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Abstract
Being able to predict the course of arbitrary chemical reactions is essential to the theory and
applications of organic chemistry. Approaches to the reaction prediction problems can be organized
around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3)
inductive machine learning. Previous approaches at these poles respectively are not high-throughput,
are not generalizable or scalable, or lack sufficient data and structure to be implemented. We propose
a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired
conceptualization, we describe single mechanistic reactions as interactions between coarse
approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as
descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted
chemistry dataset consisting of 1630 full multi-step reactions with 2358 distinct starting materials
and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive
mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as
a statistical ranking, information retrieval, problem: given a set of reactants and a description of
conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top
ranked mechanistic steps yield the major products. The machine learning implementation follows a
two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of non-
productive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs
of interacting MOs to learn a relative productivity function over mechanistic steps in a given system.
Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive
mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are
considered. Furthermore, the system is generalizable, making reasonable predictions over reactants
and conditions which the rule-based expert does not handle. A web interface to the machine learning
based mechanistic reaction predictor is accessible through our chemoinformatics portal
(http://cdb.ics.uci.edu) under the Toolkits section.

Introduction
Determining the major products of chemical reactions given the input reactants and conditions
is a fundamental problem in organic chemistry. Reactions are driven by a complex physical
interplay of electronic and structural attributes of the reactants along with reaction conditions,
such as temperature, phase, concentration, and solvent attributes. There are a broad range of
approaches to reaction prediction falling around at least three main poles: physical simulations
of transition states using various quantum mechanical and other approximations,1-6 rule-based
expert systems,7-14 and inductive machine learning methods.15
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The very concept of a “reaction” can be ambiguous, as it corresponds to a macroscopic
abstraction, hence simplification, of a very complex underlying microscopic reality, ultimately
driven by the laws of quantum mechanics. At the lowest conceivable level of quantum
mechanical (QM) treatment, it remains impossible to find exact solutions to the Schrödinger
equation even for relatively small systems. Thus at this level, reactions are modeled as
minimum energy paths between stable configurations on a high-dimensional potential energy
surface, where saddle points represent transition states.5,6 This potential energy surface is in
practice computed with a number of varyingly accurate approximations, ranging from ab-initio
Hartree-Fock approaches or Density Functional Theory to semi-empirical methods or
mechanical force fields.4 An even higher level of approximation can be made by considering
reactions as discrete entities: concerted electron movements through a single transition state,
e.g., Ingold’s mechanisms.16 We denote these single transition state, concerted electron
movement, reactions as mechanistic, or elementary, reactions. Mechanistic reactions can be
drawn as “arrow-pushing” diagrams17 explicitly showing the concerted electron movements.
An elementary reaction can be associated with a single electron movement (e.g. radical
reactions), movement of a single pair of electrons (e.g. simple addition or bond dissociation
reactions), or the complex concerted movement of many electrons (e.g. pericyclic or E2
reactions).

In stark contrast to paths on energy surfaces or even mechanistic reactions, rule-based and
inductive computational approaches to reaction prediction mostly consider only overall
transformations. Overall transformations are general molecular graph rearrangements
reflecting only the net change of several successive mechanistic reactions. For example, Figure
1 shows the overall transformation of an alkene interacting with hydrobromic acid to yield the
alkyl bromide along with the two elementary reactions which compose the transformation.

Overall transformations obfuscate the underlying physical reality of chemical reactions, while
explicitly modeling potential energy surfaces is overly computationally demanding. A useful
middle-ground is to consider mechanistic reactions. While mechanistic reaction
representations are approximations quite far from the Schrödinger equation, we expect them
to be closer to the underlying reality and therefore more useful than overall transformations.
Furthermore, we expect them also to be easier to predict than overall transformations due to
their more elementary nature. In combination, these arguments suggest that working with
mechanistic steps may facilitate the application of statistical machine learning approaches, as
well as their capability to generalize. Thus, in this work, reactions are modeled as mechanisms,
and for the remainder of the paper, we consider the term “reaction” to denote a single
elementary reaction.

Previous Approaches
As discussed above, there is a broad spectrum of physical simulation approaches to reaction
prediction, from more or less rigorous QM treatment of paths on energy surfaces to discrete
mechanistic steps. At all levels though, reaction prioritization is considered by explicitly
modeling transition state energies. As such, these simulations can be highly accurate and
generalizable but require careful setup for individual experiments and are computationally
expensive. For example, many recent physical simulation studies of reaction
mechanisms18-22 involve in-depth exploration of manually setup variants of single systems.
Furthermore, these approaches often provide more detailed information than needed to make
decisions regarding common chemical tasks such as validating synthesis design, creating
virtual libraries, or elucidating plausible mechanistic pathways. This branch of computational
chemistry provides invaluable tools for in-depth understanding of chemistry but is currently
not suitable for high-throughput reactivity tasks and is far from being able to recapitulate the
knowledge and ability of a human expert.
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Around the second pole of the computational spectrum, rule-based approaches are meant to
approximate decision making rules of human chemists using libraries of graph rearrangement
patterns. In contrast to physics-based approaches modeling atom point geometries and electron
distribution over orbital basis sets, rule-based approaches conceptualize overall transformation
reactions as the making and breaking of bonds in molecular graph representations, i.e., graph
rearrangements. Furthermore, rather than using a scoring function to prioritize all possible
graph rearrangements, these systems only propose the rearrangements corresponding to the
overall transformation reactions yielding the major products.

An overall transformation can be decomposed into a sequence of “productive” mechanistic
reactions. By “productive” mechanistic reactions, we and most previous systems broadly mean
the mechanistic steps which eventually lead to the overall major products of a multi-step
reaction. In systems which work on a mechanistic level of detail, elementary reactions which
are not the most kinetically favorable, but which eventually lead to the overall thermodynamic
transformation product may be considered “productive”. For example, a protonation step in a
synthesis is usually a kinetically reversible reaction. In the next step of the synthesis, the
deprotonation on the protonated product may be kinetically favorable but is neither an
interesting nor a “productive” reaction. Therefore, rule-based systems do not predict energies
per se. Rather they make predictions about synthetically productive transformations.
Fortunately, the the most “productive” mechanistic steps are typically the same as the most
kinetically favorable steps.

Seminal work in the area of rule-based reaction prediction is encapsulated in the CAMEO7

and EROS8 systems. CAMEO is based on a complex set of heuristics divided over different
classes of chemistry to predict multi-step reactions. EROS uses a more configurable system
composed of multi-step reaction graph based rule libraries with extra modules to add more
constraints based on heats of formation, physicochemical properties, or kinetic simulations.
Other approaches since CAMEO and EROS have contributed their own ideas to the problem.
Beppe10 and Sophia9 focus on first identifying reactive sites before identifying reactions,
though both work with multi-step reactions. ToyChem11 and Robia12 build on the EROS idea
of physicochemical constraints by explicitly defining reaction energy functions. The recent
Reaction Explorer system14 uses detailed graph rewrite rules for individual mechanistic steps
rather than the common practice of a single transformation for an overall reaction from starting
materials to final products. Furthermore, Reaction Explorer describes these rules using an
alternative physically motivated “electron-flow” specification allowing the visualization of the
“arrow-pushing” diagrams for each mechanistic step.

