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Abstract
This article describes RegioSelectivity-Predictor (RS-Predictor), a new in silico method for
generating predictive models of P450-mediated metabolism for drug-like compounds. Within this
method, potential sites of metabolism (SOMs) are represented as “metabolophores”: A concept
that describes the hierarchical combination of topological and quantum chemical descriptors
needed to represent the reactivity of potential metabolic reaction sites. RS-Predictor modeling
involves the use of metabolophore descriptors together with multiple-instance ranking (MIRank)
to generate an optimized descriptor weight vector that encodes regioselectivity trends across all
cases in a training set. The resulting pathway-independent,i isozyme-specific regioselectivity
model may be used to predict potential metabolic liabilities. In the present work, cross-validated
RS-Predictor models were generated for a set of 394 substrates of CYP 3A4 as a proof-of-
principle for the method. Rank aggregation was then employed to merge independently generated
predictions for each substrate into a single consensus prediction. The resulting consensus RS-
Predictor models were shown to reliably identify at least one observed site of metabolism in the
top two rank-positions on 78% of the substrates. Comparisons between RS-Predictor and
previously described regioselectivity prediction methods reveal new insights into how in silico
metabolite prediction methods should be compared.

Introduction
Cytochrome P450s are responsible for the observed phase I metabolism of over 90% of all
marketed drugs.1–3 The most promiscuous P450 isoform is CYP 3A4, which metabolizes
50% of the top 200 drugs prescribed in 2002.4 The P450 isozymes catalyze a variety of
biotransformations, including aromatic and aliphatic oxidation, N- and O-dealkylation, S-
and N-oxidation, sulfoxide/sulfone formation, oxidative deamination, desulfuration, and
dehalogenation.5 The dominant oxidation mechanism common to all CYPs involves a two-
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electron reduction of molecular oxygen to form a reactive oxygen species and water, a
conversion catalyzed by the heme group situated at the bottom of the CYP active site.6

The metabolic fates of potential therapeutic lead compounds are often unknown at the time
of their initial discovery, potentially resulting in lost time and wasted resources if systemic
metabolic liabilities are later discovered within that class of compounds. Clearly, having a
priori knowledge of the potential metabolic liabilities of potential lead compounds could
have important ramifications in the cost and speed of the drug discovery process. Armed
with this information, medicinal chemists are given the opportunity to modify susceptible
regions of lead compounds to reduce their susceptibility to unwanted modifications, and to
optimize in vivo their viability. Metabolic regioselectivity models can also assist in the the
design of pro-drugs, where the metabolized form of an administered compound becomes the
active species through one or more predictable metabolic modifications. When combined
with toxicity models, the possibility of lead candidate metabolites with undesirable
pharmacokinetic profiles or harmful off-target interactions can be identified earlier in the
discovery process, creating low cost intervention opportunities.

One classic example of this is the P450-mediated metabolism of Acetominophen, also
known as APAP or Tylenol, illustrated in Figure 1. While only a small proportion of the
drug is metabolized by P450s,ii significant amounts of the toxic metabolite NAPQI can
build up when Tylenol is taken in large quantities or in conjunction with alcohol; when
either of these events occur the sulfation and glucuronidation pathways that normally
metabolize 80% to 90% of APAP become saturated. The resulting systemic excess of
Acetaminophen induces P450 expression and increases levels of NAPQI metabolites,
leading to potentially fatal hepatocyte damage.7 Ideally, all potential lead compounds (and
their scaffolds) should be screened for metabolic liabilities before the expenditure of
significant developmental resources. Unfortunately, experimental determination of
metabolic outcomes for each potential lead compound is both time consuming and
prohibitively expensive. Consequently, there is a clear need for effective in silico methods
capable of providing reliable guidance during all phases of therapeutic compound
development.

In recent years, a number of approaches have been developed for the purpose of predicting
the outcome of small-molecule CYP-mediated metabolism with various degrees of
accuracy; some are classification models designed to predict whether target ligands are
inhibitors, inducers or substrates of specific CYP isozymes,8–16 while others are designed to
predict CYP oxidative regioselectivity. Regioselectivity models fall into two broad
categories: ligand/reactivity based17–24 and enzyme-structure based,25,26 while others are
hybrids that utilize substrate QSAR models together with enzyme docking and/or scoring
approaches to arrive at a prediction.27,28 Traditionally, regiospecificity model performance
is evaluated by ranking metabolic site predictions on a set of test molecules against their
known site(s) of metabolism (SOM(s)): A molecule is considered correctly predicted if any
of its experimentally observed sites of metabolism are ranked first, first or second, or first,
second or third (depending on the metric: Top-1, Top-2, or Top-3 respectively) among all
potential metabolic sites on that molecule. The Top-2 metric is considered to be the most
standard method of performance evaluation and is the primary one used during the
discussion section of this work.18–24,27,28

An early 3A4 regioselectivity model from Merck18 utilized a “trend vector” approach that
was developed to associate site-specific topological descriptors with hydrogen abstraction
energies calculated using the AMPAC AM1 method. The Top-2 prediction rate of 44%

iiprimarily CYP 2E1
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reported for 50 substrates by the Merck group was later surpassed by MetaSite, a hybrid
model that utilizes precomputed fragment-based reactivity values in conjunction with a
recognition component derived from CYP isozyme crystal structures. While the MetaSite
group reported a Top-2 prediction rate of 78% for a set of 340 substrates of 3A4,
information about structures, observed metabolites, and predicted metabolic sites were not
publicly released.27 Nevertheless, MetaSite was applied to a public dataset of 324 substrates
of 3A4 by Sheridan et al., comparing results with Merck empirical regioselectivity models
expanded with additional descriptors and random forest machine learning.19 In that study,
the Top-2 prediction accuracy was reported to be 77% for the Merck method and 62% for
MetaSite (as implemented at Merck), though again the molecule-specific SOM predictions
were not released. Two other modern CYP regioselectivity prediction methods are StarDrop
and SMARTCyp.24,29 StarDrop is a commercial application that performs on-the-fly AM1
calculations using a modified version MOPAC97 that are combined with orientation and
steric accessibility descriptors to evaluate potential reaction pathways. Consequently,
StarDrop predictions can require several minutes of computing per compound on a modern
workstation. The SMARTCyp method exploits a set of pre-computed transition state
energies for potential CYP-mediated reactions on representative molecular fragments to
create a reactivity lookup table that covers common SOM environments. In practice, the
tabulated reactivity values are used together with an accessibility descriptor to provide a
final SMARTCyp ranking of putative SOMs on each molecule.

Random-forest machine learning models such as those used by the Merck group are derived
across all potential oxidative metabolism pathways (Csp3 hydroxylation, N-dealkylation, S-
oxidation, etc.) for an entire substrate set. Sheridan et al. argued that properly-encoded
topological information with rational modeling could equal or surpass first principle
methods that utilize local electronic information. First-principle methods potentially provide
better descriptions of reactivity, but they must also must overcome the difficulties associated
with making comparisons between SOMs that oxidatively degrade to metabolites through
different pathways. On the other hand, MetaSite simply assigns each potential SOM a
weight based on its likely potential reaction mechanism, which is influenced by how often
that oxidative pathway is observed in the isozyme training set.30 In other work, individual
regression models by Henneman et al. and classification models by Zheng et al. have been
created for separate pathways using AM1 semi-empirical descriptors.21,22 In those
scenarious, potential oxidation sites of test molecules are ranked through the normalized
application of separate models. Models generated in this fashion rely upon first-principle
signal captured by an AM1 Hamiltonian to differentiate between pathways of different types
without explicitly representing or modeling topological information. SMARTCyp models
rely on first-order principles as well, using DFT calculations of molecular fragments with a
isoform-nonspecific heme group. Reactivity-based models such as these work reasonably
well because they contain a high amount of regioselectivity information, but they do not
incorporate any isozyme-specific information necessary to create CYP-specific models. To
accomplish that, regioselectivity models must be empirically derived for all oxidation
pathways using descriptors derived from both molecular topology and quantum chemical
reactivities.

The main contribution of this work is a description of RegioSelectivity-Predictor (RS-
Predictor), a method for generating isozyme-specific, pathway-independent regioselectivity
QSARs using any sufficiently diverse calibration set of substrates for training. Potential
SOMs are represented through a comination of 148 topological and 392 quantum chemical
atom-specific descriptors that are grouped together as metabolophores. Models are generated
using MIRank — a support vector machine (SVM)-like ranking and multiple instance
learning method specifically designed to correctly rank metabolophores associated with
oxidized SOM(s) over metabolophores of non-oxidized SOMs on the same substrate.31 In
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this work, cross-validated RS-Predictor models were generated from a set of 394 substrates
of 3A4 culled from the primary literature.19,32,33 In one of the first applications of rank
aggregation within the chemoinformatics community, independently-generated
regioselectivity rankings for each compound were merged into single consensus predictions
—with 78% of the compounds having an observed SOM predicted in one of the top two
rank positions. RS-Predictor models calibrated using an updated 322 compound Merck
dataset were shown to be robust, with similar performance rates when applied to an
additional 72 substrate external test set. Additionally, both calibration and test set prediction
rates were shown to equal or surpass those of previously published Merck and MetaSite
methods. RS-Predictor is shown to outperform both SMARTCyp and StarDrop using either
Top-2 or Top-3 metrics. A new Lift metric for assessing prediction quality is introduced
here as well, where each substrate is assigned a lift weight that expresses the statistical
likelihood of randomly picking the CYP-oxidized SOM(s) out of all putative SOMs of the
substrate.

Method
Datasets

The 3A4 substrate and metabolite data used in this paper was collected and curated through
an extensive analysis of public sources. Prior to March of 2010, the most extensive public
collection of 3A4 substrates and metabolites was published by Merck in the form of two
datasets consisting of 305 and 19 molecules.19 Further analysis of the primary literature,
relying especially upon review articles by Brown and Rendic32,33 produced an additional 72
substrates of 3A4 not contained in the Merck database. During the process of curating these
new compounds, the structures, responses and citations from original Merck dataset were
also reviewed. It was discovered that one molecule, H_259_31 appeared twice in the Merck
data, while the ferrocene derivative SSR9719334 was removed due to low reported oxidation
rates. Additionally the experimental responses of 85 compounds were updated based upon
new published results, while errors in the structure of aflatoxin_b1 and promazine were
identified and fixed. This dataset of 394 compounds was originally released as a validation
set for SMARTCyp,24 and is available in Supporting Information.

It is interesting to note that RS-Predictor models generated using the curated Merck dataset
were also used to make predictions on a second external validation set consisting of a
proprietary database of 20 compounds provided by a collaborating major pharmaceutical
company. The prediction results are presented in this manuscript, but for obvious reasons the
structures and experimental responses are not included.

