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Abstract
Fragment based drug design (FBDD) starts with finding fragment-sized compounds that are highly
ligand efficient and can serve as a core moiety for developing high affinity leads. Although the
core-bound structure of a protein facilitates the construction of leads, effective design is far from
straightforward. We show that protein mapping, a computational method developed to find
binding hot spots and implemented as the FTMap server, provides information that complements
the fragment screening results and can drive the evolution of core fragments into larger leads with
a minimal loss or, in some cases, even a gain in ligand efficiency. The method places small
molecular probes, the size of organic solvents, on a dense grid around the protein, and identifies
the hot spots as consensus clusters formed by clusters of several probes. The hot spots are ranked
based on the number of probe clusters, which predicts the binding propensity of the subsites and
hence their importance for drug design. Accordingly, with a single exception the main hot spot
identified by FTMap binds the core compound found by fragment screening. The most useful
information is provided by the neighboring secondary hot spots, indicating the regions where the
core can be extended to increase its affinity. To quantify this information, we calculate the density
of probes from mapping, which describes the binding propensity at each point, and show that the
change in the correlation between a ligand position and the probe density upon extending or
repositioning the core moiety predicts the expected change in ligand efficiency.
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INTRODUCTION
Fragment based drug discovery (FBDD) has become an important approach to the
identification of new chemical leads, with numerous reviews published on its technical
aspects and on the development of lead-like compounds obtained using this approach.1–12

FBDD involves searches in libraries of compounds that have molecular weight (MW)
between 150 and 250 Da, substantially smaller than compounds used in traditional high
throughput screening (HTS). Since the number of theoretical compounds increases
exponentially with MW, screening smaller compounds implies that the relevant chemical
space can be more fully explored.1 In addition, it is easier to find a small molecule matching
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a particular subsite than a larger molecule that is optimal for an entire ligand binding site;
thus FBDD usually yields higher hit rates than HTS. Since the binding affinity of
compounds has been shown to grow approximately linearly with their MW,13 the affinities
of different-sized fragments and related compounds are usually compared in terms of their
ligand efficiency (LE), which is defined as the binding free energy per heavy atom.14

The first step in FBDD is the identification of fragment hits with sufficiently high LE. Since
small compounds bind with low affinity (usually over 100 µM), the screening of fragment
libraries requires special biophysical techniques such as protein-ligand NMR,15,16 or X-ray
crystallography.17,18 A number of companies have acquired substantial experience with
these approaches and developed efficient technologies for the identification of fragment hits
that can be used as “cores” for the development of larger and higher affinity ligands.1–6 The
next step of FBDD is evolving the core fragment into such leads, which involves either
optimal extension of the fragment into neighboring pockets or in situ optimization of
fragments by better selection of the functional groups binding to various regions of the site.
If available, the fragment-bound protein structure provides substantial insight into changes
that may lead to higher affinity; the structure may reveal directions into which a fragment hit
can be expanded or show regions with a less than optimal match between the functional
moieties of the fragment and the surrounding amino acid residues.

The success of fragment screening, and that of the entire FBDD approach, is due to small
regions of the binding site, called “hot spots”, contributing a large fraction of the binding
free energy allowing these sites to be successfully targeted by fragment sized molecules.
There is substantial evidence that information on such hot spots, which is of prime
importance for drug design, can be obtained by screening small libraries of molecules the
size of organic solvents, which are even smaller than the ones used for the identification of
core fragments.16–18 As will be shown, the fragments that have relatively high LE, i.e., those
that can be used as cores, also bind at these hot spots, but the same spots bind many other
small compounds that vary in size, shape, and polarity, resulting in very high hit rates.16–18

Individual probe molecules can bind at a number of locations, but clusters of different
probes occur only at hot spots. Although the origin of this weakly specific binding is not
fully understood, the phenomenon itself has been well established. For example, using their
SAR by NMR method across many different targets, Hajduk et al. observed that nearly 90%
of fragments that bind to a protein cluster at sites that are known to also bind to drug-like
molecules and that binding rarely occurs anywhere else15. Hajduk et al. screened large
libraries of fragment sized compounds, but NMR was also used to show that organic
solvents in aqueous solutions bind to hot spots with a hit rate that exceeds 90%.16 Similar
conclusions have been drawn from the results of Multiple Solvent Crystal Structures
(MSCS) experiments, which involve determining the X-ray structure of the target protein in
aqueous solutions of six to eight organic solvents and superimposing the structures to find
consensus clusters of the small compounds.17,18 Similar method has been used by Hubbard
and co-workers.19,20 Results confirm that the hot spots of proteins are characterized by their
ability to bind a variety of small molecules and that the number of different “probe”
molecules observed to bind to a particular site predicts the potential importance of the site
for ligand binding.21