At their core however, all of the above rule-based systems are knowledge-based, with human
encoding of heuristics, graph-rewrite patterns, and constraints. Therefore, although these
systems are computationally tractable and return predictions quickly, these expert systems
suffer from several drawbacks: (1) They require the curation of large amounts of expert
knowledge; rules and exception handling must be explicitly encoded for many different
chemistries. (2) They are unmanageable at larger scales, in that adding new rearrangement
patterns often involves updating a large proportion of existing patterns with exceptions. It is
noted in the Reaction Explorer system that adding new transformations is already a challenging
undertaking with 80 reagent modules although several hundreds would be required to cover
the breadth of modern chemistry.14 (3) They lack generality. If a particular reaction pattern
has not been explicitly encoded, the system will never be able to return the corresponding
reaction.

There have been few previous approaches around the third computational pole of machine
learning. Sophia extracts relevant reaction centers from databases of multi-step overall
transformations.9 Rose and Gasteiger show how to inductively derive multi-step reaction rules
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for the EROS system using reaction centers mined from reaction databases,15 though to the
best of our knowledge, this was not adopted in EROS moving forward. Given improvements
in machine learning techniques over the past 15 years, one can imagine a machine learning
system that mines reaction information to learn the grammar of chemistry1, in which both the
conceptualization and scoring of reactions is learned from data. One source of reaction
information is the chemical literature. Unfortunately however, chemical publishing is
dominated by closed models, and thus literature information is difficult to access. Furthermore,
most reaction information within manuscripts is non-standardized and unstructured. Parsing
scientific text and extracting relevant chemical information from text and image data is an open
problem of research.24-26 Other potential sources of reaction information are reaction
databases. While there are several commercially available reaction databases, such as
CAS,27 Reaxys,28 and SPRESI,29 unfortunately the majority of the reactions in these databases
are unbalanced, are incompletely atom-mapped, and lack mechanistic definition.30 This is in
addition to suffering from an even more acute lack of openness as compared to the chemical
literature, in that reaction databases are often priced far beyond academic reach or accessible
only through very limited and closed interfaces that prevent any kind of serious statistical data
mining. As a result, and to the best of our knowledge, effective machine learning approaches
to reaction prediction simply do not exist.

A successful reaction prediction system should emulate, and eventually surpass, the problem
solving abilities of human chemists, though this has yet to happen. Human chemists possess a
remarkable ability to make reasonable predictions about the outcome of reactions. These
predictions are of course based on an underlying physical understanding, but they are certainly
not based on in-depth numerical calculations. Furthermore, while memorization of named
reactions and their patterns is paramount in chemical education, human predictive decisions
are often made without systematic deductive reasoning, but rather using trends and rules of
thumb learned from experience.

New Approach
These considerations motivate our new reaction prediction framework which incorporates
elements from all the three computational poles considered above. We combine the idea of
orbital basis sets with molecular graph representations to describe physically inspired, graph-
based idealized molecular orbitals. Using these idealized molecular orbitals, mechanistic
reactions are modeled as an interaction between an electron filled (donor) and electron unfilled
(acceptor) molecular orbital. This allows the constructive enumeration of all possible
elementary reactions over any set of reacting molecules. From the Reaction Explorer rule-
based system, we derive a dataset of “productive” reactions to mine. Finally from machine
learning, we formulate predicting the productive interacting MOs as a statistical ranking
problem.

The overall framework leads to the pipeline shown in Algorithm 1, including two machine
learning stages outlined in red. Given input reactants and conditions, we first use the idealized
molecular orbitals to identify electron sources and sinks within the reactants. Then in the first
machine learning stage, highly sensitive predictive models, trained from data derived from
Reaction Explorer, are used to filter out electron filled and unfilled unreactive sites, thus
pruning the space of reactions to consider. The remaining electron sources and sinks are then
paired to construct all reasonable elementary reactions over the reactants. Then in the second
machine learning stage, a ranking model, again trained from Reaction Explorer derived data,
is used to order the elementary reactions by productivity. Finally, the output top ranked

1In particular, in terms of graph grammars. 23
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products can be recursively chained as inputs to a new instance of the pipeline, leading to multi-
step reaction prediction.

The are multiple benefits resulting from this new approach. By using very general rules to
enumerate electron sources and sinks, and thus possible reactions with their pairing, the
approach is not restricted to manually curated reaction patterns. By detailing individual
reactions at the mechanistic level, the system may be able to statistically learn efficient
predictive models based on physicochemical attributes rather than abstract overall
transformations. And by ranking possible reactions instead of making binary decisions, the
system may provide results amenable to flexible interpretation. However, the new approach
also faces three key challenges: (1) the development of appropriate training datasets of
elementary reactions; (2) the development of a machine learning approach to control the
combinatorial complexity resulting from considering all possible pairs of electron donors and
acceptors among the reacting molecules; and (3) the development of machine learning solutions
to the problem of predictively ranking the possible productive mechanisms.

The remainder of the manuscript is organized as follows. First, we describe the graph-based
idealized molecular orbital reaction model and pose the general machine learning problem.
Then we detail the data, specifically constructing a dataset of productive reactions using the
Reaction Explorer system to address the first challenge. Next, we describe the implementation
and validation of the two machine learning components. The first component is for addressing
the combinatorial complexity challenge and the second component is for addressing the ranking
challenge. We then describe the overall reaction prediction results and conclude with a
summary and discussion of the results.

Molecular Orbital Reaction Model
We propose a fundamental reaction unit model starting from the structure of the reactants to
enumerate all conceivable primary idealized molecular orbital interactions31 visualizable as
“arrow-pushing” diagrams. This approach yields elementary reaction steps that describe the
implied transition state. Other formalisms to describe or enumerate possible chemical reactions
exist, such as Dugundji-Ugi,32 Temkin et. al.,33 and Kerber et. al.,34 but these all encapsulate
overall transformations, or general graph rearrangements, and none are analogous to such an
ubiquitous chemical idea as “arrow-pushing.”

A molecule m is modeled in the standard manner as a labeled connected molecular graph m =
Gm(Am, Bm) where the vertices Am represent labeled atoms and the edges Bm represent labeled
bonds. Then each atom in the graph is augmented with multiple labels to represent approximate
electron filled and electron unfilled molecular orbitals (MOs). An electron filled MO is defined
as the quadruple

where a is the atom being labeled, i.e., the main atom, tf ∈ {n, π, σ} is the orbital type, nf is the
possibly null neighbor atom for a bond orbital, and cf is the possibly null, recursively defined
adjacent chained filled orbital. Lone pairs are represented with orbital type tf = n, a null neighbor
nf = 0̸, and without chaining possibility cf = 0̸. Bonding MOs are represented with nf referencing
the bond partner atom, orbital type tf = π for double and triple bonds, and orbital type tf = σ for
single bonds. Each bond can have many MO labels if there are chaining possibilities, where
chaining possibilities are recursively found by noting π-system filled MOs centered on atoms
adjacent to nf. Enumerating chaining possibilities are necessary to capture resonance
rearrangements and certain reactions such as eliminations. Similarly, an electron unfilled MO
is defined as the quadruple
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where a is the main, or current, atom, tu ∈ {σ*, π*, p} is the orbital type, nu is the possibly null
neighbor atom for a bond orbital, and cu is the possibly null, recursively defined adjacent
chained unfilled orbital. Unfilled MOs are represented in an analogous manner: Empty atomic
orbitals are represented with orbital type tu = p, nf = 0̸, and cf = 0̸. Anti-bonding MOs are
represented with nu referencing the bond partner atom, tf = π* for double and triple bonds, and
tf = σ* for single bonds. Chaining possibilities for a given unfilled anti-bonding MO are
constructed by noting π or σ-system unfilled MOs on atoms adjacent to nu. The basic filled and
unfilled orbital types are shown in Figure 3, while an example of all the filled and unfilled
orbitals constructed at a single atom of a molecule are shown in Figure 4.