Metabolophores
To be useful as a virtual screening tool, a metabolite prediction algorithm must be able to
correctly rank-order the relative susceptibility of each potential site on a substrate to
metabolism across all possible reaction pathways known to be catalyzed by a given CYP.
The curated 3A4 substrate/product database of this work is analyzed in Table 1 according to
an augmented set of the general rules proposed by Korolev et al. as determining the outcome
of CYP-catalyzed bio-transformations of specific molecular substructures.5 Illustrated here
are structural representations of common CYP-mediated biotransformations, with a
breakdown of the 394 substrates of 3A4 according to the number of potential reactions for
each pathway, the number that undergo oxidization during CYP 3A4-mediated metabolism,
and the corresponding propensity for 3A4 to catalyze each of these oxidative
biotransformations. A single P450 substrate often contains several potential sites of
oxidation, each of which may be associated with a specific type of potential
biotransformation. The structural visualization of P450-mediated pathways within Table 1
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illustrates how multiple distinct heavy atoms, their attached hydrogens, as well as
topologically equivalent heavy atoms, may both individually and collectively represent the
same potential SOM. Experimentally, only a subset of these sites will undergo oxidative
transformation during P450-mediated metabolism, with rates that differ from substrate to
substrate, and isozyme to isozyme. For the dataset presented in this paper, substrate
molecules were found to have, on average, 2.05 observed SOMs and an average of 20.70
potential SOMs. There is significant variance in SOM sites within the substrates in the
dataset, for example, BPR0L075 has  SOMs, while SDZ IMM 125 has an observed to
potential SOM ratio of . A visualization of overall pathway propensities for the 394
substrates is given in Figure 2.

While knowledge of isozyme propensities to follow certain oxidation pathways over others
is useful, these propensities are only known for a relatively small number of substrates, each
of which has a unique electronic and steric environment and resulting distribution of SOMs.
For example, Fluvastatin in Figure 4, does not undergo N-dealkylation — one of the more
likely 3A4-mediated pathways — but instead undergoes aromatic ring hydroxylation. The
problem of regioselectivity prediction is further compounded by the paucity of reliable
kinetic data for known sites of metabolism and the lack of comprehensive metabolite data
that would enable the relative ranking of inactive sites on substrate molecules to be
performed.19 Often, only one or two sites with the greatest oxidation rate are known for any
given substrate molecule. Since experimental data comes from a variety of different labs and
literature sources and has been obtained using different techniques with different possible
motivations, reactivities are typically treated as binary: Either a potential SOM is oxidized
during a 3A4-mediated metabolism experiment or it is not.

These data constraints highlight the potential difficulties in creating broadly applicable
metabolite prediction models. Binary response values mean that information about relevant
differences in oxidation rates between sites are not available within the data. An example of
this is illustrated in Figure 3 through the different mediated metabolic pathways of R and S
enantiomers of warfarin by CYP 3A4. The standard Top-1, Top-2 and Top-3 metrics do not
differentiate between the accurate identification of a primary versus secondary observed
SOMs, while regioselectivity methods that do not encode conformation specific information
will be unable to differentiate between enantiomer-specific matabolism. As a consequence
of these data constraints, regioselectivity models must be able to predict likely metabolites,
or sites with high oxidation rates, without knowing the relative differences in reactivity
between sites on the same molecule undergoing different reactions, or the observed reaction
sites of different substrates.

RS-Predictor determines reaction rate trends by treating substrate molecules as individual
competitions between potentially oxidizable sites, and extracting ensemble trend
information. Within this paragidm, ensuring that known sites of oxidation are ranked above
other putative sites becomes part of a multiple-instance ranking (MIRank) optimization
problem, where potential SOMs are represented as collections of atoms, and each collection
represents a potential P450-mediated pathway illustrated in Table 1. These collections
include the base heavy atom for the candidate transformation as well as the bonded
hydrogen atom(s). Topologically-equivalent atoms that represent the same potential
biotransformation site are grouped together; Figure 4 shows an example of this grouping.
Each individual atom is then represented by 148 topological and 392 quantum-chemical
descriptors. For convenience, these collections of atomic and group descriptors are called
“metabolophores”. A metabolophore is therefore a mathematical representation of an
oxidizable region of a molecule that is defined by its local electronic environment and its
potential oxidative reaction mechanism. The use of metabolophores as basic modeling units
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allows potential SOMs to be directly compared with others within the MIRank framework,
regardless of which oxidative pathway is operative.

Descriptors
A number of descriptors have been developed to characterize the properties of
metabolophores, and they fall into one of three categories: topological, quantum chemical
(atom based), or quantum chemical (atom-pair based). In the RS-Predictor workflow,
metabolophore descriptors are first computed based on the properties of each individual
atom within a metabolophore, but those descriptors are then modified to incorporate
properties of the atoms surrounding it. Consequently, each descriptor label has a depth
range, where each value of the range represents the set of atoms a specific number of bonds
away from the individual atom in question. In practice, descriptor values are calculated from
each of these sets and then mapped back onto the base atom. The exact number and nature
of these descriptors can vary between label and class, and are briefly explained below. A
complete listing of each descriptor calculated within RS-Predictor is provided in Table 2.
Specific examples of the numerical values of descriptors for selected atoms of Fluvastatin
are given in Figure 5. Calculation of substrate metabolophores and descriptors is
accomplished through a combination of SVL scripts, the coding language of the molecular
operating environment (MOE).35

Topological—The topological descriptors used in this work are an expanded version of the
substructure descriptors described in Sheridan et al.19 Extensions include hydrogen atom
representation, as well as additional bond and lipophilicity information. Topological
descriptors contain bond and and atom-type information calculable from 2D structures and
therefore are conformationally independent. Some topological descriptors used here are
atom specific, while others are specific to whole metabolophores, meaning that all atoms
within a particular metabolophore are assigned the same value. The span descriptor is a
topological measure of the position of an atom relative to the middle or an end of a
molecule. This descriptor was originally developed by Sheridan et al., and is the
accessibility descriptor used within SMARTCyp.

Lipophilicity values for each atom i from the substrate atom set A is calculated as follows:

(1)

where P(i) is the contribution of atom i to logP36 and ρ determines concentric atom
groupings based upon di j, the distance between atom i and j. Here ρ is an indicator function
defined to be 1 if α ≤ di j ≤ β and 0 otherwise. Different value combinations of α and β are
used to calculate five different gauges of lipophilicity. The specific values of (α,β) used are
(0,1.2Å),(1.2Å, 2.4Å),(2.4Å, ), ( ), and ( , Ri), where Ri is the longest distance from
atom i to all other atoms of the molecule. Examples of the first two gauges are illustrated in
Figure 5.

Element types for NA (number of atoms) and PA (percentage of atoms) descriptors are H, C,
O, N, S, P, and Other. PATTY atom types are cation, anion, neutral H-bond donor, neutral
H-bond acceptor, donor/acceptor, hydrophobe, and none of the above.37 Rotatable Bond and
Ring Size descriptors each have a range of potential values. Each value within the range is
represented by a binary descriptor as well as an additional floating point descriptor,
providing distribution information that machine learning methods are designed to exploit.
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Quantum Chemical Atom Based Descriptors—These features describe atom-specific
reactivity through a combination of computed values of polar, electrostatic, and donor-
acceptor features,21 while intramolecular energy distributions are used to represent atomic
electron-electron repulsion and electron-nuclear attraction capabilities. These semi-empirical
features are extracted from the output of a MOPAC 200738 calculation using the AM1
Hamiltonian with keywords AM1, XYZ, MMOK, VECTORS, BONDS, PI, PRECISE, EN-
PART, EF, MULLIK, . Atom-specific descriptor values were calculated for
up to 25 unique conformations,iii and then averaged according to Boltzmann’s distribution
law:

(2)

Most descriptors of the atom-based QC class have a depth range of 0–2. Depth values of 1
and 2 then represent the sets of all atoms 1 and 2 bonds away from the individual atom, with
each atom having a discrete descriptor value for depth range 0. The mean, max, min, norm,
and sum of depth 1 and 2 sets are used as individual atom descriptor values, giving a total of
11 discrete values per label. Descriptor values are extracted directly from MOPAC output,
except for Fukui reactivity, Nucleophilicity, and Electrophilicity, whose values are
calculated from wavefunction properties using the following functions:

(3)

(4)

(5)

Ci,HOMO = highest occupied molecular orbital MO coefficient i for atom A

C j,LUMO = lowest unoccupied molecular orbital MO coefficient j for atom A

εHOMO = energy of highest occupied molecular orbital MO

εLUMO = energy of lowest unoccupied molecular orbital MO

Quantum Chemical Atom-Pair Based Descriptors—The interactions between
different atoms within the same molecule are gauged by orbital overlaps and nuclear
attraction/repulsion forces. The bond strengths, electronic energies and conformational
flexibilities of atom pairs potentially correlate to metabolic site lability, and are used as
indirect measures of site reactivity.21 MOPAC semi-empirical calculations are used to
compute the σ – σ,σ – π,π – π orbital overlaps between an individual atom and all other
atoms in the molecule. To calculate atom specific pair-based descriptors, all other atoms are
divided into two sets: a) topologically bonded atoms, and b) all other atoms. For each atom

iiigenerated using the stochastic conformation search function within MOE
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set and orbital type, the overlap between the specific atom and each atom from the set is
calculated. The mean, max, min, norm, and sum of each set are then used as descriptors of
atom lability. In this case, two sets are used to prevent the stronger orbital overlap from
bound atoms from drowning out additional signal from the other atoms in the molecule. A
similar calculation is made for each set derived from atom-atom nuclear attraction/repulsion
forces. The same MOPAC calculations and Boltzmann averaging techniques used for atom
based quantum mechanical descriptors were used for calculating atom-pair descriptors. Each
descriptor label had a depth range of 0–1, with each value from the range being representing
by two atom sets, each having five discrete values per set.

MIRank
MIRank is a fusion of support vector machines (SVM) ranking and multiple instance
learning specifically developed to address the diffuse response signal and consequential
partial ranking challenges inherent to accurate prediction of metabolic regioselectivity.31 As
the primary modeling unit, metabolophores are composed of all atoms potentially involved
in a specific metabolic reaction, and the descriptors used to quantify each atom represent
diffuse information. Since the rate constants of each observed metabolic reaction are
unknown, putative SOMs are either considered oxidized, or not oxidized. Consequently, no
ranking information is known between metabolophores of different substrates, or
metabolophores of the same substrate which are either both oxidized or both not oxidized.
Regioselectivity modeling then becomes a partial-ranking problem, as the only known
response signal is that, for a given substrate, the metabolophores of the CYP-oxidized
SOM(s) should be ranked above the metabolophores of the non-oxidized SOMs. The
optimal descriptor weight vector w that accomplishes this for a given calibration set of N
substrates is determined by MIRank through the minimization of the following loss
function:

(6)

This loss resembles that of SVM in that the first term penalizes structural risk,iv the second
term penalizes empirical risk or error, and C is the tradeoff parameter between both terms.
The difference between MIRank and traditional SVM is that empirical risk is measured for
each individual calibration substrate i through:

(7)

Here pairwise comparisons between all oxidized metabolophores (OM) of the substrate are
made with all non-oxidized metabolophores (NOM) of the substrate,

(8)

using the descriptor weight vector w to determine the score, S(w), of each metabolophore,

ivusing a 2-norm regularization solver to avoid overfitting
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(9)

with xa being the descriptor values for the atom a. The results of this change to SVM is an
optimization problem that is non-convex. In previous work, a fast subgradient algorithm was
developed to solve problems such as these.39

As illustrated in Figure 4 and Figure 6, representing candidate substrates using
metabolophores followed by MIRank model formulation has two main benefits:

1. Combining metabolophore scores (9) with a pairwise empirical risk term (8) lets
direct comparisons be made between SOMs with different potential reaction
pathways (ex. N-oxidation vs. Csp3 Hydroxylation) and different electronic
environments.