The binding of small organic compounds is so robust that hot spots can be reliably
determined by computational means.21,22 The FTMap solvent mapping algorithm places
small molecular probes on a dense grid around the protein and finds favorable positions
using empirical free energy functions.21 For each probe type, the probes are then clustered,
and these clusters are ranked on the basis of their average free energy. Next, overlapping
clusters of different probes, which will be referred to as consensus clusters, are identified.
The consensus clusters within the binding site are ranked on the basis of the number of
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probe clusters they include, and the location of the consensus cluster with the largest number
of probe clusters is defined as the main hot spot. As shown for a large variety of proteins,
the main hot spots agree very well with hot spots found by fragment screening using X-ray
or NMR techniques.21–26 Secondary hot spots that also contribute to ligand binding are
identified as further high ranking consensus clusters. Similar to the SAR by NMR15 or
MSCS17,18 methods, computational mapping provides more valuable information for drug
design than just the knowledge of the binding site. For example, the consensus clusters
obtained for renin trace out the shape of the first approved renin inhibitor, aliskiren, rather
than that of peptidomimetic inhibitors that have been studied for several decades without
providing any successful drug candidate.22 This is even the case when the mapping is
performed on renin structures without any bound ligand or structures co-crystallized with
peptidomimetic inhibitors.22

The goal of the present paper is to show that the knowledge of hot spots obtained by the
computational mapping of ligand-free protein structures provides a rational basis for
developing fragment hits into lead-like compounds. Our analysis focuses on a representative
set of proteins selected by Congreve et al.9 in their excellent review of FBDD strategies.
These proteins have structures determined with bound core fragments deposited in the
Protein Data Bank (PDB). For each case, Congreve et al.9 describe the path leading from
core fragments to larger, higher affinity compounds focusing on the changes of LE values in
the process. As mentioned, the structures of the protein targets with bound core fragments
facilitated the design. Nevertheless, the review clearly shows that the development of lead-
like compounds is far from simple and generally involves the synthesis of molecules that
have to be discarded due to their low LE. Thus, there is clear need for a more rational
approach to this process.

We first demonstrate that the core fragments always overlap with the main hot spots
identified by FTMap. Since the main hot spots are the most important sites for ligand
binding, such agreement is expected, but the result still demonstrates the accuracy of
predictions provided by the computational approach. The major contribution from the
computation is the information it provides on the structure of secondary hot spots around the
main hot spot. The location and importance (in terms of the number of bound probe clusters)
of such secondary hot spots show whether the core fragment can be extended and, if so,
which directions are best for extension. Further, we show that the relative importance of
main and secondary hot spots provide insight into the expected LE of ligands constructed by
extending the core fragment into specific secondary hot spots. This relationship will be
quantified in terms of probe density, which describes the predicted binding propensity at
each point of the binding site and can be used to predict the changes in LE when expanding
the core moiety into secondary hot spots. We note that the same principles have been
recently used for determining the druggability of binding sites on protein-protein interaction
targets.26

RESULTS
The representative set selected by Congreve et al. contains 12 target proteins with bound
core fragments.9 Out of these 12 proteins, 10 have wild-type, apo structures available in the
Protein Data Bank (see Table 1); these systems will be the focus of this work. In one case,
thrombin, Congreve et al. reviewed two core fragments at adjacent locations that were
linked to construct a larger ligand.9 In this case we defined the fragment with higher LE as
the core and treated the fragment with lower LE as an indication for ligand extension. Since
we are interested not only in the location of the core but also the locations near the core
where extension grants high affinity to the compound, we also extracted structures bound to
high-affinity ligands from the PDB27–34 for cases when Congreve et al.9 did not provide
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such information. Six of the systems had available structures of ligands that were within the
same chemical series as the core, i.e. the ligands mostly had the core atoms in the same
configuration plus additional atoms. The remaining four ligands were chosen based on their
high affinity and, if multiple high-affinity ligands were available, their similarity to the core
and their extension to interactions with protein residues distinct from the ones in contact
with core. The chemical structures of the ligands, the PDB codes of the ligand-bound
structures, the three-character PDB designation of the ligands, and their LE values are
summarized in Table 1.

Table 2 shows the rank and size, both based on the number of probe clusters, of the
consensus clusters obtained by mapping the unbound structures of the 10 target proteins. In
the table the core consensus cluster is defined as the consensus cluster overlapping with the
core fragment, whereas the consensus clusters that overlap with the extended lead compound
but not with the core are called extension consensus clusters. As shown, the top ranked
consensus cluster is also the core consensus cluster for all but one target. Extension
consensus clusters are found for eight of the ten targets. As will be shown, the remaining
two targets, nNOS and COX-1, have main hot spots that expand over relatively large regions
of the binding site, and hence the core fragments can be optimized within the main hot spot
without any extension. Indeed, nNOS and COX-1 are the only targets for which the
optimized ligand has higher LE than the core moiety.

Dipeptidyl Peptidase IV (DPPIV)
DPPIV has a 4.3 nM inhibitor that was discovered by FBDD35. We mapped the unbound
DPPIV structure, PDB code 1j2e.36 As shown in Figure 1A, the core fragment37 has large
LE and coincides with the top ranked consensus cluster, and the optimized inhibitor was
found to extend into consensus clusters ranked 2 and 3. While the optimized inhibitor has
nanomolar affinity, it has reduced ligand efficiency (0.37 vs. the core’s 0.65, see Table 1) in
agreement with our prediction that the region where the core binds is the main hot spot,
which has the highest binding propensity. The secondary hot spots, defined by consensus
clusters 2 and 3, contribute to the binding free energy but have weaker interactions with
ligands than the main hot spot. Nevertheless, as shown in Fig. 1A, the inhibitor matches the
three top ranked consensus clusters very well, and this is likely to contribute to the
respectable LE value and the high affinity (IC50 = 4.3 nM).