A reaction is then described by the interaction of a single filled and a single unfilled molecular
orbital. It is helpful to think of this as an “arrow-pushing” diagram. The filled MO denotes the
source of electrons, while the unfilled MO denotes the electron destination, i.e., the interaction
is a directed arrow from the filled MO to the unfilled MO. The algorithm in Appendix A shows
a simple recursive algorithm used to alter charges and bonds and thus yield the product of an
interaction in a molecular graph, in other words, the algorithm to actually “push the arrows”.
Examples of the arrow pushing diagrams and corresponding filled and unfilled MO
representations are shown in Figure 5. Furthermore, as a reaction is simply a representation of
a directed arrows of electrons over a set of molecules, one can easily define “inverse” MO’s
for a given reaction. For a given interaction (f, u) on reactants r which yields the products r′,
there is a filled orbital (f′) and an unfilled orbital (u′) over r′ such that the interaction (f′, u′)
yields the original reactants r. We define f′ and u′ as the inverse filled and unfilled orbitals
respectively.

Machine Learning Problems
Let Fm be the set of all electron filled MOs in a molecular graph m, and similarly, let Um be
the set of electron unfilled MOs over m. The set of reactions over a single copy of a pair of
reactants r = (m1, m2) is equivalent to the set Ir of pairs of interacting filled and unfilled MOs
(f, u) over r, i.e. Ir = (Fm1 ∪ Fm2) × (Um1 ∪ Um2) The actual number of reactions to consider
is more than this, because one must also consider intermolecular reactions between each
reactant and a second equivalent of itself. To avoid unnecessarily complicated notation, we
will continue to discuss the number of reactions to consider as Ir = (Fm1 ∪ Fm2), though all
experiments and presented statistics correctly reflect including second equivalent reactions.

We make the assumption that for each set of reactants and conditions, which we call a “query”
denoted with (r, c), there are only a small number of “productive” reactions. For a given query
(r, c), denote this set of productive reactions as  and the complementary set of
“unproductive” reactions as . The problem of reaction prediction is thus that of
identifying the reactions in  given a query (r, c).

For a given query, there are often only one or two productive orbital interactions. On the other
hand, with the number of filled orbitals |Fr| approximately equal to 2 times the number of
symmetrically distinct bonds plus the number of lone pairs, and the number of unfilled orbitals
|Ur| approximately equal to 2 times the number of symmetrically distinct bonds plus the number
of empty orbitals, the number of total orbital interactions |Fr × Ur| can be quite large even for
moderately sized systems. Consider a system of 20 symmetrically distinct bonds with no lone
pairs or empty orbitals, and disregard chained orbitals and second equivalent reactions. Such
a system would have (2 × 20)2 = 1600 potential elementary steps. Including chained orbitals
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and second equivalent reactions leads to even larger numbers of total orbital interactions. This
highly imbalanced situation motivates identifying productive reactions given a (r, c) query in
two stages. In the first stage, we train and use classifiers to filter out filled and unfilled MOs
at the level of atoms, similar to the reactive site identification of Beppe10 and Sophia.9 In the
second stage, we train and use a ranking model such that given (r, c) all reactions in  are
ranked higher than all reactions in .

Reactive site filtering
Both filled and unfilled MOs can be considered labels associated with particular atoms, i.e.,
the main atom of the MO. For a particular molecular graph m and conditions c, let the set of
all filled MOs over m involved in a productive orbital interaction with conditions c be

. For each atom a ∈ Am, we label the tuple (a, c) as “filled
reactive” if a is the main atom of any MO in the set of productive filled MOs , and we
label the tuple (a, c) as “filled unreactive” otherwise. Similarly, we label each (a, c) tuple as
“unfilled reactive” or “unfilled unreactive” using the set of productive unfilled MOs over (m,
c). The end result is two reactivity labels for each atom, one each for filled and unfilled.

One can then train separate classifiers for each of the these labels with the goal of filtering as
many unreactive labeled atoms as possible while allowing zero filtering errors on the reactive
labeled atoms. Any atom predicted as “filled unreactive” by the classifier is then not considered
when constructing the set of possible filled MOs, and similarly for unfilled MOs. Let F̂(m,c)
and Û(m,c) be the set of filtered filled and unfilled MOs, respectively. Then the set of filtered
reactions over a query is Î(r,c) = (F̂(m1,c) ∪ F̂(m2,c)) × (Û(m1,c) ∪ Û(m2,c)), which can be broken

up into productive and unproductive sets, . A successful filtering should give

 and .

Orbital interaction ranking

After filtering, the problem of identifying the subset of productive reactions  from Î(r,c) can
be construed as a ranking problem. Learning to rank is a subject of great interest in the machine
learning community, in particular for Information Retrieval (IR) and web-page ranking. Some
methods pose ranking as ordinal regression,35,36 where individual instances are regressed to
an integer rank. However, many ranking methods use a pairwise formulation which predicts
whether a pair of instances are in correct order.37-40 In this work, we use a pairwise approach
using shared weight artificial neural networks training on ordered pairs of productive and

unproductive orbital interactions .

Data
A mechanistically defined dataset of reactions to use with the proposed framework does not
currently exist. In this section, we leverage previous work on a mechanistically defined rule-
based system, Reaction Explorer,14 to construct the first such dataset, consisting of reactant
molecules with conditions and their productive orbital interactions.

Details are given in (Chen and Baldi 2009),14 but briefly Reaction Explorer is a rule-based
expert system covering all of the basic undergraduate organic chemistry curriculum. The
system is composed of over 1500 elementary rules organized into 80 reagent models encoding
conditions and allowable rules. Each rule encapsulates a single mechanistic reaction step via
a SMIRKS41 topological rearrangement pattern and an electron flow specification to capture
“arrow-pushing”. An inference engine orders the elementary rules by priority to attempt
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matching on given reactants. Moreover, in order to validate the rules and to provide examples
for a chemistry tutor application,13 over 4000 full multi-step “test case” syntheses are encoded
including reactants, reagents, products, and all intermediates.

When each individual test case is input to Reaction Explorer, a list of mechanistic steps is
output describing the orbital interactions from each previous step; starting at reactants, through
intermediates, and to final products. Each one of these mechanistic steps is considered to be a
distinct productive elementary reaction. In addition, we assign simple reaction condition
descriptions that are shared among all reactions from a particular reagent model. Grouping all
the individual favorable orbital interactions over the same reactants and conditions yields the
overall set of productive orbital interactions . With these sets of labeled MO interactions
over reactants and conditions (r, c) queries, we then provide each possible atom and conditions
(a, c) tuple with filled and unfilled reactivity labels.

