUD targets been included in their training sets.

The performance of the scoring functions was also assessed by protein family also shown in
Fig. 1A and B. The 41 targets are classified into six categories, namely serine proteases,
nuclear hormone receptors, kinases, serine proteases, metalloenzymes, folate enzymes and
“other enzymes”. The mean ROC-AUC for each family of proteins is shown in Fig. 1A and
B. SVM-SP scoring performs consistently well for each class of proteins with ROC-AUC
values 0.75 or greater in five of the six classes. It was also encouraging that the performance
of SVM-SP did not vary significantly from one family to another, showing less target
dependence than other scoring functions. The lack of variation may be attributed to the
customization aspect of SVM-SP.

Among kinases, the enrichment levels of SVM-SP are particularly noteworthy with a mean
ROC-AUC of 0.83. Most scoring functions showed mean ROC-AUC values of 0.66 or less,
confirming what was previously known, which is that ranking compounds docked to ATP
sites in kinases is a challenge. Among the 9 kinases, ROC-AUC values from SVM-SP
ranged from 0.69 to a remarkably high 0.98 as shown in Fig. 1B. Among all kinases, highest
enrichment was found for EGFR and FGFr1 kinases with ROC-AUC of 0.98 and 0.91,
respectively. The lowest ROC-AUC among kinases was 0.69 for CDK2. It is interesting to
note that the number of complexes used in the positive set to derive the SVM-SP model for
each target was not a factor in performance. For example, enrichment in HSP90 was higher
than in CDK2 (0.78 versus 0.68), even though around 450 structures were used to derive
SVM-SP for CDK2, compared to 50 for the former (Table S1). Remarkably only 4
structures were used to develop an SVM-SP model for TK, and this enzyme's ROC-AUC
score was on par with those of other kinases. Finally, the performance of SVM-SP for the
homology model of PDGFRβ is worth noting. The ROC-AUC of SVM-SP for the target is
0.87, compared with 0.63 for Gold and 0.44 for Glide. These results are highly encouraging
as they suggest that SVM-SP can perform well even in the absence of a high resolution
crystal structure and can be applied to search for inhibitors for the large number of kinases
in the human kinome whose structures have yet to be solved.

Among the “other enzymes” class, SVM-SP demonstrated excellent performance with
ROCAUC scores greater than 0.9 in four out of 15 enzymes, namely GPB (glycogen
phosphorylase β), NA (neuraminidase), PNP (purine nucleoside phosphorylase) and SAHH
(S-adenosyl-homocysteine hydrolase). The lowest enrichment was found in ACHE and
COX-1 (ROC-AUC = 0.54 and 0.58 respectively).

In sum, it was encouraging that SVM-SP performed better than all scoring functions across
all DUD targets, especially among kinases, showed little variation across the protein classes,
exhibited excellent performance on a homology model, and performed very well even when
trained on a few structures in the positive set.

Virtual Screening, Biochemical Characterization and Assessment in Cell Culture
The particularly good performance of SVM-SP in ranking compounds docked to kinases
prompted us to assess whether the scoring function can identify inhibitors of these enzymes
in a chemical database. Two kinases were chosen for this purpose, namely the epidermal
growth factor receptor (EGFR), a receptor tyrosine kinase, and calcium-calmodulin-
dependent protein kinase II (CaMKII), a serinethreonine kinase. The former is an important
target in cancer, including currently FDA-approved drugs such as erlotinib. The latter has
been suggested as a target for treatment of various neurological disorders.
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An in-house library of 1,125 compounds was docked to the ATP binding site of EGFR
(PDB code 1M17) using the docking program AutoDock 4 (Details are provided in the
Supporting Information). The resulting three-dimensional structures of compounds bound to
EGFR were scored with SVM-SP that was developed for the enzyme for the validation work
described above. Since our in-house library contained a number of closely related structures,
the top 100 compounds were clustered to ensure the structural diversity of compounds
selected. A representative structure from each of the top 25 clusters was selected. These 25
compounds were tested for inhibition of EGFR kinase activity at a concentration of 25 μM
initially using a FRET-based assay described in detail in the Supporting Information. The
concentration of ATP was used near-Km at 11.5 μM and 0.05% BRIJ-35 was used to prevent
aggregation. Four compounds were found to inhibit kinase activity of EGFR at a level of
25% or greater. A follow-up concentration-dependent study was conducted, and three
compounds showed inhibition in a dose-dependent manner. These compounds ranked 4, 8
and 18, respectively, among the top 25 compounds. The concentration of compound that led
to 50% inhibition (IC50) was estimated at 2, 10, and 56 μM for compounds 1–3, respectively
(Fig. 2A). The chemical structure of the three compounds is shown in Fig. 2B. A pairwise
comparison of these three structures with the 444 EGFR inhibitors from the DUD dataset
using the Babel fingerprint resulted in Tanimoto coefficients equal or less than 0.45,
suggesting little similarity and arguing that each compound represents a new class of EGFR
inhibitors.