2. Gauging (7) and subsequent minimization (6) of empirical risk over all ordered
pairs OM x NOM on a substrate by substrate basis lets MIRank utilize available
partial-ranking information to optimize the regioselectivity prediction for an entire
substrate calibration set.

Once determined, the optimal descriptor weight vector w is applied to predict the CYP-
mediated regioselectivity of any lead candidate. In an effort to create robust models, and to
determine how well RS-Predictor should work on unknown substrates, MIRank models
were generated using 5-fold cross-validation (CV) for model selection. In 5-fold CV, a
calibration set of substrates with known responses is randomly divided into 5 equal
partitions. One partition is assigned to be the testing set, while the remaining four sets are
used for training and validation. Each of the four partitions are used once as the validation
set and three times as part of the training set. Validation performance is gauged each time,
with the optimal w for the three training partitions being determined for different values of
the tradeoff parameter C (6). The optimal C value across all validation runs is then used to
find the optimal w for all four training/validation partitions. The resulting w is then used to
rank-order the putative SOMs of all substrates within the test partition. Optimization of C
and w is performed five times, with each partition being used as the test set once. To
overcome potential biases inherent to random partitions, the entire process of 5-fold CV is
repeated 10 times. As a result, each molecule in the calibration set has 10 independent rank-
orderings of its putative SOMs, each of which comes from a model generated without
including the predicted molecule. When making predictions on an external test set, the
descriptor weight vectors generated from each training/validation model are used, giving 50
predictions per test compound.

Rank Aggregation
While CV is an accepted method for estimating unbiased prediction error, it would not be
effective to present end-users with ten or more slightly different rankings of the potential
SOMs for each molecule. As with any statistical learning method, the results of an
individual MIRank model may not provide an optimal prediction. Variance in overall
accuracy between different CV models of the 394 compound set was found to be ±2%, a
maximal difference of 16 correct/incorrect substrate predictions between individual models.
Prior work has shown aggregate models can significantly improve QSPR and QSAR
models;40 however, consensus regioselectivity models found by applying the weight vectors
from individual CV iterations, and subsequently ranking putative metabolophores according
to their average scores, were found to have poor performances.
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The likely explanation for poor consensus results was that SVM returns a floating point
number. Within SVM ranking that number is used as a score, which in turn produces a rank.
Unlike in regression analysis, the magnitude of this score is largely meaningless since the
model loss function is designed to produce a ranking versus a regression value. As a result
the magnitude of the difference in the score between with different ranks is largely irrelevant
as long it is sufficiently large. Consequently, averaging the metabolophore “score” across
different models to create a single prediction per substrate led to decreased overall
performance relative to averaging the accuracy of ten individual SOM rankings per
substrate. Since bootstrap aggregation is known to increase the robustness of a model,41,42

several methods of rank aggregation were investigated to identify the best method for
producing a single “consensus” rank-ording of sites from a set of bootstrapped models.
While at first glance this may appear to be a simple extension of the bootstrap aggregation
techniques often utilized in regression models, the combination of ranked lists is quite
another problem.

Rank aggregation is a classical problem stemming from social choice and voting theory;
methods for determining victorious candidates or parties from individual voter rankings vary
between different implementations of representative government.43 In recent years, the
computer science community has investigated consensus ranking in a number of settings,
including the merging of query results from multiple databases or optimization of web based
queries by combing results from multiple search engines.44 The “best” aggregation method
for a given problem is one which successfully combines the signal from each set or rank
orderings into a single “consensus” ranking that optimizes the problems’ objective criteria.

Previous investigations indicate that no single aggregation function is optimal for all
problems, especially for real-world situations in which the rankings are noisy, incomplete or
even disjoint.45 Klementiev et al., proposes a general unsupervised framework for learning
rank aggregation models, but left the inclusion of a dispersion parameter as a future
direction.46 A dispersion parameter links the quality of a vote to the rank-position, thereby
representing when different preference information available is expressed differently by
different judges (set of rank-orderings). Values for this parameter would indicating whether
specific set of rank-ordering has more “signal” within the top-k ranks, or is the “signal”
dispersed equally across all rank-positions. In a different study, supervised rank aggregation
was employed; Manual hyper-parameters selections for different Borda Count and Markov
Chain aggregation functions were made to minimize distances between the aggregated
rankings and experimentally labeled rankings.47 These works46,47 were drawn upon with
domain knowledge of the ranking constraints of regioselectivity prediction to propose the
regioselectivity rank aggregation function of RS-Predictor.

Existing rank aggregation methods utilize different weighting schemes in order to define the
relative importance between different rank-positions, with higher positions being considered
more important than lower ones. This paradigm shifts when the ranking “signal” is not
equally dispersed between all items to be ranked but is instead concentrated within the top k
predictions. In this case the rank aggregation method employed should only consider the top
k rank-positions from each set of rank-orderings. A single cross-validated prediction from
MIRank on a candidate substrate gives a complete rank-ordering of putative sites according
to predicted regioselectivity; however, that model was trained on substrate molecules whose
average signal is the correct ranking of 2.05 sites of CYP-mediated oxidation out of 20.70
potential sites. When training the regioselectivity rank aggregation function of RS-Predictor
it was hypothesized that only the top four rank-positions from each MIRank generated rank-
ordering of sites would contain a relevant prediction signal.
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The regioselectivity rank aggregation function implemented within RS-Predictor was
trained on the cross-validated MIRank predictions of 100 substrates, each quantified by
descriptors obtained from a single minimum energy conformation, with 10 predicted rank-
orderings of putative sites per compound. The models used to create these predictions are
not the final models presented within this paper. Implementation and supervised
hyperparameter optimization is shown in Algorithm 1.

The “best” regioselectivity rank aggregation function is defined as the one that optimizes
the consensus-based regioselectivity prediction rate of a given set of candidate substrates.
However, as defined previously, there are three Standard metrics (Top-1, Top-2 and Top-3)
by which prediction quality is gauged: A molecule is considered correctly predicted if any
experimental site of CYP-3A4-mediated oxidation is ranked first, first or second, or first or
second or third within the consensus SOM regioselectivity ranking. During training,
consensus ranking from the top 4 rank-positions with a .3 decrement in weight for each
lesser rank gave optimal results using a Top-1 or Top-2 metric, but using the top 3 rank
positions with a .4 weight decrement was found to produce optimal results for the Top-3
metric. Similar differences in predictive performance were observed when models were
generated using Boltzmann-averaged descriptors instead of those from single low-energy
conformations. When an exponential decay aggregation function was applied that utilized all
rank-positions over a broad range of decay rates, the results were found to be consistent with
the conclusions of Sculley: For real-world situations with noisy and incomplete ranking
information, no single aggregation function is optimal across all problems or all metrics.45

Fortunately, our findings indicate that rank aggregation is robust across different weighting
schemes; the maximum difference in rank aggregation performance across a wide variety of
rank weighting parameters on the 100 molecule training set was found to be only four
predictions.

Lift Metric
One drawback of the Top-k metrics reported in previous publications18–24,27,28 is that
overall prediction quality is evaluated on a per-substrate basis, without recognizing that the
successful prediction of one substrate may be much more difficult to achieve than the
successful prediction of another. Consider the two 3A4 substrates ethanol and valspodar (see
Figure 13a), each having only a single observed site of 3A4-mediated oxidation. Even
though ethanol has only two potential SOMs and valspodar has 66 potential SOMs, the
contribution of a correct prediction on either one of these molecules would be exactly the
same when using traditional metrics. The statistical likelihoods of randomly predicting the
experimental SOM within two guesses for ethanol and valspodar are 1 and .03 respectively,
illustrating that a new approach is needed to fairly assess the practical performance of
different prediction methods on real-world datasets. To address this problem, we developed
a new metric based upon lift — a measure of how predictions from a real model compare
with those from a random model.

The first step in creating a random Top-k model involves determining the likelihood of
randomly picking an observed SOM from all possible sites on a given substrate within k
guesses. Conceptually, this is no different from the classic probability problem of having a
bag filled with marbles that are one of two colors, and one must pick a specific color
combination of marbles from the bag within k guesses with no replacements. For a given
substrate i (bag), composed of M metabolophores (marbles), of which OM are CYP-oxidized
(colored blue), and NOMv are non-oxidized (colored red), the likelihood of an accurate
random Top-k prediction can be determined as follows:

vNOM == M - OM
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The converse of this event,

may be calculated as shown above with the hypergeometric distribution, resulting in the
expression:

(10)

The Rk(i) value of substrate i represents the statistical difficulty of randomly predicting an
observed oxidation site on that substrate within k rank-positions, which is then used to
define the substrate lift weight . Substrates with higher lift weights have higher
proportional contributions to the overall prediction accuracy when using a Lift metric (11).
The  lift weights of ethanol and valspodar are 1 and 33.3 respectively. The average Top-2
lift weight for the full set of 394 substrates is 7.58, where each molecule had an average of
20.70 potential sites of oxidation and 2.05 observed sites of metabolism.

Gauging of Prediction Accuracy
To determine the overall accuracy of the predicted rank-orderings (RO) of method X on a
dataset of N substrates using a Top-k Lift metric, the following equation is employed:

(11)

where Pk, descriped below in (13), is the rank-order accuracy of the metabolophores on
substrate i using method X and a standard Top-k metric. This is more complicated version of
the Standard Top-k metric:

(12)

which simply represents the percentage of molecules from the set which had a site of
oxidation predicted within the top k rank-positions by method X. The Lift metric uses the
random likelihood of a making an accurate prediction for a given substrate as a means of
gauging the relative contribution of that substrate to the overall prediction rate. Indeed, if
each compound from the dataset being predicted has the exact same random likelihood of

Zaretzki et al. Page 12

J Chem Inf Model. Author manuscript; available in PMC 2012 July 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



being correctly predicted, and therefore the same  values, the two functions become
identical.

The Standard Top-k metric Pk (13) is defined as follows: A substrate molecule is considered
to be correctly predicted if any observed experimental site of CYP-mediated metabolism is
ranked first, first or second, or first or second or third for respective k values of one, two and
three. This approach works well when each potential site is assigned a unique rank, but
methods such as StarDrop and SMARTCyp occasionally assign equal ranks to more than
one site. For example, in the current work, SMARTCyp and StarDrop were found to assign
equal ranks to topologically unique sites in 62 and 30 cases, respectively. This creates an
additional level of ambiguity when gauging relative prediction quality, as illustrated by one
real and two hypothetical regioselectivity predictions on three example substrates in Figure
7. On the other hand, by grouping all topologically equivalent SOMs within a particular
metabolophore and then ranking each metabolophore according to a 540 dimension
descriptor weight vector, RS-Predictor ensures that each SOM is given a unique rank-
position. When each putative SOM has a unique rank-position, the calculation of Pk is trivial
and binary — either there is an observed SOM within the top k predicted SOMs, 1, or there
are none, 0. When topologically distinct sites receive the same rank (as can be the case with
SMARTCyp and StarDrop), gauging the prediction accuracy of each competitive method is
no longer trivial.