Reaction conditions are described with three parameters: temperature, anion solvation
potential, and cation solvation potential. Temperature is listed in Kelvin. The solvation
potentials are unitless numbers between 0 and 1 meant to represent how easily a cation or anion
is solvated and thus provide a quantitative scale at which to map the qualitative ideas of polar
protic, polar aprotic, and nonpolar solvents. These parameters have been set for all Reaction
Explorer reagent models. Note however, that any mechanistic interaction with solvent is
explicitly captured as an elementary reaction. As an example of some of the parameter settings
used, the Reaction Explorer “Mix Reactants, Polar Protic” reagent model has a temperature
298 K, a cation solvation potential of 1.0, and an anion solvation potential of 1.0, while the
Reaction Explorer reagent model of “2Li, Hexane” for alkyl lithium preparation in a nonpolar
solvent has a temperature 298 K, a cation solvation potential of 0.0, and an anion solvation
potential of 0.0. In the middle of the solvation spectrum, the “LDA, THF” reagent model has
a temperature of 220 K, a cation solvation potential of 0.8, and an anion solvation potential of
0.4. A full listing of the reaction parameters by reagent is presented in Supplementary Table
S1.

As an initial validation of the methods and to keep the size of the dataset manageable, we
consider general ionic reactions involving C, H, N, O, Li, and the halides, coming from 1630
multi-step test cases over 31 reagent models from Reaction Explorer.14 Methods to include
stereoselectivity and handle pericyclic and radical reactions are discussed in the Conclusion.
A complete listing of the 31 reagents and their respective reaction condition parameters is
presented in Supplementary Table S1.

Inputting the 1630 test cases to Reaction Explorer yields 2989 productive orbital interactions
over 2752 distinct reactants and reaction conditions, i.e., (r, c) queries. These 2752 distinct
reactants and conditions consist of 1685 individual molecules and 2342 reactants (possibly
pairs of molecules). Using the core reaction unit model to enumerate all remaining possible
orbital interactions over the reactants and conditions gives 6.14 million non-productive orbital
interactions. Considering all individual molecules, there are 22894 symmetrically distinct
atoms. However, including reaction conditions yields 29104 reactive sites, i.e., atom and
conditions tuples (a, c). 1262 reactive sites correspond to a productive filled MO, while 1786
correspond to a productive unfilled MO.

The attributes and labels for the reaction ranking and reactive site datasets are available via
our chemoinformatics portal (http://cdb.ics.uci.edu) under the Supplementary Materials
section and via the UCI Machine Learning Repository at http://archive.ics.uci.edu/ml.
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Machine Learning Stage 1: Reactive Site Filtering
Recall that we wish to train two separate classifiers to predict the filled and unfilled reactivity
labels of an atom. The feature descriptions and machine learning implementations used are
exactly the same for the two separate problems, except for the different labels. As such, a
general reactivity labeled dataset will be considered as instances of (a, c, l), i.e. an atom a, a
set of conditions c, and a label l ∈ {0, 1}, where l = 1, if (a, c) is labeled “reactive”, and l = 0
otherwise.

Validation
Repeated cross-validation experiments are recommended to obtain reliable accuracy estimates
during validation of supervised learning.42,43 To assess the performance of the reactive site
filter training, we perform 10 repeats of 10-fold cross-validation over all distinct tuples of
molecules and conditions (m, c). This validation scheme closely mimics the real-life use of
such a system, where atoms, conditions (a, c) tuples with unknown label are seen as part of
entire molecule in which all atoms are missing labels.

Feature representation
To learn a model predicting the labels l for each (a, c) instance, we must define a feature
representation which maps the conceptual atom to a numerical vector. The vector of course
includes the reaction conditions, which here are simply temperature, cation solvation potential,
and anion solvation potential, as determined by the underlying Reaction Explorer reagent
model (Table S1).

Next, the vector includes features to describe the atom and its neighborhood. The following
real-valued features are included:

• formal and partial44 charges at a;

• minimum and maximum formal and partial charges at topological neighborhoods of
distance 1 and 2 bonds from a;

• an exponentially decaying sum of atomic radii in a’s topological neighborhood;

• molecular weight of the entire molecule; and

• the size of the smallest ring of which a is a member.

Molecular fingerprinting techniques for chemical similarity have been proven useful for
QSAR/QSPR and database searching applications.45,46 Motivated by the success of
fingerprints, we construct neighborhood fingerprints to provide a topological depiction of the
region around the atom a. These neighborhood fingerprints are composed of counts of paths
and sub-trees starting or rooted at the atom a. See Figure 6 for an example of paths over the
nitrogen of diisopropylamide anion.

Separate neighborhood fingerprints are computed for both the standard molecular graph and
a pharmacophore point graph.47 Pharmacophore point graph features are computed similarly
to molecular graph features, except that the molecular graph m = Gm(Am, Bm) is first mapped
to an isomorphic graph p = Gp(Ap, Bp), in which Ap, Bp are atoms and bonds with a small
restricted set of labels. The labeling scheme, adapted from Hähnke, et al.,47 groups chemical
motifs with similar reactivity. For example, all positively charged atoms are labeled the same,
all negatively charged atoms are labeled the same, and all halides are labeled the same in the
pharmacophore point graph. Details of the mapping and the labels are given in Supplementary
Table S2.
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These representations schemes generate large but sparse feature vectors. To limit the
dimensionality, any feature that is non-zero in less than 25 data points is disregarded. For both
the molecular graph and pharmacophore point graph features, standard paths and sub-trees are
computed to depth 3 and 2, respectively, while paths and sub-trees through π systems are both
computed to depth 6. Furthermore, sub-trees are restricted to have out-degree at most 2. The
number of features for each type are listed in Table 1.

Artificial neural network training
Before training, all features are normalized to [0, 1] using the minimum and maximum values
of the training set. Then because the (a, c) tuples labeled reactive comprise less than 10% of
the data for either filled or unfilled, we oversample sites labeled reactive to ensure
approximately balanced classes.

We train artificial neural networks using sigmoidal activation functions in a single hidden layer
and a single output node. After some experimentation, an architecture of 10 hidden nodes was
chosen. Gradients on the weights of the neural network are calculated with the standard back-
propagation algorithm and a L2 regularized cross-entropy error function. The weights are
optimized by stochastic gradient descent with per weight adaptive learning rates.48

Optimization is stopped after 100 epochs as this is observed to be sufficient for convergence.
The end result of training is a neural network model which given an input feature vector outputs
a probability of the (a, c) tuple being labeled “reactive”.

Decision threshold fitting
The trained neural networks provide a probabilistic prediction of an (a, c) tuple being labeled
“reactive”. However, in order to filter reactions, one must be able to make binary decisions. In
our case, we strongly favor sensitivity over specificity, i.e., we will accept a reasonably high
number of false positives to ensure a low number of false negatives. Any false negatives
translate into misranking entire (r, c) queries. However, because the number of reactions we
filter is based on the cross-product of the negative decision rates of our classifiers, modest true
negative rates still provide a sizeable amount of negative filtering.