A literature search to determine whether these compounds have been previously used as
anti-cancer agents revealed that bromo derivative of 1 was tested previously for anti-
proliferative activity in carcinoma cells.20 However, the remaining two compounds are not
known for their anti-cancer properties. Compound 2 was a hit in a screen for inhibitors of
human fatty acid synthase thioesterase. Compound 3 has not been previously reported as
biologically active. We assessed these compounds for their effects on cell growth in a highly
invasive non-small cell lung carcinoma (NSCLC) cell line (H1299) that expresses EGFR. A
colorimetric assay that follows the reduction of (3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) to purple formazan is performed in a dose-dependent
manner over a period of 3 days. While all three compounds inhibited cell proliferation,
compound 1 showed incomplete inhibition (Fig. S1A) likely due to resistance mechanism
triggered against this compound. Compound 2 appeared to be inhibiting growth completely
(Fig. S1B), but the estimated IC50 of 58 μM is significantly larger than the IC50 measured
for inhibition of EGFR kinase activity (2 μM). This can be explained by the negative charge
that is making the compound less likely to be cell permeable and does not reach its target as
effectively. The lack of complete inhibition for compound 1 could be due to resistance
mechanism that the cell develops at higher concentration, possibly by up-regulating of efflux
pumps.

We put the SMV-SP scoring method further to the test and docked our in-house library of
1,125 compounds to the ATP binding domain for CaMKII (calcium-calmodulin-dependent
protein kinase II); a ubiquitous multifunctional serine/threonine protein kinase activated by
calcium-calmodulin. The compounds were docked to the ATP binding site of CaMKII (PDB
code 2BDW30); the C-Elegans isoform of CaMKII that has high homology to the
predominant isoforms of CaMKII expressed in the brain where it is implicated in learning
and memory.18 The small molecule-kinase complexes were scored and ranked using an
SMV-SP model tailored for CaMKII. The top 100 candidates were clustered to ensure that
highly similar compounds were not selected and the top 20 molecules were tested for
CaMKII inhibition. Fewer molecules were selected due to the laborious nature of the assay
compared to that of EGFR. The small molecules were not pre-incubated with the kinase and
therefore likely reflect a dynamic competition between the compound and ATP. CaMKII
activity was measured by quantifying 32P incorporation into a peptide substrate (syntide)
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using a P81 filter assay to separate phosphorylated peptide from unincorporated [32Pγ]-ATP
(described in detail in the Supporting Information). Initially, compounds were screened at a
concentration of 50 μM. Although three compounds statistically inhibited CaMKII at 50
μM, only one (compound 4) of these was shown to inhibit CaMKII in a dose-dependent
manner (Fig. 2B).

The predicted binding modes of 1–3 are compared to erlotinib (EGFR IC50 < 10 nM) in Fig.
3. Erlotinib exploits the entire substrate binding site, including a deep pocket for its 3-
ethynylaniline ring, as well as a long cavity for its bis-(methoxyethoxy) substituted
quinazoline. All four compounds are predicted to use this same cavity of the ATP binding
site: compound 1 through its benzofuran moiety, 2 through the N-acyl substituted 4-
chloroanthranilate, and 3 through its dihydroquinoline. It is expected that these compounds
are type I kinase inhibitors as they bind strictly to the ATP binding pocket, but conclusive
evidence will emerge from future structural or further biochemical studies.

The effectiveness of our SVM-SP scoring method is strongly suggested by the discovery of
three separate μM hits against the EGFR receptor within an in-house library of 1,125
compounds. Considering that our in-house library consisted of compounds selected by a
previous virtual screening effort targeted to binding cavities at protein interfaces that are
unlike ATP-binding pockets, the discovery of compounds within this set having a good
potency is highly encouraging. This approach is one with general value for the virtual
screening identification of hit structures for kinases.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Mean values for ROC-AUC scores and (b) ROC-AUC values for 41, 40 among them
from the DUD validation set.
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Figure 2.
(a) Dose-dependent inhibition of EGFR (compound 1–3) and CaMKII (compound 4); (b)
Chemical structure of compounds 1–4. (c) Effect of compound 3 on H1299 cancer cell
proliferation. H1299 cells (1,000 cells per well) were seeded in 96-well plate overnight.
Indicated compounds or DMSO only (0.1% vol/vol) were added and incubated for 72 h.
IC50 value was calculated by Sigmaplot 11.0 software.
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Figure 3.
(a) Stereoview of the three-dimensional structures of compounds (A) erlotinib; and
compounds (B) 1; (C) 2; (D) 3; and (E) 4. The target is shown in solvent-accessible surface
area and color-coded by electrostatic potential. Red, blue and white correspond to negative,
positive and neutral charge, respectively.
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