Examples of the difficulties associated with evaluating StarDrop or SMARTCyp prediction
results can be seen in the molecules illustrated in Figure 7, where multiple topologically
distinct sites of a given substrate have been assigned identical predicted rank-positions.
Example 7a is an actual prediction made by StarDrop for 1-nitropyrene, in which two
topologically distinct SOMs are both ranked 1st but only one of them is an observed
oxidation site. Given that observation, should the molecule be considered correctly predicted
by StarDrop using a Top-1 metric? What should the value of P1 be? The predictions made
by SMARTCyp on 1-nitropyrene are also ambiguous; a single non-oxidized SOM is
predicted in the first rank-position, and four distinct SOMs are predicted in the second rank-
position — only two of which are sites of 3A4-mediated oxidation. How should a Top-2
metric be applied in this case? To the casual user of these methods, each of these outcomes
might considered a success even though they may be of limited value to a medicinal
chemist. Examples 7b and 7c represent different possible site rankings for the same
molecule. In each of these hypothetical cases, two distinct SOMs are ranked 1st and 2nd,
while two other SOMs are equivalently ranked 3rd, but only one out of the four predicted
SOMs is an experimentally observed oxidation site. How should a Top-3 metric be applied
to these two cases? Should it make a difference to P3 if the observed SOM is one of the sites
distinctly ranked 1st and 2nd (7b), or if it was one of the two sites ranked 3rd (7c)? To answer
these questions, we have applied domain knowledge and basic probability theory in an
attempt to develop a framework that fairly gauges the prediction power of each method.

The prediction accuracy of an input rank-ordering (RO) of putative SOMs of substrate i with
a Top-k metric, is determined in a similar fashion to the random model:

(13)

the only difference being the set of M metabolophores (marbles) is not composed of all
potential sites of the substrate, but of all metabolophores that are predicted within the top k
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rank-positions of the input RO. To ensure fairness, in all cases where x metabolophores are
predicted to have the same rank-position, subsequently ranked metabolophores have their
corresponding rank-positions incremented by x − 1, thereby not allowing the RO as many
additional predicted SOMs. In 7a for example, since two topologically distinct sites are
ranked 1st, the next predicted site is considered to be ranked in the 3rd position instead of the
2nd position. After rank-positions are adjusted, all metabolophores within the top k rank-
positions are placed into a prediction set M, thereby losing the distinction of whether a given
metabolophore was ranked 1st or 2nd or 3rd in the original scheme. The rationale for this
decision comes from the Standard Top-k metrics of prediction quality; a substrate is
considered correctly predicted if any CYP-oxidized SOM is predicted in any of the top k
rank-positions, therefore the exact rank-position (≤ k) an oxidized metabolophore occupies
is not relevant when gauging the accuracy of a prediction.

It is important to remember that the determination of prediction set M is directly dependent
upon the value of k. The same RO will have potentially different prediction sets for different
Top-k metrics, with corresponding differences in NOM, M and Pk(i, RO). Also, when M is

equal to k,  becomes 1, and the resultant Pk value will be either 0 or 1 — the binary
Top-k metric traditionally applied to gauge regioselectivity prediction rates. To satisfy this
constraint, each putative SOM must have a distinct rank-position, such as any rank-ordering
produced by RS-Predictor, or the value of the Top-k metric employed must equal the
number of topologically distinct SOMs ranked in positions < k, which is the case when
calculating P2 in Figure 7a.

The determination of Pk through the statistical likelihood of randomly “choosing” an
observed oxidation site from a given prediction set within k guesses gives credit for an
accurate prediction, while penalizing the prediction of more than k distinct SOMs.

Another way in which QSAR models are traditionally judged is through ROC curves that
assess true-positive and false-positive prediction rates. Regioselectivity predictions do not fit
into this paradigm, as Top-k prediction accuracy is gauged solely through relative rankings
of different SOMs of the same substrate. An oxidized SOM may be predicted in the second
rank-position, below a non-oxidized SOM, and the substrate would still be considered
correctly predicted using a Top-2 or Top-3 metric. That SOM would be considered a true-
positive with respect to other SOMs of the substrate and a false-negative relative to the SOM
in the first rank-position. A different true-positive/false-positive gauge was designed to both
address this type of issue and to present information potentially relevant to both medicinal
chemists and future regioselectivity modelers.

As illustrated earlier in Table 1 and Figure 2, the substrates of a given dataset may be broken
down into composite SOMs, which are then classified into pathway sets based upon the
reaction mechanism that they have the potential to undergo. A reaction pathway set is
thereby composed of a certain number of SOMs that undergo CYP-mediated oxidation, and
a majority of SOMs that do not undergo oxidation. Ratios of  SOMs within each set are
used in the top panel of Figure 10 to gauge the pathway-based catalytic propensities CYP
3A4 for different substrate sets. The predicted rankings of a given model for the composite
observed and potential SOMs of a set are used as a means of gauging true-positive and false-
positive rates in the lower panel of Figure 10. This type of analysis gives insights into the
strengths and weaknesses of a given method at identifying SOMs with the potential to
undergo specific oxidation pathways; when applied to the predictions made by different
methods upon the same set of substrates, chemistry-based insights as to where and when a
given model has the best application are illustrated.
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Results and Discussion
Overall prediction rates of RS-Predictor, SMARTCyp and StarDrop for the Complete
dataset of 394 substrats are shown in for Standard metrics in Table 3 and Lift metrics in
Table 4. RS-Predictor models were generated from substrates characterized using
descriptors from either a single minimum energy conformation or a Boltzmann average of
the descriptor values of up to 25 conformers per compound. Average results of RS-Predictor
represent the overall prediction rates with each compound having 10 independently
predicted rank-orderings of putative SOMs generated through 5-fold cross-validation (CV).
Since multiple predictions are made for each molecule, the overall average prediction rate
has a corresponding distribution and standard deviation. Consensus RS-Predictor results
were obtained by rank aggregating 10 predictions for each compound into a single predicted
rank-ordering of potential SOMs, which then determine overall performance. Performances
are also given for two other regioselectivity prediction methods, SMARTCyp and StarDrop.
The prediction enrichment of each method may be gauged through the baseline
performances of the Random Model. This model is simply an average of the Rk values for
each substrate within the given dataset for the given Top-k metric. There is no Random
Model for the Lift metrics since these metrics incorporate Rk on a substrate by substrate
basis.

To ascertain whether results generated from 5-fold CV models are truly representative of
how RS-Predictor would perform on potential lead candidates, additional tests were
performed. The updated dataset of 322 substrates released by Sheridan et al. was used as a
Calibration set for RS-Predictor, with the additional 72 compounds being used as an
External test set. Consistent with RS-Predictor implementation, each molecule from the
Calibration set has 10 independent predictions, obtained through 10 iterations of 5-fold CV.
The 50 different Calibration models were then applied to each compound of the External test
set. When these models were applied to a second external test set, 20 proprietary 3A4
substrates from a partnering major pharmaceutical company, 85% of the substrates were
correctly predicted by RS-Predictor with a Top-2 metric.

Knowledge of the potential CYP-mediated regioselectivity of oxidation is an important
aspect of drug discovery. While determination of metabolites by experimental means is
accurate, such procedures are neither quick nor cheap enough to be applied to all compounds
under development. Consequently there has been an emphasis on the development of new in
silico regioselectivity prediction methods in recent years. The usefulness and quality of each
method depends mainly on overall accuracy of regioselectivity prediction and the speed with
which the method is able to predict the likely metabolites of new compounds. These were
the two factors used to gauge relative benefits of using descriptors from a single-minimum
energy conformation versus Boltzmann averaging of descriptor values of up to 25
conformations. Comparing overall results between different RS-Predictor Consensus models
for the full 394 dataset with a Standard Top-2 metric reveals that Boltzmann models
correctly predicted 12 substrates not predicted by Minimum models, while Minimum
models predicted 11 molecules that were missed by Boltzmann models. Differences in
overall performance across metric and database, as well as pathway-specific prediction rates
were therefore found to be minimal. Model differences are likely due to variance in different
CV partitions, as opposed to differences in descriptor information content. In light of the
fact that calculating Boltzmann averaged descriptors takes on average of 22.50 seconds per
compound, while using a single conformation takes on average 1.5 seconds per compound,
future implementations of RS-Predictor will utilize only a single energy-minimized
structure.
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A single calibrated weight vector is a set of 540 descriptor coefficients that implicitly
represents the oxidative regioselectivity trends of a given subset of substrates. The 148
topological descriptors are quickly determinable from 2D structure, while the 392 quantum
chemical descriptors are quickly derived from the output of MOPAC. The rate-limiting step
of descriptor generation for a specific conformation is the AM1 MOPAC wavefunction
calculation. Once performed, the time needed to extract all QC descriptor values from the
MOPAC output is relatively negligible. To lessen the risk of developing overdetermined
models from a large number of potentially correlated descriptors, a 2-norm regularization
solver was employed within MIRank. A complementary technique that is used to lessen the
likelihood of model overtraining is feature selection. Unsupervised feature selection was not
employed, because the removal of features based upon trends within a given calibration set
could have eliminated significantly correlated features with different relative regioselectivity
signal for a different set of substrates; rank aggregation is specifically designed to take
advantage of signal of this nature. Meanwhile, supervised feature selection runs the risk of
overdetermination, as descriptors that have little signal for one isoform may in fact have
greater relevance for the regioselectivity of other isozymes. Consequently, a comprehensive
supervised feature selection study will only be made when applying RS-Predictor to
multiple substrate sets of different isoforms.

Model interpretation, gauged in this case through the relative weights of 540 unique
descriptors, is an important aspect of QSARs. Unfortunately the same factors that make RS-
Predictor models robust, large numbers of potentially correlated descriptors with 10
independent iterations of 5-fold CV, make model interpretability more difficult. The relative
importance of different descriptors averaged across 10 CV iterations is illustrated in Figure
8a through the 100 descriptor weights with the highest absolute values. Absolute values
were used because some descriptors are positively correlated with a metabolophore
representing an observed SOM, while some are negatively correlated. The interested reader
may find weights and correlation for each descriptor and each CV model within Supporting
Information.