Thrombin
Thrombin has a 4 nM inhibitor created by linking two fragments identified by X-ray
crystallography to reside in neighboring pockets.38 We mapped a structure of thrombin that
had nothing bound at the active site, PDB code 1ths.39 While this structure has a synthetic,
peptidic inhibitor MDL-28050 bound at the exosite, the exosite is remote from the active site
making this structure the closest approximation to an apo structure available for analysis. As
can be seen in Figure 1B, the fragment with higher LE (0.4) was found to coincide with the
top ranked consensus cluster while the fragment with slightly lower LE (0.25) was found to
span multiple, lower ranked consensus clusters. The fragments were linked and the resulting
inhibitor was optimized resulting in a LE (0.31) that was intermediate between the LEs of
the two fragments (Table 1). It may be noteworthy that the main difference between the two
fragments and the linked inhibitor is the removal of the three methyl groups from the benzyl
ring that overlaps our second consensus cluster, resulting in a better overlap with the
aromatic probes in the second ranked consensus cluster. As will be discussed, linking a
second core to the one with the high LE value is less optimal than expanding the high
affinity fragment, most likely because the approach requires a flexible linker, and thus the
resulting compound loses too much entropy upon binding.
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Heat Shock Protein 90 (HSP90)
Unbound HSP90 has two conformations, referred to as “open and closed”.40 The core and
inhibitors40 discussed by Congreve et al.9 were developed to bind only to the open
conformation with the hope that this would provide a more potent inhibitor;40 however,
higher affinity compounds have recently been developed that bind to the closed
conformation.41 Thus, we mapped the crystal structures of both an unbound open and closed
HSP90, PDB codes 1yes and 1yer,42 respectively, and we compared the results of each drug
development strategy to the mapping results of its respective conformation. Huth et al.
developed a linking strategy for drug design by identifying two neighboring hot spots in an
iterative manner that were then used for fragment linking.40 The first hot spot in the open
conformation corresponds to the core shown in Figure 1C; while the core’s affinity is below
experimental sensitivity, it resides within our top consensus cluster. Two additional
fragments were identified in the presence of a similar core molecule, and these fragments
were linked to form the compounds seen in Table 1 and Figure 1C.40 These inhibitors
overlap only in two locations, i.e., the shared core, which resides in our top ranked
consensus cluster, and the region we identified as the second ranked consensus cluster.
Furthermore, we emphasize that the order in which Huth et al.40 found the two hot spots
corresponds to the ranking of our consensus clusters. The inhibitors are only micromolar
binders, again suggesting that linking fragments is less optimal than expanding the high
affinity core. In fact, Figure 1C clearly shows that the lead does not use the hot spots
adjacent to the core fragment.

After the publication of the work of Congreve et al.,9 a number of high-affinity compounds
for the closed conformation of HSP90 were published. Using HTS, researchers at Vernalis43

identified a lead with IC50 = 280 nM and LE = 0.35 that was subsequently optimized with
SBDD techniques to a compound with IC50 = 25 nM and LE = 0.39 (Table 1).41 This
compound was then further evolved into a drug, which is currently in phase II clinical trials,
with a slight improvement in affinity, IC50 = 21 nM, and a moderate decrement in LE
(0.31)42. Our top three consensus clusters correspond to the HTS lead (see Figure 1D). Since
the conformation of the protein did not influence the location of the two top ranked
consensus clusters, we compared the HTS lead with the fragment core and noticed that the
sub-micromolar lead has more atoms within the top ranked consensus cluster than the
fragment or either of the micromolar, open structure compounds. Additionally, as shown in
Figure 1D, the optimized lead bound to the closed structure better coincides with our second
and third ranked consensus clusters. These observations show that FTMap may also provide
insight into the conformation of the protein that is best-suited target for SBDD, since
structures with more closely packed hot spots helped to find ligands with higher affinity.

Urokinase plasminogen activator (urokinase)
Abbott Laboratories used fragment evolution to develop a selective urokinase inhibitor with
Ki = 8 nM.44 While this inhibitor is from a different chemical series than the core fragment
(Table 1)30, both the core identified by Congreve et al.9 and the 2-naphthamidine core of the
inhibitor are found in similar locations and orientations in their respective crystal structures.
Mapping of the unbound urokinase structure,45 PDB code 2o8t, found that both cores
coincide with our top ranked consensus cluster. As shown in Figure 2A, Abbott’s inhibitor
extends into the second ranked consensus cluster. While the inhibitor is a more potent
binder, the different measurement techniques, IC50 vs Ki, for the two ligands prevents direct
comparison of their LEs.