To fit decision thresholds providing high sensitivity, we use internal cross-validation. For each
training set, the same cross-validation set creation, normalization, balance, and training
procedures described above are used to construct internal three-fold cross-validation
predictions. Then on the internal cross-validated predictions, we find the average prediction
over all internal folds yielding a false negative rate of 0 for that fold, using this as the decision
threshold for the external train and test data.

Results
Important metrics are the number of unreactive labeled sites and unproductive reactions
filtered, i.e., the true negative rate (TNR), and the number of reactive labeled sites and
productive reactions mis-filtered, i.e., the false negative rate (FNR). The predictive results of
these classifiers are shown in Table 2. We can filter 87.7% and 75.6% of filled and unfilled
non-reactive sites respectively. This leads to being able to filter 94.0% of the 6.14 million non-
productive reactions with 0.012% error on positives, as shown in Table 3.

In the next section, we describe the implementation and validation of the orbital interaction
ranking methods. In order to assess the ranking methods, we construct an overall filtered set
of reactions using the best possible filled and unfilled reactive site classifiers. Here, filled and
unfilled site predictors are trained using all the available data. Then a decision threshold is fit
for each classifier by finding the maximum prediction such that the FNR is 0. The results of
the filled and unfilled site predictors as well as overall reaction filtering are shown in Table 4.
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Histograms of the predictions from these overall classifiers on the unreactive labeled data are
shown in Figure 7 with the predictions on the reactive labeled points jittered in red. One can
see that though there are some outlier reactives on which the classifiers exhibit uncertainty,
the vast majority of the unreactive prediction density is around 0.

Machine Learning Stage 2: Orbital Interaction Ranking
Validation

As in the reactive site filtering, repeated cross-validation is used to assess the performance of
the orbital interaction ranking machine learning component. Using the filtered orbital
interaction dataset described above, we perform 10 repeats of 10-fold cross-validation over all
reactants, conditions (r, c) tuples. There are 2752 distinct (r, c) queries. With the filtered dataset,
there are 1.08 productive reactions and 62.53 non-productive reactions per query on average.

Feature representation
To create feature vectors to represent an orbital interaction, we again include the reaction
conditions data. Then, we include features to describe the reactants and the products,
constructing a difference vector by subtracting the reactants from the products. These
molecular features include counts over:

• bonds;

• anions and cations;

• aromatic bonds and atoms;

• rings of size 3 to 9;

• trans ring π bonds;

• rotatable bonds; and

• multiple, separated formal charges.

The count vector for reactants is subtracted from the count vector for products, and resulting
zero elements are discarded. If a difference vector element is positive, it means this feature
was “created” during the reaction, while if it is negative, it means this feature was “destroyed”
during the reaction. This provides useful information about the reaction, for example broken
aromaticity, opening of an epoxide, or charge separation.

Then we add features that represent the filled and unfilled molecular orbitals in the forward
reaction. The orbital features include:

• the type of orbital (σ*, π*, p, n, π, σ);

• the type of chained orbital, if it exists;

• actual atoms involved in the orbital;

• formal and partial44 charges for each atom involved; and

• an exponentially decaying sum of atomic radii for a neighborhood around the orbital.

To calculate attributes describing the reversibility of a reaction, we also include the same orbital
features computed on the inverse filled and unfilled orbitals, i.e., the orbitals of the products
whose interaction would yield the reactants.

Finally, we include a subset of the reactive site features for both the filled and unfilled orbitals.
Specifically the included reactive site features are non-redundant real-valued features and
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pharmacophore point graph features with path depth 3, tree depth 2, and π depth 4. Details
about the number and types of features are shown in Table 5.

Artificial neural network training
As in the reactive site prediction, all features are normalized to [0, 1] before training using
parameters estimated from each training set. For training speed and memory considerations, 5
sub-splits of each training set are made. Each sub-split includes all productive interactions, but
training pairs are constructed with a random partition of the unproductive interactions. Final
predictions on test data are made by averaging the predictions from 5 ranking models trained
on the individual sub-splits of pairs.

We use a pair of shared weight artificial neural networks each with a single sigmoidal hidden
layer and a linear output node. The output of the two networks are tied to a sigmoidal output
layer with fixed weights of +1, −1, as shown in Figure 8. The final output of the network will
be close to 1 if the shared weight lower network outputs a higher score for the left input than
the right input, and close to 0 otherwise. Training is performed by simultaneous forward
propagation of both the left and right inputs, and assessment of error at the final output layer
with a L2 regularized cross-entropy error function. Then in two separate steps, weight gradients
are calculated via back-propagation first in the left network and then the right network. After
gradient calculation, the same weight updates are applied to both networks.

After some experimentation, an architecture of 20 hidden nodes was chosen. Similar to the
reactive site training, weights are optimized using stochastic gradient descent with the same
per-weight adaptive learning rate scheme.48 Optimization is stopped after 25 epochs as this is
observed to be sufficient for convergence.

Results
Next we present results on the orbital interaction ranking. We consider two metrics for
evaluating rankings, Normalized Discounted Cumulative Gain (NDCG) and Percent Within-
n.

The Normalized Discounted Cumulative Gain (NDCG) is a common IR metric.49 For a given
result list, the metric sums the usefulness, or gain, of each individual result based on labeled
relevance and predicted rank, where the gain for a relevant result is discounted at lower ranks.
The NDCG at a level i (NDCG@i) is the metric calculated only considering the top i ranked
results. For example, the NDCG@1 will be 1 if the highest ranked reaction is a productive
reaction, and 0 otherwise. Therefore, NDCG@1 over all (r, c) queries denotes the percent of
the queries in which the highest ranked reaction is a productive reaction.

The Percent Within-n metric is simply how many (r, c) queries have at most n non-productive
reactions in the smallest ranked list containing all productive reactions. For example, Percent
Within-0 measures the percent of (r, c) queries with perfect rank, and Percent Within-4
measures how often all productive reactions are recovered with at most 4 errors. This metric
allows intuitive assessment of close to perfect rankings.

The unproductive orbital interactions vastly outnumber the productive interactions. On average
there are 1.08 productive reactions for each reactants, conditions (r, c) query. However, there
are 62.53 unproductive reactions on average that pass the reactive site filters for each query.
In spite of this imbalance, our results show a remarkable ability to extract the best reactions.
The cross-validated ranking results are presented in Table 6. The NDCG metric shows, for
example, that for 89.5% of the queries, the top ranked reaction is a productive reaction. Looking
at the Within-n data, 89.05% of queries show perfect ranking, while 99.86% of queries recover
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all productive reactions by considering lists with a small amount of (at most 4) non-productive
reactions.

Discussion
Multi-step reactions

The strong performance of the ranking system is exhibited by its ability to make accurate multi-
step reaction predictions. Figure 9 shows an intramolecular Claisen condensation reaction. To
assess whether the ranking system can successfully perform multi-step reaction prediction, we
construct a special train/test split of the productive reactions such that the reactions shown in
Figure 9 are part of the testing set, while the remaining productive reactions are part of the
training set. Using reactive site filters and ranking models trained on this special training set,
the ranking method correctly predicts the given reaction as the highest ranked reaction at each
of the three steps shown. Note that the predictions are made on data that is unseen during
training. Thus, this multi-step reaction prediction is an example of the system’s inductive
capability.