The ten descriptors with the highest absolute weight across all models, with corresponding
positive or negative correlation to P450-mediated regioselectivity, are listed in order of
decreasing weight as follows: NA_0_S(+), Span(+), atom_area(+), N(+), AR(−),
NA_0_O(−), BL(+), MR(−), SC_1_sum(−), NA_0_C(−). While it is understandable why an
atom being a Sulfur, or having a high nucleophilicity or average exposed surface area,
would indicate oxidative potential, reverse engineering a simple regioselectivity ranking-
function based upon smaller descriptors subsets would be a challenging problem. The
smaller signal inherent to having fewer input descriptors would likely give interpretable
models, but such models would not necessarily extrapolate well towards predicting the
mediated regioselectivity of other isozymes. Meanwhile, the average weights and standard
deviations of all 540 descriptors illustrated in Figure 8b represent a large amount of variance
and signal that may be exploited when applying the RS-Predictor algorithm to any set of
known substrates.

Statistical descriptor trends may vary slightly between different calibration partitions, but
their broad applicability to validation or external compounds has been demonstrated. The
standard deviation in Average Complete model prediction rates is ±2%, a maximal
difference in correct/incorrect predictions of 16 molecules between individual models. The
variance in results when applying the 50 Calibration models to the External dataset is
±3.6%, a maximal difference of 6 molecules between individual models. Choosing a single
model may not result in optimal, or even average, performance, which is why rank
aggregation was employed. Even though the primary motive for model aggregation was the
simplification of substrate prediction representations for a medicinal chemist end-user, it is

Zaretzki et al. Page 16

J Chem Inf Model. Author manuscript; available in PMC 2012 July 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



encouraging to see that Consensus performance rates are never below those of the Average
performance rates. Indeed, Consensus model performance bumps are often near the top end
of the standard deviation range of Average performance rates. Rank aggregation
circumvents difficulties in averaging weight vectors across multiple models by first applying
those individual statistical regioselectivity trends to each candidate substrate and only then
merging the response. While increases in performance is matched by a corresponding
increase in difficulty for Consensus model descriptor-based interpretation, other conclusions
may be drawn.

In Table 5, increases in Consensus prediction rates over Average prediction rates do not
appear correlated to the different Top-k metrics, Standard versus Lift metrics, datasets or
descriptor sets. Since rank aggregation is a generic technique for merging multiple sets of
signals into a single signal set, this is not unexpected. It is, in fact, encouraging that even
though the aggregation function was optimized using the predictions for 100 molecules from
the Calibration set, performance increases for both External and Complete datasets were
were even greater than those observed for the Calibration set. This leads us to believe the
rank aggregation function trained on 3A4 substrates may safely be used to make consensus
predictions for other isozyme models. Comparing consensus ranked prediction rates to
average rates obtained from either 10 or 50 predictions per molecule in Table 5 reveals an
average Consensus performance increase of 3% across all metrics for the Complete dataset;
the regioselectivity predictions of 12 molecules improve when consensus ranking is applied.
The fluctuations of performance increases observed between Minimum and Boltzmann
models support the previously mentioned hypothesis — variance in model performance
most likely arises from the differences between random CV partitions, as opposed to
differences in descriptor quality. We extend this hypothesis further by incorporating the
findings of Sculley, who proposed that no rank aggregation function is optimal across all
problems.45 Differences in performance bumps between different aggregation functions
(each with their own hyperparameters) will likely be more dependent upon the random
partitions used to generate CV models, rather than by the specific dataset, descriptor set or
performance metric associated with those models. Investigation into rank aggregation has
yielded a systematic framework whereby the signal of independently generated
regioselectivity rank-ordering of substrate SOMs may be combined into a single consensus
SOM ordering by predicted regioselectivity. While the regioselectivity rank aggregation
function proposed in this work is not guaranteed to be the optimal aggregation function for
any CYP substrate set, metric, descriptor set, or set of CV partitions, benefits in improved
overall performance, as well as simplification for medicinal chemists being able to look at a
single set of predicted SOMs for a given substrate, justify its use.

Direct comparison between Merck and MetaSitevi results with those of RS-Predictor,
SMART-Cyp and StarDrop is difficult. Top-2 metric performance rates from Sheridan et al.
were presented using separate databases of size 316 (structures were only released for 305)
and 19, which have been merged as follows:

. Calibration set
results for RS-Predictor, SMARTCyp and StarDrop were calculated upon the updated
Merck dataset, which had 2 molecules removed and 85 compounds with fixed structures or
updated responses. Despite the database discrepancies, it is encouraging to see that
Consensus model results statistically match previously reported efforts. It is also revealing to
compare External results with Calibration results. Performances for RS-Predictor remain
statistically equivalent between sets. At worst, the External Boltzmann predictions only miss
three molecules more than an equivalent Calibration model might miss. This indicates that

viversion 2.7.5
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Consensus models for the Complete dataset are not likely to be overfit. Calibration model
performance on the 20 proprietary compounds further demonstrates the robustness of RS-
Predictor; the oxidation sites of certain compounds, which in-house methods of the
partnering pharmaceutical company were unable to identify, were blindly predicted by
Calibration RS-Predictor models. As should be expected with a first-principles approach,
SMARTCyp is also robust across sets, with an External rate 1.7% higher than the
Calibration rate. Meanwhile the Top-2 External rates of StarDrop are 13.8% lower than
Calibration rates. In general it appears RS-Predictor does not perform as well as
SMARTCyp using a Top-1 metric. However, when Standard and Lift Top-2 and Top-3
metrics are applied, RS-Predictor outperforms both SMARTCyp and StarDrop on all
datasets.

As defined earlier, Lift rate calculations are based on the idea that specific molecular
predictions should be weighted according to Rk — the statistical likelihood randomly
picking a substrate’s oxidation site(s) out of all potential substrate SOMs within k guesses.
In Figure 9, each substrate in the Complete dataset is represented through corresponding Lift
weight of ; sorting substrates by weight gives a visualization of the prediction difficulty
distribution of the dataset. Larger, “harder”, more statistically difficult to predict molecules
receive higher weights than smaller, statistically easier to predict molecules when
calculating Lift prediction rates. To interpret the meaning of a Lift rate, it is helpful to
consider its corresponding Standard prediction rate and difficulty distribution. Any Standard
Top-k metric would give all bars an equal height of 1. Meanwhile, the average  lift value
for the Complete dataset is 7.58. The Standard rate may be thought of as a useful baseline,
all molecules being considered equally, while Lift rates reflect the  difficultly distribution
of the molecules correctly predicted for the given dataset by a given prediction method.
Consider the case where two different methods correctly predict the same number of
molecules from the same dataset, but one method produces more correct predictions on
“difficult” molecules than the other one. Each method would then have the same Standard
prediction rate, but there would be an important difference in the utility of the two methods,
reflected through their respective Lift rates. Methods with higher Lift rates, such as RS-
Predictor, are likely to be more accurate at predicting larger substrates, whereas those with a
lower Lift rates, such are SMARTCyp, may be better suited towards predicting smaller
substrates. The greater number of incorrectly predicted red bars at the “harder” end of the
difficulty spectrum for both SMARTCyp(9c) and StarDrop(9d) relative to those of RS-
Predictor(9a, 9b) are illustrative of this.

In Table 6 the differences between Standard and Lift prediction rates are shown for each
metric, method, and dataset. In all cases, Lift performance rates were found to be below the
corresponding Standard rates. This is not an unexpected event, as any regioselectivity
prediction method will be more likely to successfully predict a greater number of “easier”
substrates than “harder” ones. The results indicate that for Complete and Calibration sets,
RS-Predictor does better on molecules on the “harder” end of the difficulty distribution than
StarDrop, which in turn shows better performance than SMARTCyp in this domain. It also
appears that differences between Standard and Lift rates decrease as the k metric increases,
illustrating that when a larger number of predictions are considered, a corresponding
increase in the correct prediction of more difficult molecules emerges. Dramatic differences
in RS-Predictor performance rates upon the External set between Top-1 and Top-2 metrics
demonstrate this. RS-Predictor exhibits a high prediction rate decrease between Standard
and Lift Top-1 metrics, indicating that the substrates that are correctly predicted using the
highest ranked SOM are at the “easy” end of the difficulty distribution. However, when the
second highest rank-position is brought into consideration, the drop in Lift performance
becomes negligible; this indicating the oxidation sites of a large number of statistically
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difficult External substrates are predicted in only the second rank-position of RS-Predictor.
Similar differences between Top-1 and Top-2 metrics were not observed for either Complete
or Calibration RS-Predictor results; one possible explanation is that Complete and
Calibration results come from the aggregation of 10 independent models, while External
results come from 50 independent models, which may have a greater degree of variance in
aggregated signal. Neither SMARTCyp nor StarDrop exhibited such a significant rate
difference between between Top-k metrics of the same dataset. However, when considering
rate differences between Calibration and External sets, SMARTCyp displayed similar
Standard rates across sets with a significantly higher Lift rate on the External set. A partial
explanation for this is provided by the Random Model, which indicates that the External set
is statistically “easier” to predict than Calibration set. Meanwhile, StarDrop showed
equivalent differences in Standard and Lift rates for each dataset, but External rates were
found to be approximately 10% lower than Calibration rates. Extending the Sheridan et.al
2D6 and 2C9 datasets and running similar calibration/external comparisons between
Standard and Lift rates of multiple methods would likely be revealing.

It should be noted that representing substrate prediction difficultly solely through ratios of
 SOMs makes sense mathematically, but misses important chemical information. Every

putative SOM has the potential to undergo one or more specific CYP-mediated
biotransformations; the classification of all SOMs from a substrate dataset into pathway-
based sets reveals the regioselectivity pathway propensities for a given isozyme, represented
as ratios of  SOMs. As shown in Figure 2 and the top panel of Figure 10, CYP 3A4
exhibits different propensities to catalyze different pathways. To assess substrate prediction
difficulty without consideration of putative SOM oxidation paths, or the catalytic
propensities of the metabolizing isozyme, is to ignore important pieces of chemical and
statistical information.

In the current investigation, pathway regioselectivity propensities between Calibration and
External sets were found to be similar, as should be expected for two sets composed of 3A4
substrates. The amount of positive signal, in terms of  SOMs, in the External set
(9.77%) is slightly higher than that of the Calibration set (8.10%). A higher percentage of
Calibration set oxidation sites undergo N-dealkylation, non-aromatic ring hydroxylation or
sulfur oxidation than for the External set, which in turn has greater propensities for Csp3

hydroxylation, O-dealkylation, and Csp2 and nitrogen-based oxidation reactions. These
small differences in biotransformation propensities does not appear to affect overall RS-
Predictor prediction rates between datasets, though some corresponding affects may be
observed from the pathway-based prediction analysis in the lower panel of Figure 10.