Cyclin dependent kinase 2 (CDK2)
Since none of the numerous inhibitors of CDK2 are in the same chemical series as the core
fragment identified by Hartshorn et al.46, we decided to study an inhibitor that extended in
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multiple directions from the core site for comparison to our computational mapping results.
One such series, based on the ATP mimetic O6-cyclohexylmethylguanine, extended in two
directions from the core site (Table 1). Interestingly, this lead was optimized to an inhibitor
with IC50 of 6 nM and LE of 0.41,47 but further SBDD extension resulted in an inhibitor
with only an IC50 of 45 nM and a LE of 0.3.29 Mapping of an unbound structure of CDK2,
PDB code 1hcl,48 resulted in our top ranked consensus cluster coinciding with the core
fragment and the purine moiety of the inhibitor (see Figure 2B). In addition to the top ranked
consensus cluster, both inhibitors have a cyclohexyl group that coincides with our fourth
ranked consensus cluster. Additionally, the weaker extended inhibitor with IC50 = 45 nM
has a N-3-hydroxypropyl group that coincides with our sixth ranked consensus cluster,
which includes only 2 probe clusters. This N-3-hydroxypropyl group is the only moiety in
our study that coincides with a consensus cluster with rank beyond 4, and in view of the
weak hot spot we expect only minor improvement in affinity when adding a moiety in this
region. In good agreement with this prediction, the authors that published this structure
concluded that the additional interactions of the N-3-hydroxypropyl group were insufficient
to compensate for the loss of interactions within the regions identified by our top and fourth
ranked consensus clusters,29 leading to lower affinity.

tRNA Guanine Transglycosylase (TGT)
We mapped the highest resolution, wild-type TGT structure, PDB code 1pud.49 As shown in
Table 2, the core fragment50 overlaps with our second ranked consensus cluster. This is
noteworthy because for all other targets considered here the core fragments overlap with the
top ranked consensus clusters. Comparison of the apo and holo structures of TGT reveals
that there would be a clash between the unbound conformation of the Tyr106 side chain and
the bound core molecule in the holo structure, indicating that Tyr106 closes down the ligand
binding pocket and prevents effective sampling of this region. Tyr106 adopts a different
conformation upon core binding, which resolves the clashes. Mapping identifies the region
of core fragment binding as the second ranked, rather than first ranked, consensus cluster.
As we have recently demonstrated,26 it is possible to generate alternative conformers for the
side chains around the consensus clusters found by an initial mapping, map the resulting
structures, and select the one with the highest number of probe clusters, thus opening up
pockets that may be partially closed in the ligand-free protein structure.26 However, the side
chain adjustment algorithm is not yet implemented in the FTMap server, and hence is not
used in the present paper.

Two inhibitors with nanomolar affinity from the same chemical series as the core fragment
have been recently developed for TGT via fragment evolution.32,33 As shown in Figure 2C,
the best binding inhibitor from the first series extends from the second ranked consensus
cluster into the top ranked consensus cluster. While the electron density of the best inhibitor
from the second series was unable to resolve the position of a terminal six-member moiety
that was critical for achieving nanomolar affinity,33 chemical constraints reduce the number
of potential conformations for the moiety. In Figure 2C, we show one such conformation
coinciding with a portion of our third ranked consensus cluster. Thus, mapping results
identify both directions that confer high affinity to the ligand when expanding the core
fragment.

Methionine aminopeptidase 2 (MetAp2)
The core fragment for MetAp2 had the highest LE (0.89) of any compound within this data
set and already has IC50 of 18 nM, partially due to this ligand’s interaction with two
coordinated cobalt atoms;51 however, there have been no other published inhibitors in this
series. Nonetheless, a larger compound containing a triazole group was found via HTS and
SBDD by researchers at the same company (Table 1)31, and we treated this inhibitor with a

Hall et al. Page 6

J Chem Inf Model. Author manuscript; available in PMC 2013 January 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ki of 2 nM as the high-affinity analogue. We mapped the unbound structure, PDB code
1bn552, with the metal ions removed, and found that the core molecule had its aryl-triazole
group coinciding with the top ranked consensus cluster and its benzyl group corresponding
to the third ranked consensus cluster (see Figure 3A). In addition to making similar
interactions in the regions identified by our top and third consensus clusters, the high-
affinity inhibitor also has a propyl group that coincides with our second ranked consensus
cluster. While the inhibitor is a more potent binder, the different measurement techniques,
IC50 vs Ki, for the two ligands prevents direct comparison of their LEs.

β-Secretase (BACE)
Astex Pharmaceuticals used a fragment evolution approach to obtain a 690 nM inhibitor of
BACE (Table 1).27 We mapped an unbound BACE structure, PDB code 1w50.53. As shown
in Table 2 and Figure 3B, the core molecule27 overlapped the two top ranked consensus
clusters. The inhibitor was optimized via SBDD techniques, leading to two observations on
the relationship between the optimized inhibitor and the consensus clusters. First, extension
of the core more fully into the top ranked consensus cluster pushes the core portion of the
inhibitor into the third ranked consensus cluster. As a result, this inhibitor has more atoms
within the regions defined by the core consensus clusters, in addition to its extension into the
third ranked consensus cluster. Second, the inhibitor extends further out of the core
consensus clusters into the next (fourth) ranked consensus cluster nearby, which corresponds
to a region identified by Astex Pharmaceuticals as important for SBDD.53 These
observations are consistent with our earlier findings and support the indication from the
HSP90 results that local optimization by placing chemically appropriate atoms into the
various regions of hot spots, particularly of the main hot spot, may yield an increase in
affinity.