Ranking provides flexible results
By identifying the productive reactions through ranking, our framework provides flexible and
interpretable results. To assess this, we look at the predictions of the ranking system on reactants
and conditions in the testing sets of cross-validation splits, i.e., the reactions shown are not
seen during training. For example, two ring-forming systems over which productive reactions
are correctly ranked are shown in Figure 10. These are the productive reactions for the given
reactants under the Reaction Explorer “Mix Reactants, Polar Protic” reagent model. In cross-
validation experiments, these are always the top ranked reactions with the reaction conditions
corresponding to the reagent model. For the 5-member ring forming reaction in Figure 10(a),
the reaction proceeds with the oxygen acting as a nucleophile, and the end product is a
heterocycle (2-methylenetetrahydrofuran). However another reasonable, though not as
favorable, reaction could occur with an enolate nucleophile and a cyclopentanone product,
though this reaction is not labeled as productive by Reaction Explorer. The ranking method
correctly returns this particular reaction as the second highest ranked for this set of reactants
and conditions.

Similarly, for the 6-member ring forming reaction shown in Figure 10(b), the Reaction Explorer
productive reaction proceeds via an enolate nucleophile and results in a cyclohexanone product.
Another reasonable reaction, via an oxygen nucleophile, leads to the heterocycle product (2-
methylenetetrahydropyran), though this reaction is not labeled as productive by Reaction
Explorer. Again though, the ranking system correctly returns this as the second highest ranked
for this set of reactants and conditions in the test sets of cross-validation experiments. By
returning a ranking, the end user has access to much more information about other reasonable
mechanisms and pathways.

Generalization
A key goal of the new approach to reaction prediction is to build a system that is generalizable.
A generalizable system should be able to make reasonable predictions about reactants and
reaction types with which it has only had implicit, rather than explicit, experience. The Reaction
Explorer system, as a rules-based expert system without explicit rules about larger-ring forming
reactions, does not make any predictions about seven and eight carbon systems similar to those
seen in the ring-forming reactions of Figure 10. In reality though, larger ring-forming reactions
are possible. Figure 11 shows the top two ranked reactions over both 7-bromohept-1-en-2-olate
and 8-bromooct-1-en-2-olate reactant sets. Note, that these reactants are not part of the ranking
system’s training set. The ranking model returns the enolate attack as the most favorable, but
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also returns the lone pair nucleophilic substitution as the second most favorable. Thus the
ranking model, in spite of never seeing seven or eight member ring-forming reactions, is able
to generalize and make reasonable suggestions, while the rule-based system is limited by the
hard-coded transformation patterns. First, the reactive site predictors correctly identify the
terminal ene carbon and the oxygen as filled reactive sites and the methylene bromide carbon
as the unfilled site. Then the ranking model ranks the enolate substitution reactions as the most
productive in both systems, and the lone pair oxygen nucleophile reaction as the second most
productive. This is an example of the system inductively learning a reasonable model of
productive reactions.

Close rankings are reasonable
While our ranking method is very accurate, it is not perfect. However, the vast majority of
errors are close errors, as exhibited by the 99.89% Within-4 recovery rate. Furthermore, upon
examination of these close errors in cross-validation experiments, they are largely intelligible
and not unreasonable predictions. For example, Figure 12 shows two reactions involving an
oxonium compound and a bromide anion. Across all cross-validation experiments where the
reactants are part of the testing set, our predictor ranks these two reactions as the highest, with
the deprotonation slightly ahead of the substitution. This is considered a within-1 ranking
because from the Reaction Explorer system, only the substitution reaction is labeled productive.
However, the immediate precursor reaction in the sequence of Reaction Explorer mechanisms
leading to these reactions is the reverse of the deprotonation reaction. Hydrogen transfer
reactions like this are reversible, and thus the deprotonation is a reasonable mechanism to
predict and rank highly. In this case, the deprotonation is likely the kinetically favored
mechanism. It is just not productive, in that it does not lead to the final overall product. In a
prediction system attempting to predict multi-step syntheses, such reversals of previous steps
are easily discarded.

There are some interesting ring-forming reactions which we label as mis-ranked in cross-
validation experiments. In Figure 13, the Reaction Explorer labeled productive reaction over
2,7-dimethyloct-2-ene under the “Mix Reactants, Polar Protic” reagent model forms a six-
member ring product (Figure 13(a)) and results in a 2’ carbocation. This particular reaction is
an intermediate step in a multi-step reaction involving a subsequent methyl shift, stabilizing
the cyclohexane product. Another plausible mechanism over 2,7-dimethyloct-2-ene exists,
leading to a 5-member ring product with a 3’ carbocation as shown in Figure 13(b). In cross-
validation experiments when the 2,7-dimethyloct-2-ene is part of the testing set, the ranking
system consistently returns the 5-member ring forming reaction as more favorable, while the
6-member ring product is consistently ranked as the second highest. This points to our ranking
model has “learned” that increasing alkyl substitution stabilizes carbocations, but has not
“learned enough” about the stabilization of potential subsequent carbocation rearrangements.
While the stabilized cyclohexane is likely the ultimate thermodynamic product, it is probable
that both mechanisms occur, starting from the reactants shown. Thus, although our metrics
consider this ranking on the query as an error, it is an intelligible and reasonable error. Again
though, by returning a ranking, a multi-step reaction prediction program could easily explore
both of these reaction pathways.

Effect of reaction conditions
There are no major differences in performance when considering reactions at different
conditions. Figure 14 shows the Within-n results for all the reactions conditions for differenct
values of n over all cross-validation experiments. The reaction conditions with the largest
number of queries show greater than 90% Within-0 values. However, all conditions show
similar performance on the close rankings. When n ≥ 2, then all reaction conditions exhibit >
95% recovery perfomance.
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Availability
A public web interface to the machine learning based mechanistic reaction prediction system
is available under the Toolkits section of our chemoinformatics portal (http://cdb.ics.uci.edu).
The interface allows the entry of reactants and conditions, outputting the filtered reactive sites
and a ranked list of the filtered reactions. Models trained with all available data are used in the
web interface system.

Conclusion
In this work, we describe a novel approach to reaction prediction drawing elements from the
three poles of potential approaches. Rather than knowledge engineering a library of
transformation patterns commonly used in existing rule-based systems, we define a molecular
orbital based reaction unit model to enumerate all possible reactions as flows of electrons from
sources to sinks. Then using a two-stage machine learning approach, we return a ranking over
all possible reactions for given reactants and conditions, such that the top ranked reactions
correspond to the most productive Thus, the ordering is based on a model learned from data
rather than explicitly encoded rules.

In terms of scale, our approach is only limited by the amount of data available. If we wish to
capture a new set of chemistry, we only need to re-train with sufficient amounts of data covering
this chemistry. On the other hand, adding a new set of rules to an expert system often involves
having to revisit a large proportion of existing rules to add exception cases. Unfortunately,
while there are existing commercial reaction databases, none currently exist with the level of
cleanliness or mechanistic detail necessary to validate our proposed approach. However, one
could manually curate mechanistically labeled reactions, or use existing expert systems to
construct datasets with the required level of detail.