There appears to be broad correlation between the regioselectivity propensity, in terms of
 SOM ratio, and RS-Predictor  prediction rates for a particular dataset of

substrates. This is especially apparent for biotransformations with high relative propensities
such as O-,N-dealkylations, as well as S-oxidations, where the average Top-3  rates
are . High Csp2 propensity ratios are similar to those of O-dealkylation, though not as
high as N-dealkylation or S-oxidation. As a result, RS-Predictor true-positive rates are high,
suggesting that MIRank models successfully utilize topological descriptors to identify which
SOMs are capable of undergoing Csp2 hydroxylation or O-dealkalytion while also
predicting that they are more likely to undergo metabolism than SOMs that follow different
potential pathways. False-positive rates are also high, indicating that current models have
difficulty distinguishing which of these SOMs actually undergo CYP-mediated oxidation
and which ones do not. On the other hand, propensity ratios of aromatic ring hydroxylation,
nitrogen-based reactions and uncommon reactions are quite low, with correspondingly low
RS-Predictor  rates. It is expected that MIRank models utilize regioselective pathway
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propensities implicitly represented by topological descriptors to make predictions with
corresponding pathway tendencies; high descriptor weights for the NA_0_S(+) and AR(−)
descriptors corroborate this view. SMARTCyp and StarDrop have similar correlations in

 SOM ratio to  prediction rates. However, there are visible in differences in
predicted pathway “preferences” between RS-Predictor, SMARTCyp and StarDrop,
differences greater than those between Minimum and Boltzmann models. Comparisons of
pathway preferences across Calibration and External sets for different methods is revealing,
especially when viewed in conjunction with Figure 11, Figure 12 and Figure 13, which show
every substrate that was successfully predicted by only a single method, or not predicted by
any method. These figures were respectively created from easy, medium and difficult to
predict substratesvii on the basis of a Top-2 metric, where molecules were only considered
to be correctly predicted if the P1 or P2 value for the predicted SOM rank-ordering was 1.

Slight increases in Csp3 hydroxylation propensities between datasets are reflected by
increases in the true-positive and false-positive prediction rates of both RS-Predictor and
SMARTCyp. The slightly higher true-positive rate of RS-Predictor likely comes from these
instances.viii The only Csp3 hydroxylation reaction correctly predicted only by SMARTCyp
is methaqualone(M). StarDrop, on the other hand, does quite well at predicting sites of
aliphatic hydroxylation on statistically difficult substrates from the Calibration set,ix but has
a significantly worse  ratio for the External set.

Similar Calibration/External discrepancies are observed in StarDrop predictions of aromatic-
ring hydroxylations, while smaller improvements in dataset propensity ratios (relative to
Csp3 Hydroxylation) helps to explain corresponding rises in RS-Predictor and SMARTCyp
true-positive rates. The high false-negative rates are reflected in the fact that  of all
substrates that are not predicted by any method undergo aromatic hydroxylation.x Clearly
there is room for all methods improve. Trazadone(H) represents a surprising case where two
potential aromatic hydroxylation sites had a higher RS-Predictor ranking than the actual,
statistically more likely, N-dealkylation reaction. Examining Rutaecarpine(M), reveals that
three topologically distinct sites are predicted within the top two rank-positions of
SMARTCyp. Since two of those three are sites of 3A4-mediated aromatic hydroxylation, the
calculated P2 value is 1. Interestingly, each method uniquely predicts a number of different
observed aromatic hydroxylations,xi providing justification for the integration of different
methods.

Each method predicts unique sites that undergo non-aromatic ring hydroxylation as well,xii

while false-negative rates are slightly lowerxiii than those of aromatic hydroxylation.
Performances between between Calibration and External sets remained similar. One
explanation for this is that the relative ratio between  sites of non-aromatic ring

viidefined in Figure 9 through  value
viiiRS-Predictor: arachidonic_acid(E*), buproprion(M), sdz_imm_125(H), cyclosporine(H), ivermectin(H), bms_275183(H),
docetaxel(H)
ixStarDrop: capasaicin(H), salmeterol(H) and finasteride(H)
xNot Predicted: kr_330328(E), warfarin-R/S(E*), reduced_dolasetron(E*), raloxifene(E), zonisamide(M), methoxychlor(M),
carvedilol(M), nelfinavir(M*), 4_hydroxytamoxifen(H), licofelone(H), fluvastatin(H) and py74(H)
xiStarDrop: 1-nitropyrene(E), taxol(H), rebamipide(H)
SMARTCyp: propofol(E*), pranidipine(M*), rutaecarpine(M)
RS-Predictor: phenprocoumon(E), 4_nitropyrene(M), pupropion(M), diclofenac(M), reduced_diclofenac(M*)
xiiStarDrop: aripiprazole(M), quinidine(M), quinine(H)
SMARTCyp: budenoside(M), imidacloprid(M), ddb(H), digitoxin(H)
RS-Predictor: alphadihydroegrocryptine(M), MDMA(M), pradefovir(M), tertranor(M*), bromocriptine(H)
xiiiNot Predicted: bisnor(E*), nortriptyline(M), phenycyclidine(M), reduced_haloperidol(M), everolimus(M), s_145(H),
lithocholic_acid(H), saquinavir(H)
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hydroxylations remain equivalent between datasets, with the External set having less of
both.

Performances of each method upon O-dealkylation reactions provide one of the more
interesting pathway analyses of this work. The Calibration set prediction propensities
indicate that RS-Predictor emphasizes sites capable of undergoing O-dealkylation to a
greater extent than StarDrop, and to a much greater degree than SMARTCyp. When applied
to the External set, which has a higher  ratio, it was expected that RS-Predictor would
have similar true-positive rates, and decreased false-postive rates. What was not expected
was the dramatic improvement in true-positive rate for SMARTCyp, nor the relative drop in
StarDrop performance. Examining the large number of substrates correctly predicted solely
by RS-Predictor,xiv compared to just a single substrate, mycophenolic_acid(H), for
SMARTCyp, and none for StarDrop provides some rational for this and other previous
observations. All but two of the RS-Predictor substrates comes from the Calibration set, and
 of them are at the hard end of the difficulty spectrum. These molecules help to explain why

RS-Predictor has lower Top-1 Standard Calibration rates than SMARTCyp and StarDrop,
but higher Lift rates. However, RS-Predictor false-positive rates are also high. An
examination of incorrectly predicted substrates show four cases where pathways of O-
dealkylation were predicted above observed sites of 3A4-mediated aromatic ring
hydroxylation,xv and two where potential O-dealkylations sites were ranked above observed
Csp3 hydroxylations sites.xvi Everolimus(M), represents a case where RS-Predictor ranked
two non-observed sites of O-dealkylation above the actual site of O-dealkylation. On the
other hand for the Everolimus analog fk_506(H), RS-Predictor not only correctly identified
the observed site of O-dealkylation, but also that of its primary metabolite fk_506_M1(H*).

N-dealkylation and S-oxidation have the highest ratio of  SOMs. It is unsurprising
therefore to see high true-positive and low false-positive prediction rates for all methods.
The number of N-dealkylation reactions correctly predicted by only a single method is
surprising however.xvii Perhaps since most of the substrates come from the Calibration set,
and the greatest number of observed Calibration set oxidations occur via 3A4-mediated N-
dealkylations, some variance between methods should be expected. Certainly the variance in
correct predictions between methods is much smaller for Sulfur oxidations. SMARTCyp
uniquely predicts the desulfuration of malathion and S-oxidation of N_ac_DFEC(M) while
RS-Predictor alone predicts the S-oxidation of chlorpromazine(H). An analysis of the
molecules not predicted correctly reveals that RS-Predictor chose the wrong site of N-
dealkylation for da_8159(M) over the observed one. A single occurrence of a boron atom
within the Complete dataset helps to explain why bortezomib(H) was not identified by any
method.

External  ratios are greater than Calibration ratios for Csp2 and nitrogen-based
reactions, as well as uncommon reaction pathways. Correspondingly, each method has
increased true-positive and decreased false-positive rates across datasets. SMARTCyp
appears to “prefer” Csp2 and nitrogen-based reactions more strongly than RS-Predictor or
StarDrop, though isoquinoline(E) was the only substrate undergoing N-oxidation that was
correctly predicted solely by SMARTCyp. In contrast, the N-oxidation of
acetaminophen(E), reduced_dolasetron(E), voriconazole(M) were not predicted correctly by

xivRS-Predictor: MDMA(M*), fk_506(H), fk_M506_M1(H*), ivermectin(H), cp_12199331(H)
xvNot predicted: carvedilol(M), methoxychlor_mono_OH(M), py74(H), yohimbine(H)
xviNot Predicted: territrem_A(H), rifalazil(H)
xviiStarDrop: cisapride(E)
SMARTCyp: acetochlor(M), ecabapide(M), e_2101(M), compound_1(M), norverapamil(H*)
RS-Predictor: tpa023(M*), cqa_206_291(H), tentoxin(H), furametpyr(H)
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any method. SMARTCyp was the sole method to correctly predict Csp2 based oxidation of
9_cis_retinal(H*). StarDrop does not consider N-oxidations, Csp2 hydroxylations or
aldehyde oxidations, which helps to explain lower prediction rates for the External set. The
formulation of RS-Predictor, which involves consideration of every potential 3A4-mediated
oxidation path within the same model, explains its higher true and false-positive rates for
uncommon P450-mediated pathways relative to SMARTCyp, which does not appear to
contain parameterized reactivity results for many of the uncommon biotransformations. One
example of an uncommon reaction is amide formation, which was correctly predicted for
pinacidil(E) by RS-Predictor, but incorrectly predicted over the actual 3A4-mediated
aromatic ring hydroxylation of kr_33028(E).

Conclusions
This work describes RS-Predictor, an in silico method for creating and implementing
cytochrome P450 regioselectivity models. RS-Predictor models may be generated from any
set of known P450 substrates and metabolites, and work is currently proceeding on eight
other isozymes in addition to CYP 3A4. By quantifying potential SOMs as metabolophores,
direct regioselectivity comparisons can be made between different oxidative pathways, or
pathways of the same type that occur within different electronic and steric environments.
The MIRank modeling procedure exploits this framework by learning which distinct
topological and electronic environments exhibit a greater propensity for oxidation than
others on a molecule by molecule, reaction by reaction basis, to ultimately create a trend-
based regioselectivity QSAR. The descriptor weight vector that optimizes regioselectivity
prediction for an entire calibration set quickly, and often accurately, predicts the oxidation
sites of external substrates. In one of the first applications of rank aggregation within the
cheminformatics community, a systematic framework was developed to merge multiple
predicted SOM rankings from independent cross-validated models into a single consensus
prediction, resulting in improved overall performance. Consensus regioselectivity models
predict at least one oxidation site within the top two rank-positions for 78% of 394
substrates of 3A4. Models are robust and quickly applicable, taking on average under 3
seconds to make a prediction on a new compound.xviii

Another contribution of this work is the definition of a new Lift metric that uses the
statistical likelihood of making a randomly correct prediction for a given substrate as a
gauge of the difficulty of making an accurate prediction on that same substrate. Overall Lift
rates demonstrate that RS-Predictor is able to identify the observed SOMs of larger and
more complex molecules with a higher degree of accuracy than other methods. Lift
assessment of substrate prediction difficulty through its ratio of  SOMs makes sense
mathematically, but misses important chemical information about the relative propensities of
a given CYP isozyme to catalyze different reaction pathways (ex. N-dealkylation versus
aromatic ring hydroxylation). For this reason new data visualization techniques were created
to assess the true-positive and false-positive prediction rates of different methods on a
pathway-by-pathway basis. Pathways with lower  SOM ratios, such as aromatic ring,
non-aromatic ring or Csp3 hydroxylation reactions were shown to be predicted with poorer
accuracy by multiple regioselectivity prediction methods than other, higher ratio pathways,
such as S-Oxidation or N-dealkylation. We propose the creation of a new “Chemical Lift”
metric, which would incorporate mathematical Lift in some fashion with isozyme-mediated
pathway propensities, would be a viable way to expand current techniques used to gauge the
prediction accuracy of regioselectivity models.