Neuronal nitric oxide synthase (nNOS)
This protein is one of the two targets for which the core had lower LE than an optimized
compound (Table 1). We mapped the unbound nNOS structure, PDB code 1zvi54, in the
presence of both the heme and 5,6,7,8-tetrahydrobiopterin cofactors. As shown in Figure 3C,
the core,28 which has a LE of 0.55, primarily overlaps with our second ranked consensus
cluster, partially occupies the region identified by our top ranked consensus cluster, and
narrowly coincides with our third ranked consensus cluster. The more efficient (LE = 0.67)
related molecule from the same study28 not only coincides more fully with our top ranked
consensus cluster, but it also extends along the entire region identified by our second ranked
consensus cluster (see Figure 3C). This reinforces the observation that local optimization by
placing chemically appropriate atoms into the regions identified by the core consensus
clusters may result in increased affinity. Furthermore, these results suggest that doing this
without extending outside of the top ranked consensus clusters may even increase the LE.

Cyclooxygenase-1 (COX-1)
COX-1 is the other system where the LE increased for the inhibitor,34 flurbiprofen, over the
core, ibuprofen (Table 1).34 We mapped the unbound COX-1 structure, PDB code 1prh,55

and as shown in Figure 3D, both ibuprofen and flurbiprofen coincide with the top three
consensus clusters. However, flurbiprofen has a second benzyl group, in lieu of ibuprofen’s
propyl group, which better coincides with the top ranked and third ranked consensus
clusters. Furthermore, the orientation of the primary benzyl group in flurbiprofen is different
than the orientation seen in ibuprofen, possibly due to steric interactions of the propyl group,
thus allowing flurbiprofen’s primary benzyl group to better coincide with the second ranked
consensus cluster. In addition to the better correspondence between the flurbiprofen and our
consensus clusters, flurbiprofen has a fluorine atom that extends from its primary benzyl
group into the region identified by the two top ranked consensus clusters. Therefore, it may
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come as no surprise that flurbiprofen has a LE of 0.59 versus ibuprofen’s LE of 0.51. This is
consistent with the observation made for nNOS that, in addition to extending a core
fragment into further consensus sites, in some cases LE can also be increased by optimizing
the placement of functional groups within the core consensus cluster without extension.

Relationship between LE and probe density
Comparing the number of probes in a consensus cluster with the results of extending a core
moiety into the corresponding hot spot suggests that there is a relationship between the
extent to which a ligand coincides with the consensus cluster and the expected LE of the
extended lead molecule. Some of the values in Table 2 show this relationship. For example,
the core and extension consensus clusters include similar numbers of probe clusters (29
versus 26) for urokinase, and the LE value remains almost unchanged when the core is
extended. In contrast, the core consensus cluster of CDK2 has 20 probe clusters, whereas the
region of extension includes only two minor consensus clusters ranked 4 and 6, with a total
of 7 probe clusters. In agreement with this major drop in binding propensity, the 0.6 LE of
the core is reduced to 0.3 when the core fragment is extended.

For a more rigorous analysis of the relationship between mapping results and LE values, we
introduce the concept of probe density, defined at each point as the total number of probe
atoms within a 1.25 Å radius. Given the structure of any bound ligand, we can calculate a
measure called probe density correlation, or simply density correlation (DC) by summing
the probe density for all heavy atoms of the ligand. Since probes tend to cluster at hot spots
that are important for binding, the probe density relates to binding propensity, and the DC
value measures the expected affinity of the ligand at a particular location. Similarly to LE,
we normalize DC into density correlation efficiency, defined by DCE = DC / HA, where HA
is the number of heavy atoms of the ligand. Since we are interested in changes upon
extending the core moiety into a secondary hot spot, we expressed both LE and DCE as
ratios between the core fragment and the lead evolved from the core. Figure 4 shows the
relationship between the LE ratio, (LE)core/(LE)lead, and the density correlation efficiency
ratio (DCE)core/(DCE)lead. Since LE determined from IC50 and LE determined from Ki are
fundamentally different, we restricted our analysis to ligands that had IC50 information
because more systems had the potency of both the core and inhibitor reported as IC50. With
this constraint, we have two data points for both thrombin and CDK2, and one data point for
each of BACE, nNOS, and COX-1. Six of the seven points are on a straight line, suggesting
a linear relationship between (LE)core/(LE)lead and (DCE)core/(DCE)lead. Since the number
of points is very small, the statistical validity of the relationship is limited, in spite of the
overall R2 value of 0.66. Nevertheless, as we described, we expect that such relationship
between densities and achievable LE values should exist, although it is possibly not as tight
as shown here. The one outlier in Figure 5 represents the extension of the high LE thrombin
core fragment, which was linked to a lower LE fragment rather than expanding into the
neighboring regions. The data point is above the line, indicating that linking the two core
fragments yields a lower LE value of the resulting lead molecule than expected on the basis
of the correlation density, most likely due to the flexibility of the lead, which implies
substantial entropy loss upon binding. We note that establishing a relationship between
(LE)core/(LE)lead and (DCE)core/(DCE)lead values is potentially very useful, since it will
predict the maximum achievable LE value when a core fragment is expanded into particular
regions of the binding site. Unfortunately there are few systems similar to the ones described
here, i.e., with both affinities and structures available for the protein/fragment and protein/
lead complexes.
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DISCUSSION
We consider two fragment-based methods and show that they provide highly
complementary information. The first, experimental screening of compounds in the size
range of 150 to 250 Da, is becoming the well-established first step in fragment-based drug
design.1,3–6,9 There are many examples of fragment sized compounds identified by this
method that have low affinity but high LE, which can be then used as the core moiety for
developing higher affinity leads.1–12 In principle, computational methods can also provide
similar information, and successful virtual screening of fragment libraries has been
reported.56–58 However, it was also shown that performance of fragment docking
substantially varies from target to target and is dependent on the LE of the compounds being
docked.58 Although we anticipate that further development of docking methods will provide
improvements, it is unlikely that computational approaches will, in the near future, be able
to reliably identify high LE compounds that can be used as cores, thus replacing X-ray and
NMR as the primary tool for fragment screening.