Using an existing mechanistically defined rule-based system, Reaction Explorer, we create an
intitial dataset over a restricted set of chemistry. The dataset can be expanded by manual
addition of reactions or by expanding the classes of chemistry extracted from Reaction
Explorer. We note that this process is significantly easier than the addition of transformation
rules to an expert system. Instead of having to manually revisit abstract patterns, our system
unleashes powerful statistical techniques to automatically learn the abstraction.

The features and labels for the reactive site and reaction ranking datasets are made available
both at our chemoinformatics portal http://cdb.ics.uci.edu under the Supplementary Materials
section and as part of the UCI Machine Learning Repository at http://archive.ics.uci.edu/ml/.
A web interface to the machine learning based mechanistic reaction prediction system is made
available through our chemoinformatics portal (http://cdb.ics.uci.edu) under the Toolkits
section.

Based on repeated cross-validation experiments over the Reaction Explorer dataset, our
machine learning approach performs well compared to the rule-based system, being able to
recover perfect ranking 89.05% of the time. If we allow close rankings, i.e., rankings with up
to 4 negatives ranked before the positives, then our method is highly sensitive with respect to
the dataset, recovering 99.86% of the productive reactions.

The strong performance of the system is further exhibited by several observations. The high
accuracy in the perfect rankings allow multi-step reaction prediction. The highest ranked
product from one iteration of the ranking pipeline can be recursively input into a new instance
to make the next mechanistic reaction prediction. By allowing the exploration of results further
down the ranked list, the ranking system provides flexible and interpretable results, providing
plausible reactions of competing favorability.
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Furthermore, when the ranking system makes close errors, the mis-ranked non-productive
reactions are reasonable and intelligible errors. Reverse reactions of previous steps in a
synthesis are often kinetically favorable, though in a reaction simulator application, one could
easily ignore reactions which lead to no net change in a reaction mixture. Moreover, as the
Reaction Explorer system is constructed to return major products leading to straightforward
syntheses, many of the close ranked systems actually represent other reasonable mechanisms
that possibly generate side products. Noting these possible side products would be important
in a synthesis planning or validation application.

Then, as shown by our prediction of the macrocyclization in Results, our method shows
potential to be generalizable. Intramolecular ring-forming reactions are encoded by explicit
transformation patterns in the Reaction Explorer. Without explicit patterns for
macrocyclizations, the seven and eight membered ring-forming reactions are not predicted.
However, the ranking system correctly identifies reactive sites, and the top two reactions ranked
in each system are reasonable mechanisms. Even without having specific macrocyclization
reactions to train on, the ranking model correctly generalizes from smaller ring systems it has
experienced.

Our approach does differ from traditional reaction prediction. Returning a ranking rather than
binary decisions is both an advantage and disadvantage of our approach. To use as a direct
replacement to an expert system, the number of reactions to consider in the ranking must be
fit as an extra hyperparameter or chosen by hand. On the other hand, ranking reactions is an
advantage because is allows more flexible use of results. There are usually many different
reactions and use of information about the previous and next steps is necessary to be able to
make predictions over multi-step syntheses. In addition, one could immediately use our
framework with training data with more levels of labeling, i.e., instead of simply labeling
reactions as “productive” and “unproductive”, the ranking framework could just as easily use
finer labels such as “most productive”, “somewhat productive”, “unproductive”. This could
potentially increase the performance of the system.

With this work, we have successfully produced a proof-of-concept on a core subset of
chemistry. This lays the framework for a many possible improvements and enhancements to
extend the power and generality of the system. Obvious areas for further improvement include
radicals, pericyclic reactions, and stereochemistry. For radical reactions, we can allow
molecular orbitals to be occupied with 0, 1, or 2 electrons and annotate the orbital interaction
with the number of electrons involved. For pericyclic reactions, we can allow the filled and
unfilled molecular orbitals to chain such that they are connected, i.e., the final unfilled
molecular orbital in a chain of unfilled molecular orbitals is the filled molecular orbital.
Stereochemical control mechanics are already handled for simple cases such SN2 reactions,
and are easily implemented for reactions involving π systems by augmenting the molecular
orbital representations with information to define a face orientation. Features can be extended
to account for stereochemistry, for example, by augmenting tree and path features with the
proper stereochemical labels. As proposed, these extensions will both increase both the number
of reactions to consider and feature dimensionality. However, the promising results on the core
proof-of-concept indicate that these difficulties can be overcome.

There are a number of potential uses of our system. The ranking system could be used as a
pathway prediction program, in which we wish to discover a plausible mechanistic pathway
from a set of reactants to products. Standard depth-first search could be used with the ranking
model prioritizing reactions to explore at each stage. One could also use the ranking system to
construct virtual libraries; given a database of starting materials and a grid of reasonable
reaction conditions to use, rank the orbital interactions over all pairs of molecules, retaining
the top ranked one or two products from each ranking. Of course, the system would be very
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useful validating retro-synthetic proposals. Not only could the system tell whether the proposed
pathway is reasonable, the flexible ranking results could be used to flag unintended side
reactions and otherwise troublesome reactions in the synthesis.

Reaction prediction is a fundamental problem that has been extensively studied with expert
systems. However, a fresh approach is needed. The core reaction model and ranking
formulation provides a framework to such a new approach, allowing the utilization of
computing power and machine learning to abstract chemical reactivity knowledge from data
in an automatic fashion. Furthermore, we present an initial machine learning dataset, an
implementation using neural networks, a web interface to the system, and promising results.
We hope that this work leads to a resurgence of interest in the problem of reaction prediction
and an open environment for the further release of chemical reactivity data.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Appendix A - Orbital Interaction Algorithm
Algorithm 1 Orbital interaction algorithm. Describes a recursive algorithm move electrons
from a filled MO f to an unfilled MO u, therefore physically altering the reactants and yielding
the product of the reaction. The algorithm consists of updating the FormalCharge on atoms
and BondOrder between on bonds denoted by a pair of atoms. A BondOrder of 0 between two
atoms denotes no bond.