xviiiUsing a 2.6 GHz Opteron Linux machine to make a predictions for the external set
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Performance analysis illustrates that no single method is optimal across all pathways or
substrates, suggesting that integration of different methods could be valuable. Indeed it is
common practice within the pharmaceutical industry to apply different regioselectivity
predictions methods to each compound under development. As a preliminary gauge of the
potential of method integration, the number and prediction accuracy of substrates having the
same SOM predicted within the first rank-position by multiple methods is shown in Table 7.
When multiple methods predict the same SOM, the Top-1 prediction accuracy is
significantly higher than the prediction rates of individual methodsxix in all but one case.
Low RS-Predictor and StarDrop overlap rates could be explained by the fact that both
methods use MOPAC. Similarity between method inputs likely correlates to similarity in
predictions, both correct and incorrect. Meanwhile, the DFT based reactivity models of
SMARTCyp have a different theoretical basis than RS-Predictor or StarDrop, capturing
complementary information. It should be expected that if two theoretically distinct methods
predict the same SOM, then that SOM is more likely to be an actual site of CYP-mediated
oxidation; ergo, when the SOM predictions of SMARTCyp correspond to those of either
RS-Predictor or StarDrop, the overall overlap prediction accuracy is quite high. Such
findings provide justification for the incorporation of SMARTCyp transition state energies
into other methods, especially RS-Predictor, where smaller prediction overlap indicates that
the two methods are capturing mutually exclusive information.

While RS-Predictor generates isozyme-specific models from a set of known substrates, a
current limitation of the method is that no explicit information from the enzymatic structure
is used. However, a significant strength of the RS-Predictor algorithm is the ease with which
new descriptors that capture different aspects of regioselectivity may be incorporated. To
capture information directly from CYP enzymatic structure, docking algorithms could be
employed to generate bound poses of a candidate substrate within the metabolizing P450
isozyme. Quantum chemical descriptors for each metabolophore could then be calculated
from the pose that placed the metabolophore closest to the catalytic heme. Another approach
would be to generate descriptors directly from the terms used by the docking algorithm to
calculate predicted binding energies. Docking operations would take more time, justifiable
only through improvement in prediction rates.

The currently available public metabolite data19 allows for the creation of 2C9, 2D6 and
3A4 regioselectivity models, but more information is available to be culled. While
important, the substrates of these isoforms do not represent the sum total of all P450-
mediated metabolic reactions. The extension of 72 molecules to the current set of 3A4
substrates represents an initial work; compilation of additional substrate datasets and
extension of older 2C9, 2D6 and 3A4 sets is currently ongoing. Once a sufficient number of
substrates are compiled, we plan to investigate the creation of isozyme specific RS-Predictor
models utilizing different and additional sets of descriptors.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

RS-Predictor Regioselectivity-Predictor

SOM site of metabolism

MIRank multiple instance ranking

SVM support vector machines

OM oxidized metabolophores

NOM non-oxidized metabolophores

CV cross-validation

RO rank-ordering
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Figure 1.
Metabolism of Tylenol by P450s
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Figure 2.
Propensities of 3A4 to catalyze the SOMs of 394 substrates according to established P450-
mediated biotransformations. Hashed sections represents SOMs which are oxidized during
3A4-mediated metabolism. Solid sections represent potential SOMs which do not undergo
oxidation. To simplify result presentation, similar pathways (ex. Sulfur Oxidations) or those
with low population, are placed into the same analysis group.
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Figure 3.
3A4-mediated metabolism of R and S enantiomers of Warfarin. Primary observed SOMs are
designated by a solid circle, secondary observed SOMs are designated by a dashed circle.
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Figure 4.
Metabolophores of Fluvastatin with hypothetical S(w) and Rank values. Fluvastatin has a
total of 22 distinct metabolophores (pathway-based color scheme shown in Figure 2).
Metabolophore 22, representing the 3A4-mediated aromatic ring oxidation, is denoted with a
double box. A metabolophore score, S(w), is the maximum dot product between a descriptor
weight vector w and the descriptors values of each individual atom contained within the
metabolophore. Actual metabolophore labeling and compositions are used, while S(w) and
ranking values are artificial.
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Figure 5.
Numerical values of select descriptors for specific atoms within a substructure of
Fluvastatin, illustrated earlier in Figure 4. The first number after each atom designates the
unique Atom ID, while the second number designates the Metabolophore ID. All atoms in
this substrate have the same Molecule ID, which is unique to Fluvastatin, as well as a
metabolophore-specific binary response value (not shown). For Fluvastatin, only atoms 17
and 18 have positive response values. Atoms that contribute to two of the five lipophilicity
descriptors of atom 18 fall either within the illustrated 1.2Å concentric circle or the 1.2Å and
2.4Å concentric torus. The H after NA and PA descriptor labels denote atoms of element
type Hydrogen, while the Hp label denotes atoms that are hydrophobic. The D0 and D1 after
the self charge (SC) descriptor labels denote the set of atoms 0 (self) and 1 bond-lengths
away from the given atom.
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Figure 6.
An illustration of MIRank application using actual substrates with actual metabolophore
compositions and pathway designations (color scheme in Figure 2). Artificial
metabolophores predictions are sorted by decreasing S(w) (9) and Rank. Rankings were
chosen to illustrate minimized empirical risk (7) for the calibration set, whereby oxidized
metabolophores, denoted by double boxes, are ranked above non-oxidized metabolophores
of the same substrate through pair-wise comparisons of S(w) (8). The “unknown” external
substrate SDZ IMM 125 is correctly predicted using a Top-2 metric. While determining the
optimal w, no pair-wise comparisons are made between metabolophores of different
substrates or metabolophores of the same substrate that are either both oxidized or both not
oxidized.
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Figure 7.
Example substrates having topologically distinct SOMs with the same predicted rank-
position. 3A4-oxidized SOMs are circled, while number labels indicate rank-position of
putative SOMs according to a predicted regioselectivity. Example a is an actual prediction
of StarDrop on 1-nitropyrene, while examples b and c are artificial. Below each substrate are
corresponding Pk and Rk values. As detailed in (13), Pk is the prediction accuracy of the
given top k ranked SOMs using a Standard Top-k metric; in similar fashion, Rk (10) is the
statistical likelihood of randomly “picking” at least one observed SOM from all putative
SOMs of the substrate within k guesses. Each substrate is assigned a lift weight of  when
calculating the substrate prediction accuracy with a Lift metric (11).
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Figure 8.
The weights and standard deviations of the top 100 descriptors (8a) and all 540 descriptors
(8b) given in decreasing order according to absolute weight value. Values were averaged
from 10 iterations of MIRank employing 5-fold CV upon 394 substrates of 3A4 quantified
with descriptors from a single energy minimized conformation.
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Figure 9.
Predictions for the 394 Complete Dataset using a Top-2 metric. Substrates are sorted by
increasing  value, with the average being 7.58. Molecules are also classified according to 
value, with  and  denoting easy, medium and hard sets, respectively.
These values were chosen to obtain the most even distribution between sets, with each set
having 130, 136 and 128 substrates, respectively. Blue column color indicate the method
predicted the substrate correctly, red column indicate the method was unsuccessful.
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Figure 10.
Metabolic propensities and method predictions rates broken down by CYP-mediated
pathway and dataset. Major column designations from left to right correspond to the
biotransformations initially presented from top to bottom in Figure 2: Csp3 Hydroxylation,
Aromatic Hydroxylation, Ring Hydroxylation, O-dealkylation, N-dealkylation, Sulfur-based
reactions, Csp2-based reactions, N-based reactions, Uncommon reactions, and summations
over all reactions. Pathway prediction columns in the lower graphs are composed of 4
subcolumns, representing from left to right the prediction rates of RS Minimum Consensus,
RS Boltzmann Consensus, SMARTCyp, and StarDrop. The y-axis percentage of each major
column of the lower graphs is based upon the total number of oxidized SOMs for the given
pathway for the given set of substrates; this scaling was chosen to ensure that the
visualization of true-negatives would not overshadow more interesting results.
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Figure 11.
“Easy to predict” ( ) substrates that were not predicted by any method, or only predicted
by a single method using a Top-2 metric. Substrates are only considered correctly predicted
if their calculated P1 or P2 value is 1. Small red circles indicate sites of 3A4-mediated
metabolism, while a * identifies substrates from the External set. For panels (b) and (c)
green circles denote all SOMs predicted in the top two rank-positions of the labeled method.
For (a) and (d) blue and green circles respectively represent the top two predicted sites of
Boltzmann and Minimum Consensus models.
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Figure 12.
“Moderately difficult to predict” ( ) substrates not predicted by any method or only
predicted by a single method.
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Figure 13.
“Difficult to predict” ( ) substrates not predicted by any method or only predicted by a
single method.
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Table 2

Descriptor definitions

label definition depth range total number

Topological Descriptors 148

NA_d_e number of atoms depth bonds away of type element 0–4 35

PA_d_e percentage of atoms depth bonds away of type element 1–4 28

NA_d_p number of atoms depth bonds away of PATTY atom type 0–4 35

PA_d_p percentage of atoms depth bonds away of PATTY atom type 1–4 28

span (maximum path length from current atom)/(maximum path length from all atoms within the
molecule)

0 1

Lipα,β lipophilicity according to 5 different (α, β) dependent metrics 0 5

HBonded number of hydrogen atoms bonded to base atom of metabolophore 0 1

NHBonded number of non-hydrogen atoms bonded to base atom of metabolophore 0 1

RS base atom of metabolophore is within a ring of size (0, 3–8) 0 7

AR base atom of metabolophore is within an aromatic ring 0 1

MR base atom of metabolophore is within multiple rings 0 1

RB number of rotatable bonds for base atom of metabolophore (0–3) 0 5

Quantum Chemical Atom Based 112

HM the projection of the given atom onto the 3 dimensional vector defined by the hydrophobic
atoms of the molecule

0 1

BL the average distance between the atom and all atoms it is bound too 0 1

SC the charge kept by the atoms involved in the bond 0–2 11

AC the charge not involved in bonding 0–2 11

ED aromatic orbital electron density 0–2 11

F Fukui reactivity index 0–2 11

N nucleophilicity index 0–2 11

E electrophilicity index 0–2 11

EERE one-center electron-electron repulsion energy 0–2 11

ENAE one-center electron-nuclear attraction energy 0–2 11

EE total one-center electronic energy 0–2 11

area solvent accessible surface area 0–2 11

Quantum Chemical Atom-Pair Based 280

δσ–σ σ –σ component of atom-atom interactions from Mulliken Population analysis 0–1 20

δσ–π σ – π component of atom-atom interactions from Mulliken Population analysis 0–1 20