The protein mapping method we employ in this paper does not attempt to compete with the
X-ray or NMR based screening used for the identification of core fragments. In contrast,
FTMap21 has been developed as a computational analog of experimental methods that study
the binding of much smaller compounds, the size of organic solvents. The binding of such
very small compounds can be detected by NMR16 or X-ray crystallography,17–20 but the
expected results differ from those of screening: the goal is identifying binding hot spots,
detected by the clustering of ligands, rather than looking for specific fragments that bind
with high LE. It is important that, in contrast to docking results that have high level of
uncertainty, the location of consensus clusters and their ranking, which is based on the
number of probe clusters, are generally very robust and thus can reliably be determined by
computational methods. There are at least four reasons for this robustness: first, docking of
the small rigid compounds is relatively easy; second, we can sample the conformational
space on a very dense grid, thus under-sampling does not occur; third, we are interested in
sizable clusters, rather than individual docked poses, thereby eliminating a number of false
positives; and fourth, it is not a problem if some of the probe compounds are not found in
the hot spots or are found somewhere else, because we are interested only in consensus
clusters formed by a large number of probe clusters. Accordingly, we have established that
the computational mapping results agree well with available experimental mapping data, and
that the location of hot spot shows little sensitivity to conformational changes.21–26 Due to
the above factors, the problem of locating clusters of very small ligands on a protein seems
to be ideally suited for a computational approach. In contrast, finding similar information by
MSCS, i.e., by soaking protein crystals in aqueous solutions of organics solvents and
superimposing the X-ray structures, is far from simple17–20. The problems include the
limited solubility of some molecules used as probes, the possibility that the organic solvent
may crack the crystal and hence it should be cross-linked prior to the experiments, and
crystal contact that may also affect ligand binding.17–20

The main result of this paper is that the hot spots obtained by computational mapping
identify the regions that are most likely to substantially contribute to the binding free energy
and hence are the most important regions for FBDD. As shown in Table 2, the top ranked
consensus cluster, predicting the main hot spot, coincided with the core fragment in 9 of the
10 proteins studied9; in the remaining case, the unbound conformation had a tyrosine that
sterically hindered probes from adequately sampling in the location where the core binds.
While the binding site of the core fragment locates the main hot spot, only computational
mapping is capable of identifying secondary hot spots that are also important for ligand
binding, and thus provide a full characterization of the hot spot structure in the binding site.
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Our main observation is that information on the secondary hot spots provides a rational basis
for expanding the core fragments into higher affinity lead candidates. For eight targets, the
high-affinity ligand extended beyond the main hot spot into other hot spots, in most cases
identified by the second, third, and possibly fourth ranked consensus clusters. Of special
note were two cases where we examined multiple ligands. In one case, HSP90, the
micromolar inhibitors extended in different directions and only overlapped in two locations
which corresponded to our first and second ranked consensus clusters; however, a different
conformation of HSP90 was used to obtain a nanomolar inhibitor which places more atoms
within the region identified by our first ranked consensus clusters. In the other case, TGT,
the nanomolar inhibitors overlapped at the core, identified by the second ranked consensus
cluster, but extended in different directions into separate consensus clusters, ranked first and
third, respectively. So while there may be different scaffolds that can bind to a protein, it is
important to have portions of these scaffolds interact with the regions identified by our top
ranked consensus clusters.

As shown by the case studies considered here, the secondary hot spots identified by the
computational mapping reveal whether the core fragment can be expanded and, if so, into
which directions. Results also show that if two hot spots are not adjacent, and hence ligands
must bridge them, this will require a scaffold that has no strong interaction with the protein,
resulting in lower LE. Thus, it should not be surprising that extension of the core from the
top consensus cluster into secondary consensus clusters was consistently associated with a
higher-affinity binder with reduced ligand efficiency. This phenomenon was especially
significant when the ligand efficiency of the core was much higher than 0.29, which
corresponds to the LE cutoff suggested by Hopkins et al. to be necessary for a drug-like
molecule to have nanomolar binding affinity.14 Reynolds et al. made a similar observation
while studying the relationship between optimal ligand efficiency and the number of heavy
atoms.59,60. These researchers concluded that there was a dramatic decrease in the maximum
ligand efficiency between 10 and 25 heavy atoms, and that after 25 heavy atoms, the ligand
efficiency essentially plateaued.59 The authors suggested that there were three factors that
lead to this decrease in ligand efficiency with an increase in size: (1) structural compromises
of larger molecules that prohibit a functional group from maximally interacting with the
protein, (2) entropic concerns, and (3) a decrease in van der Waals surface area per heavy
atom as a molecule becomes larger and more complex.60 Our results suggest a fourth
reason; molecules that occupy more than a single hot spot generally have connecting atoms
with weaker interactions, resulting in a decrease in maximal LE as ligands expand out of hot
spots and into regions where such atoms are necessary. In the two cases where the lead
compound coincided with the same or fewer consensus clusters than the core, the lead had
more atoms in direct contact with the consensus clusters than the core, resulting in higher
LE. This suggests that our consensus clusters also provide information on locations where
chemical optimization is most beneficial for drug design; i.e., that the best way to maintain
the high LE of an initial hit is placing chemically more appropriate atoms into regions with
the highest probe density within the main hot spot.