procedure OrbInter(f = (af, tf, nf, cf), u = (au, tu, nu, cu)) ▷ Move electrons 
from f to u
 if tf ▷ {σ, π} then
  FormalCharge(nf) ← FormalCharge(nf) + 1
  FormalCharge(af) ← FormalCharge(af) − 1
  BondOrder(af, nf) ← BondOrder(af, nf) − 1
  if cf ≠ 0▷ then
   u′ ← (nf, p, 0▷, 0▷)
   OrbInter(cf, u′)
  end if
 end if
 if u ≠ 0▷ then
  FormalCharge(af) ← FormalCharge(af) + 1
  FormalCharge(au) ← FormalCharge(au) − 1
  BondOrder(af, au) ← BondOrder(af, au) + 1
  if tu ▷ {σ*, π*} then
   FormalCharge(au) ← FormalCharge(au) + 1
   FormalCharge(nu) ← FormalCharge(nu) − 1
   BondOrder(au, nu) ← BondOrder(au, nu) − 1
   if cu ≠ 0▷ then
    f′ ← (nu, n, 0▷, 0▷)
    OrbInter(f′, cu)
   end if
  end if
 end if
end procedure
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Figure 1.
Example overall transformation and corresponding elementary, mechanistic reactions. (a) The
overall transformation of an alkene with a hydrobromic acid. This is a single graph
rearrangement representation of a multi-step reaction. (b) The details of the two mechanistic
reactions which compose the overall transformation. The first involves a proton transfer
reaction, and the second involves the addition of the bromide anion. Each detailed mechanism
is an example of an “arrow-pushing” diagram17 involving a single transition state, in which
each arrow denotes the movement of a pair of electrons, and multiple arrows on a single diagram
denote concerted movement.
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Figure 2.
Overall reaction prediction framework. (a) A user inputs the reactants and conditions. (b) We
identify potential electron donors and acceptors using coarse approximations of electron filled
and electron unfilled MOs. (c) Highly sensitive reactive site classifiers are trained and used to
filter out the vast majority of unreactive sites, pruning the space of potential reactions. (d)
Reactions are enumerated by pairing filled and unfilled MOs. (e) A ranking model is trained
and used to order the reactions, where the best ranking one or few represent the major products.
The top ranked product can be recursively chained to a new instance of the framework for
multi-step reaction prediction.
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Figure 3.
Molecular orbital types in the augmented molecular graph for the core reaction model. Unfilled
molecular orbital types are on the top and filled types are on the bottom.
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Figure 4.
The filled and unfilled orbitals yielded for C2. Note the π bond adjacent to C4 acts as either a
filled or unfilled chain orbital.

Kayala et al. Page 24

J Chem Inf Model. Author manuscript; available in PMC 2012 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Extended orbital chain interaction examples. (a) Enolate reacting as a lone pair, π-bond chain.
Chaining is necessary to capture the implicit pre-reaction resonance rearrangement. (b) E2
elimination where the H-C σ-bond chains into the C-Br σ-bond. The central bond in each chain
simultaneously acts as an electron source and sink at different points in the overall flow.
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Figure 6.
Topological based count features. Diisopropylamide anion is pictured in a cartoon format with
all the distinct path types starting at the nitrogen. Sub-trees (not shown) are rooted at the atom
with out-degree at most 2.
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Figure 7.
Reactive site predictions using models trained with all the data. The histograms show the
distribution of prediction values on the unreactive labeled data. The red points show the
prediction values for individual reactive labeled data points jittered for clarity. (a) shows the
filled site predictions, while (b) shows the same plot for the unfilled site predictions.
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Figure 8.
Shared weight artificial neural network architecture. Two shared weight artificial neural
networks are connected to a sigmoidal output layer with fixed weights. The output of the final
network will approach 1 if the input to the left network is scored greater than the input to the
right network, and 0 otherwise. As the lower level networks share weights, they compute the
same scoring function.
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Figure 9.
Multi-Step Reaction Prediction. An example of a correctly predicted multi-step reaction from
a careful validation experiment. All reactants shown were held out in a special testing set, while
all other data in the Reaction Explorer system is used as a training set. Thus, the predictions
shown are not seen in training. The products from the top ranked reaction are recursively input
to a new instance of the overall pipeline to make a multi-step reaction predictor. The error rate
is low enough to make the system usable for prediction of overall transformations.
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Figure 10.
Two correctly ranked ring-forming reactions in cross-validation experiments. These two
reactions are labeled productive by Reaction Explorer with the “Mix Reactants, Polar Protic”
reagent model. Without seeing these reactions during training, our approach inductively learns
to correctly rank these two reactions as the most productive with the corresponding conditions.
The system also correctly returns reasonable ring-forming reactions as the second highest
ranked for both sets of reactants.
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Figure 11.
Reasonable reactions not returned by Reaction Explorer, but highly ranked by our system. The
reaction conditions for both systems corresponds to the standard conditions from the “Mix
Reactants, Polar Protic” Reaction Explorer reagent model. (a) and (c) are the top ranked
reactions over the 7-bromohept-1-en-2-olate and 8-bromooct-1-en-2-olate reactants
respectively, while (b) and (d) are the second ranked reactions over their respective reactants.
Neither set of reactants are included in the training set of productive reactions.
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Figure 12.
Within-1 ranked system with a reasonable mechanism in cross-validation experiments. The
deprotonation is ranked slightly higher than the substitution, although the Reaction Explorer
system labels the substitution as productive and does not predict the deprotonation. However,
the previous step in this test case was the protonation of the alchohol. As this hydrogen transfer
reaction is reversible, the deprotonation is kinetically favorable, just not productive.
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Figure 13.
Within-1 ranked system with a reasonable mechanism in cross-validation experiments. The
top two ranked reactions with 2,7-dimethyloct-2-ene, an intermediate in a Reaction Explorer
multi-step reaction. Reaction Explorer labels only the 6-member ring forming reaction as
productive. Although this leaves a 2’ carbocation, it is considered productive because of future
methyl shifts in the underlying Reaction Explorer reaction sequence. We consistently rank the
reaction yielding a 5-member ring and 3’ carbocation higher in cross-validation experiments
where 2,7-dimethyloct-2-ene is in the test set. Although this is considered an error, it is a
reasonable one.
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Figure 14.
Within-n predicted reaction recovery for different reaction conditions over cross-validation
experiments. The fraction of reactant systems in which all productive reactions are recovered
is presented on the y-axis, and the n is presented on the x-axis. Color and symbols are used to
denoted different reaction conditions. The number of queries with the given reaction conditions
are presented in parentheses after the conditions name. Details of the reaction conditions and
how they map back to the Reaction Explorer reagent models are presented in Table S1.
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Table 1

Reactive site features

Type Count

Real-valued 14

Molecular graph 743

Pharmacophore graph 759

Total 1516
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Table 2

Reactive Site Prediction Results

Type Stage Mean TNR % (SD) Mean FNR % (SD)

Filled
Test 87.7(2.0) 0.05(0.23)

Train 87.7(2.0) 8.8 × 10−4(8.8 × 10−3)

Unfilled
Test 75.6(5.8) 0.18(0.38)

Train 75.5(5.9) 6.2 × 10−4(6.2 × 10−3)
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Table 3

Orbital Interaction Filtering Results

Mean TNR % (SD) 94.0 (1.47)

Mean FNR % (SD) 0.012 (0.027)
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Table 4

Overall Reaction Filtering Results. Here the entire dataset is used to train the best possible filled and unfilled
reactive site predictors.

Type TNR %

Filled 92.1

Unfilled 85.6

Actual Reactions 97.2
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Table 5

Orbital Interaction Features

Type Count

Molecular difference 124

Forward Filled and Unfilled 251

Inverse Filled and Unfilled 199

Reactive Site Filled and Unfilled 1103

Total 1677
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Table 6

Orbital Interaction Ranking Results. We show Normalized Discounted Cumulative Gain (NDCG) at different
levels in addition to the Percent Within-n results. NDCG is a standard information retrieval metric to evaluate
rankings, while Percent Within-n is the percent of all queries in which at most n non-productive reactions are in
the smallest ranked list containing all productive reactions.

i Mean NDCG@i (SD) n Percent Within-n (SD)

1 0.895(0.016) 0 89.05(1.66)

2 0.939(0.011) 1 96.84(0.98)

3 0.952(0.008) 2 98.94(0.59)

4 0.954(0.007) 3 99.52(0.39)

5 0.956(0.007) 4 99.86(0.25)
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