δπ–π π – π component of atom-atom interactions from Mulliken Population analysis 0–1 20

Pσ–σ σ – σ bond order 0–1 20

Pσ–π σ – π bond order 0–1 20

Pπ–π π – π bond order 0–1 20

P Bond degree 0–1 20

ERE Electronic resonance energy 0–1 20

EEE Electronic exchange energy 0–1 20

ERPE Electronic repulsion energy 0–1 20

J Chem Inf Model. Author manuscript; available in PMC 2012 July 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zaretzki et al. Page 47

label definition depth range total number

NEAE Nuclear-electron attraction energy 0–1 20

NNRE Nuclear-nuclear repulsion energy 0–1 20

C Coulomb interaction energy 0–1 20

TENE Total of electronic and nuclear energy 0–1 20

J Chem Inf Model. Author manuscript; available in PMC 2012 July 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zaretzki et al. Page 48

Ta
bl

e 
3

St
an

da
rd

 p
re

di
ct

io
n 

ra
te

s f
or

 th
e 

C
om

pl
et

e,
 C

al
ib

ra
tio

n 
an

d 
Ex

te
rn

al
 d

at
as

et
s (

op
tim

al
 m

od
el

 in
 b

ol
d)

M
et

ho
d 

M
et

ri
c

R
S 

M
in

im
um

 C
on

se
ns

us
R

S 
M

in
im

um
 A

ve
ra

ge
R

S 
B

ol
tz

m
an

n 
C

on
se

ns
us

R
S 

B
ol

tz
m

an
n 

A
ve

ra
ge

SM
A

R
T

C
yp

 V
er

si
on

 1
.1

St
ar

D
ro

p 
V

er
si

on
 4

.2
.1

R
an

do
m

 M
od

el

To
p-

1(
C

om
.)

59
.6

55
.1

 ±
 2

60
.7

55
.2

 ±
 2

63
.4

58
.8

10
.1

To
p-

2(
C

om
.)

77
.9

75
.7

 ±
 1

78
.2

75
.2

 ±
 2

73
.2

73
.8

19
.3

To
p-

3(
C

om
.)

86
.8

84
.5

 ±
 1

87
.3

84
.4

 ±
 1

.3
79

.8
82

.7
27

.5

To
p-

1(
C

al
.)

57
.5

56
.5

 ±
 1

.7
60

.3
58

.6
 ±

 1
.7

63
.1

61
.3

9.
7

To
p-

2(
C

al
.)a

76
.7

75
.9

 ±
 1

.6
78

.0
76

.2
 ±

 2
.2

72
.8

76
.3

18
.5

To
p-

3(
C

al
.)

85
.4

85
.1

 ±
 1

.3
87

.6
85

.3
 ±

 1
79

.1
84

.3
26

.7

To
p-

1(
Ex

t.)
54

.2
53

.5
 ±

 3
.6

55
.6

54
.2

 ±
 3

.5
64

.6
47

.2
11

.7

To
p-

2(
Ex

t.)
75

.0
73

.1
 ±

 3
.5

73
.6

72
.8

 ±
 3

.2
74

.5
62

.5
22

.5

To
p-

3(
Ex

t.)
84

.7
81

.6
 ±

 3
.3

83
.3

82
.0

 ±
 2

.3
83

.3
75

.3
31

.2

a 77
.4

 a
nd

 6
1.

8 
re

sp
ec

tiv
el

y 
fo

r M
er

ck
 m

et
ho

d 
an

d 
M

et
aS

ite
 V

er
si

on
 2

.7
.5

 fo
r n

on
-u

pd
at

ed
 C

al
ib

ra
tio

n 
se

t.

J Chem Inf Model. Author manuscript; available in PMC 2012 July 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zaretzki et al. Page 49

Ta
bl

e 
4

Li
ft 

pr
ed

ic
tio

n 
ra

te
s f

or
 th

e 
C

om
pl

et
e,

 C
al

ib
ra

tio
n 

an
d 

Ex
te

rn
al

 d
at

as
et

s(
op

tim
al

 m
od

el
 in

 b
ol

d)

M
et

ho
d 

M
et

ri
c

R
S 

M
in

im
um

 C
on

se
ns

us
R

S 
M

in
im

um
 A

ve
ra

ge
R

S 
B

ol
tz

m
an

n 
C

on
se

ns
us

R
S 

B
ol

tz
m

an
n 

A
ve

ra
ge

SM
A

R
T

C
yp

 V
er

si
on

 1
.1

St
ar

D
ro

p 
V

er
si

on
 4

.2
.1

To
p-

1(
C

om
.)

55
.4

50
.1

 ±
 2

.5
57

.8
51

.1
 ±

 2
.6

57
.2

53
.8

To
p-

2(
C

om
.)

74
.4

71
.9

 ±
 1

.4
75

.0
70

.9
 ±

 2
.4

66
.4

69
.6

To
p-

3(
C

om
.)

83
.9

81
.2

 ±
 1

.7
84

.3
80

.6
 ±

 1
.6

73
.9

79
.5

To
p-

1(
C

al
.)

54
.3

53
.3

 ±
 1

.7
57

.8
55

.2
 ±

 2
57

.1
55

.8

To
p-

2(
C

al
.)

72
.9

72
.1

 ±
 1

.5
74

.4
72

.9
 ±

 2
.5

65
.4

71
.5

To
p-

3(
C

al
.)

81
.7

81
.5

 ±
 1

.1
84

.8
82

.0
 ±

 1
.3

73
.0

80
.9

To
p-

1(
Ex

t.)
46

.0
45

.9
 ±

 4
.3

46
.9

46
.8

 ±
 4

.1
61

.7
43

.1

To
p-

2(
Ex

t.)
74

.5
70

.9
 ±

 4
.5

73
.1

70
.3

 ±
 4

.3
72

.0
59

.2

To
p-

3(
Ex

t.)
83

.4
79

.3
 ±

 3
.8

81
.4

79
.7

 ±
 2

.8
82

.2
72

.0

J Chem Inf Model. Author manuscript; available in PMC 2012 July 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zaretzki et al. Page 50

Ta
bl

e 
5

Pe
rc

en
ta

ge
 p

er
fo

rm
an

ce
 in

cr
ea

se
s o

f C
on

se
ns

us
 p

re
di

ct
io

n 
ra

te
s o

ve
r A

ve
ra

ge
 p

re
di

ct
io

n 
ra

te
s

M
et

ho
d 

M
et

ri
c

M
in

im
um

 C
om

pl
et

e
B

ol
tz

m
an

n 
C

om
pl

et
e

M
in

im
um

 C
al

ib
ra

tio
n

B
ol

tz
m

an
n 

C
al

ib
ra

tio
n

M
in

im
um

 E
xt

er
na

l
B

ol
tz

m
an

n 
E

xt
er

na
l

St
an

da
rd

 T
op

-1
4.

5%
5.

5%
1.

0%
1.

7%
0.

7%
1.

4%

St
an

da
rd

 T
op

-2
2.

2%
3.

0%
0.

8%
1.

8%
1.

9%
0.

8%

St
an

da
rd

 T
op

-3
2.

3%
2.

9%
0.

3%
0.

3%
3.

1%
1.

3%

Li
ft 

To
p-

1
5.

3%
6.

7%
1.

0%
2.

6%
0.

1%
0.

1%

Li
ft 

To
p-

2
2.

4%
4.

1%
0.

8%
1.

5%
3.

6%
2.

8%

Li
ft 

To
p-

3
2.

7%
3.

7%
0.

2%
2.

8%
4.

1%
1.

7%

J Chem Inf Model. Author manuscript; available in PMC 2012 July 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zaretzki et al. Page 51

Ta
bl

e 
6

Pe
rc

en
ta

ge
 p

er
fo

rm
an

ce
 d

iff
er

en
ce

s b
et

w
ee

n 
St

an
da

rd
 p

re
di

ct
io

n 
ra

te
s a

nd
 L

ift
 p

re
di

ct
io

n 
ra

te
s

D
at

as
et

M
et

ho
d 

M
et

ri
c

R
S 

M
in

im
um

 C
on

se
ns

us
R

S 
M

in
im

um
 A

ve
ra

ge
R

S 
B

ol
tz

m
an

n 
C

on
se

ns
us

R
S 

B
ol

tz
m

an
n 

A
ve

ra
ge

SM
A

R
T

C
yp

St
ar

D
ro

p

C
O

M
PL

ET
E

To
p-

1
4.

2%
5.

0%
2.

9%
4.

1%
6.

2%
5.

0%

To
p-

2
3.

5%
3.

8%
3.

2%
4.

3%
6.

8%
4.

2%

To
p-

3
2.

9%
3.

3%
3.

0%
3.

8%
5.

9%
3.

2%

C
A

LI
B

R
A

TI
O

N

To
p-

1
3.

2%
3.

2%
2.

5%
3.

4%
6.

0%
5.

5%

To
p-

2
3.

8%
3.

8%
3.

6%
3.

3%
7.

4%
4.

8%

To
p-

3
3.

7%
3.

6%
2.

8%
3.

3%
6.

1%
3.

4%

EX
TE

R
N

A
L

To
p-

1
8.

2%
6.

6%
8.

7%
7.

4%
2.

9%
4.

1%

To
p-

2
0.

5%
2.

2%
0.

4%
2.

5%
2.

5%
3.

3%

To
p-

3
1.

3%
2.

3%
1.

9%
2.

3%
1.

1%
3.

4%

J Chem Inf Model. Author manuscript; available in PMC 2012 July 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zaretzki et al. Page 52

Ta
bl

e 
7

Sa
m

e 
SO

M
 p

re
di

ct
ed

 in
 th

e 
fir

st
 ra

nk
-p

os
iti

on
 b

y 
m

ul
tip

le
 m

et
ho

ds

R
S-

M
in

SM
A

R
T

C
yp

St
ar

D
ro

p
# 

co
m

po
un

ds
%

 c
om

po
un

ds
St

an
da

rd
 T

op
-1

X
X

X
11

4
29

88
.6

%

X
X

-
33

8
72

.7
%

X
-

X
61

15
50

.8
%

-
X

X
62

16
79

.0
%

J Chem Inf Model. Author manuscript; available in PMC 2012 July 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zaretzki et al. Page 53

Algorithm 1

Rank Aggregation

Input

  RO[10][x] ← 10 independent rank-ordering of x topologically distinct substrate SOMs according to predicted regioselectivity

  RP ← The top rank positions considered relevant to final aggregated score. Values of 2, 3 and 4 were applied during supervised training.

  Decrement ← The relative difference to contributing score values between different rank positions. Values of .1, .2, .3 and .4 were applied
during supervised training.

Variables

  Score[x] = 0 ← Initialized to 0, this variable represents the final rank-aggregated regioselectivity “score” of each SOM

Aggregate regioselectivity rank orderings

for i = 1 to 10 do

 for j = 1 to RP do

  Score [RO[i][j]] + = 1 − Decrement * (j − 1)

 end for

end for

Out put

  CRO ← Consensus regioselectivity rank-ordering is determined by sorting all SOMs according to aggregated Score value
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