CONCLUSIONS
X-ray crystallography and NMR have been used with remarkable success for the
identification of small weakly binding fragments that are highly ligand efficient and can
serve as core moieties for finding high affinity lead compounds. Although the fragment-
bound structure of the target protein facilitates the construction of leads, effective design is
far from straightforward. Protein mapping, a computational tool available as the FTMap
server (http://ftmap.bu.edu/), provides hot spot information that can drive the evolution of
core fragments into larger leads with a minimal loss or, in some cases, even a gain of LE. As
shown, the strongest consensus site found by FTMap generally binds the core fragment, and
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the neighboring secondary consensus sites indicate the regions where the core can be
extended to increase its affinity. We observed that the relative size of top and secondary
consensus clusters is a good predictor of the change in LE upon extension. This relationship
has been tested only for a limited number of targets due to limitations of available data, but
it seems to be fairly robust. We note that in some cases the core molecule coincides only
with a portion of the main hot spot, and thus the core molecule may be extended and/or
optimized within the main hot spot, potentially retaining the high LE of the core.

METHODOLOGY
Test Set

Congreve et al. published a representative set of 12 proteins that have been analyzed using
FBDD techniques.9 Ten of these systems (see Table 1) had both apo36,38,41,45,48,49,52–54 and
core-bound9,27,28,34,35,37,46,50,51 structures in the Protein Data Bank (PDB) and were thus
used in this analysis. Congreve et al.9 also identified high-affinity inhibitors from the same
series as the core moiety for DPPIV,35 thrombin,47 and BACE,27 with protein-bound
structures available. We extracted inhibitors for the remaining systems from the PDB (Table
1). While for HSP90 Congreve et al. selected two micromolar inhibitors,39 we examined an
additional series40,42,43 with sub-mircomolar affinity. TGT32,33 and COX-134 were found to
have sub-micromolar inhibitors in the same series as the core. Inhibitors for MetAp231 and
nNOS28 were chosen using the criteria of increased affinity for the inhibitor and similarity
of a portion of the inhibitor to the core. Multiple inhibitors for urokinase and CDK2 were
found using these criteria, and we selected inhibitors29,47 that extended into distinct
region(s) from the core to further provide insight into secondary hot spots.

Computational Mapping
Mapping was completed using the apo form of the proteins submitted to the FTMap server,
http://ftmap.bu.edu.21 (The FTMap site was accessed between June and October of 2011,
and will be maintained to remain functional in the future.) For nNOS, both the heme and the
cofactor were modeled with the apo structure during mapping; all other ligands were
removed for all other systems. The FTMap algorithm21 uses 16 small molecules as probes
(ethanol, isopropanol, isobutanol, acetone, acetaldehyde, dimethyl ether, cyclohexane,
ethane, acetonitrile, urea, methylamine, phenol, benzaldehyde, benzene, acetamide, and N,N
dimethylformamide) and consists of four steps as follows.

Step 1 The rotational/translational space of each probe is systematically sampled on
a grid around the fixed protein, consisting of 0.8 Å translations and of 500
rotations at each location. The energy function includes a stepwise
approximation of the Van der Waals energy with attractive and repulsive
contributions, and an electrostatics/solvation term based on the Poisson-
Boltzmann continuum model with dielectric constants of ε=4 and ε=80 for the
protein and the solvent respectively61. The energy expression is written as the
sum of correlations functions, and hence it can be very efficiently evaluated
using fast Fourier transforms.21 The 2000 best poses for each probe are
retained for further processing.

Step 2 The 2000 complexes are refined by off-grid energy minimization during
which the protein atoms are held fixed while the atoms of the probe molecules
are free to move. The energy function includes the bonded and van der Waals
terms of the CHARMM potential62 and an electrostatics/solvation term based
on the Analytic Continuum Electrostatic (ACE) model63 as implemented in
CHARMM.
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Step 3 The minimized probe conformations are grouped into clusters using a simple
greedy algorithm. The lowest energy structure is selected and the structures
within 4 Å RMSD are joined in the first cluster. The members of this cluster
are removed, and the next lowest energy structure is selected to start the
second cluster. This step is repeated until the entire set is exhausted. Clusters
with less than 10 members are excluded from consideration. The retained
clusters are ranked on the basis of their Boltzman averaged energies. Six
clusters with the lowest average free energies are retained for each probe.

Step 4 In order to identify consensus clusters where a number of probe clusters
overlap19 the probe clusters are themselves clustered using 4 Å distance
between cluster centers as the clustering radius. The consensus clusters are
ranked on the basis of the number of probe clusters contained.21 To determine
if any of the consensus clusters includes the core moiety from the fragment
screening, the core-bound protein is superimposed on the unbound protein
results using PyMol to obtain appropriate positioning and orientation of the
core fragment. If a consensus cluster has 5 or more atoms within 1.25 Å of the
core, it is considered to coincide with the core moiety, and is identified as
“core consensus cluster” in Table 2. Similarly, if a (non-core) consensus
cluster has 5 or more atoms within 1.25 Å of any atom of an extended ligand,
which is not part of the core, it is defined as “extension consensus cluster”.

Identification of Binding Site
Prior to analyzing the hot spots we may use the mapping results to identify the binding site
(if it is not a priori known) as implemented in our FTSite server at http://ftsite.bu.edu. The
server was accessed between June and October of 2011, and will be maintained to remain
functional in the future. The method calculates percentage contact score for each consensus
cluster. The distance between the centers of geometry for each consensus cluster and the
consensus cluster with highest percentage contact was calculated, and consensus clusters
having this distance less than 12 Å were collected. The residues interacting with the probes
in these consensus clusters were considered to form the binding site.

Calculation of LE
LE was determined as LE = 0.6 pKi/HA or LE = 0.6 pIC50/HA, where HA is the number of
heavy atoms in the ligand and pX = − 1 ln(X). While no distinction between LE determined
by Ki or IC50 is made, our analysis did not compare LEs calculated by these related, yet
distinct, experimental constants. Since mapping results are not directly comparable between
proteins, LEs were normalized dividing the core’s LE by the LE of the extended lead
compound, i.e., we have introduced the measure (LE)core/(LE)llead.

Probe density, density correlation, and density correlation efficiency
Probe density is defined at each point as the total number of probe atoms within a 1.25 Å
radius. Given a bound ligand, ligand-density correlation, or simply density correlation (DC),
is obtained by summing the probe density for all heavy atoms of the ligand. Density
correlation efficiency (DCE) is defined by DCE = DC / HA, where HA is the number of
heavy atoms of the ligand. In Fig. 4 we use the normalized density correlation efficiency
(DCE)core/(DCE)lead.
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Figure 1.
Significant consensus clusters in the binding site, predicted by computational mapping, for
unbound (A) DPPIV (1j2e), (B) thrombin (1ths), (C) HSP90 open conformation (1yes), and
(D) HSP90 closed conformation (1yer), represented as lines with ligands represented as
sticks from aligned bound structures. Affinity measures, ligand efficiency (LE), and the
PDB code of the bound structure are listed for each ligand. Fragments identified as cores by
Congreve et al.9 have carbons colored brown, the HSP90 ligand identified by HTS is
colored green, and higher affinity ligands from the same chemical series have carbons
colored wheat or pink. Consensus cluster carbons are colored by rank as follows: 1st - cyan,
2nd - purple, 3rd - yellow, and 4th - salmon.
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Figure 2.
Significant consensus clusters in the binding site, predicted by computational mapping, for
unbound (A) urokinase (2o8t), (B) CDK2 (1hcl), and (C) TGT (1pud), represented as lines
with ligands represented as sticks from aligned bound structures. Affinity measures, ligand
efficiency (LE), and the PDB code of the bound structure are listed for each ligand.
Fragments identified as cores by Congreve et al.9 have carbons colored brown, and higher
affinity ligands have carbons colored wheat where electron density supports the position of
the atoms and dark grey where the atoms are a representative of a number of possible
conformational states. Consensus cluster carbons are colored by rank as follows: 1st - cyan,
2nd - purple, 3rd - yellow, 4th – salmon, and 6th - pale green. TGT’s core fragment is the only
example of a core fragment that does not overlap the top ranked consensus clusters due to a
substantial change in the conformation of Tyr106.
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Figure 3.
Significant consensus clusters in the binding site, predicted by computational mapping, for
unbound (A) MetAp2 (1bn5), (B) BACE (1w50), (C) nNOS (1zvi), and (D) COX-1 (1prh),
represented as lines with ligands represented as sticks from aligned bound structures.
Affinity measures, ligand efficiency (LE), and the PDB code of the bound structure are
listed for each ligand. Fragments identified as cores by Congreve et al. have carbons colored
brown, and higher affinity ligands have carbons colored wheat. Consensus cluster carbons
are colored by rank as follows: 1st - cyan, 2nd - purple, and 3rd - yellow. All four core
molecules overlap to some extent with the top consensus cluster, and BACE, COX-1, and
nNOS have more inhibitor atoms placed within the core consensus clusters than the cores
themselves. This is especially noteworthy since COX-1 and nNOS were the only two
systems that had an inhibitor with higher LE than the LE of the core moiety and were also
the only two systems that lacked extension clusters, and hence the core has been evolved
into lead compounds within the main consensus cluster.
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Figure 4.
Relationship between the normalized ligand efficiency (LE)core/(LE)ligand and the
normalized density correlation efficiency (DCE)core/(DCE)ligand. The ldensity correlation
efficiency is defined by DCE = DC/HA, where HA is the number of heavy atoms in the
ligand. The density correlation, DC, is the integral of probe density over the volume of the
ligand in a given conformation. Data points are shown only for compounds with LE values
based on IC50. The correlation coefficient of R2 = 0.66 between the two ratios suggests a
linear relationship.
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