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Abstract
The biophysical basis of passive membrane permeability is well understood, but most methods for
predicting membrane permeability in the context of drug design are based on statistical
relationships that indirectly capture the key physical aspects. Here, we investigate molecular
mechanics-based models of passive membrane permeability and evaluate their performance
against different types of experimental data, including parallel artificial membrane permeability
assays (PAMPA), cell-based assays, in vivo measurements, and other in silico predictions. The
experimental data sets we use in these tests are diverse, including peptidomimetics, congeneric
series, and diverse FDA approved drugs. The physical models are not specifically trained for any
of these data sets; rather, input parameters are based on standard molecular mechanics force fields,
such as partial charges, and an implicit solvent model. A systematic approach is taken to analyze
the contribution from each component in the physics-based permeability model. A primary factor
in determining rates of passive membrane permeation is the conformation-dependent free energy
of desolvating the molecule, and this measure alone provides good agreement with experimental
permeability measurements in many cases. Other factors that improve agreement with
experimental data include deionization and estimates of entropy losses of the ligand and the
membrane, which lead to size-dependence of the permeation rate.

INTRODUCTION
Permeability assessment is a crucial component in the drug development process for
selecting and optimizing leads with favorable absorption, distribution, metabolism and
excretion (ADME) properties. In order to avoid compounds with poor permeability or other
ADME properties, a commonly adopted strategy is to comply with rules-of-thumb for ‘drug-
likeness’ such as Lipinski’s Rules of Five.1 These rules qualitatively outline the
physiochemical space defined by the majority of well-absorbed drugs, which include (1)
molecular weight (MW) <500, (2) number of hydrogen bond donors ≤5, (3) number of
hydrogen bond acceptors ≤10, and (4) octanol-water partition coefficient (LogPo/w) <5.
Exceptions to these rules are known, and such rules do not provide quantitative measures.

Predictive quantitative models in use for drug design are primarily quantitative structure-
permeability relationship (QSPR) methods that employ statistical relationships derived
empirically from experimental permeability measurements and various physiochemical
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properties of a training set of compounds.2–14 The development of these quantitative models
has previously been reviewed elsewhere.15,16 The QSPR approach has been widely applied
in modeling oral bioavailability,17 intestinal absorption,18 skin permeation,19,20 and brain
permeability.9,21,22 Some of the common QSPR descriptors include MW, polar surface area
(PSA), partition coefficients, and hydrogen bond counts, all of which are known to correlate
with rates of permeation. However, the main limitation of such an approach, like other
empirical scoring models, is transferability. The performance of the model depends on the
chemical similarity between the molecules of interest and the training set.12 Empirical
statistical relationship can also be difficult to interpret, for example, what modifications to a
compound would most successfully improve permeability?

An alternate approach is to develop models that are more directly based on the physics of
the underlying processes. In the case of intestinal permeability, for example, there are (at
least) three primary processes: passive diffusion across the cellular membrane, paracellular
diffusion through the cell junctions, and active transport that includes chemical influx and
efflux facilitated by transporter proteins. Increasing structural knowledge of key transport
proteins, such as the efflux transporter P-glycoprotein (PGP),23,24 will undoubtedly advance
predictive models of active transport mechanisms. Paracellular diffusion, which is primarily
pertinent for very small and polar molecules, has been treated by others using hindered
diffusion models.25–27

Here, we consider transmembrane passive diffusion which, for many molecules, is a
dominant factor in intestinal absorption, rates of crossing the blood-brain barrier, and simply
entering cells, as in in vitro cell-based experiments. In the extreme, it is possible to study
passive membrane permeability in all-atom detail, i.e., using molecular dynamics
simulations with explicit permeant and lipid molecules.28–36 Such simulations provided
many important insights into the process and were shown to be capable of predicting relative
permeability coefficients, at least for very small molecules. However, it remains difficult to
predict absolute permeability by this underutilized approach, which is as yet
computationally too expensive to be practically applied in drug design.29,35 A less
computationally intensive alternative is to augment QSPR models with membrane-
interaction descriptors obtained from MD simulations of permeants in lipid layers, such as
the membrane-interaction QSAR method developed by Hopfinger and coworkers.37–41

Another approach is to use coarse-grained or implicit membrane models,42–49 which in
principle provide an adequate representation of the membrane environment with lower
computational expense. While implicit membrane models have been employed in studies of
transmembrane proteins, their application to membrane permeation remains limited.46–48

One such example is the implicit model recently developed by Parisio and Ferrarini that
accounts for the anisotropic and nonuniform membrane environment.49

Alternatively, solubility-diffusion theory has been used as the basis for a predictive
framework, in which the permeability is assessed in terms of three components: the
partitioning between water and the membrane, the diffusion across the membrane, and the
width of the membrane.50,51 This theory was originated from the general permeability
model for nonelectrolytes derived by Diamond et al.50 The statistical mechanical basis of
this model was developed by Xiang and Anderson, who implemented methods to describe
crucial aspects of the membrane physics, such as the size selectivity and chain ordering of
lipids.52–52 A similar solubility-diffusion model was also utilized to study blood-brain
barrier permeation by Seelig and coworkers, using parameters including the air/water
partition coefficient and molecular shape of the permeant.59,60 The conceptual and
theoretical underpinnings of these models are described in more detail in the following
section.
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While these solubility-diffusion approaches are typically more computationally expensive in
comparison to QSPR models and remain less commonly employed, they do offer several
advantages. Such methods capture the underlying physics of the permeation process and do
not require training with permeability data, and thus are expected to be more general and
transferrable. By the same token, the quality of a physical model, instead of being governed
by the training set data, is determined by the theoretical representation of the process.
Hence, in principle, physics-based models can be systematically improved by elevating the
level of theory to describe the permeation process and to calculate each of the physical
contributions. Since permeability is evaluated in physically-meaningful terms, the physics-
based approach also offers a mechanistic understanding of the permeation process that
allows for rational modulation.

Our own contributions in this area have emphasized the importance of performing extensive
conformational sampling of the permeant, particularly for larger, conformationally complex
molecules such as cyclic and linear peptides. 61–65 The free energy of desolvating the
molecule, upon entering the hydrophobic interior of the membrane, is a critical parameter
for accurate determination of the permeation rate. Conformationally flexible molecules can
reduce this free energy cost by adopting conformations that, for example, maximize internal
hydrogen bonding. Applications of this model to predict permeability of cyclic peptides and
drug-like molecules resulted in good agreement with experimental data, including in
prospective tests, warranting further development.61–65

In the present work, this simple physical model was expanded to provide a more
sophisticated representation of the permeation process based on solubility-diffusion theory,
building on prior work. 53,54,60 Additional attributes were incorporated in the model to
account for contributions from both the permeant and the membrane that influence
permeability, especially those related to the size- and shape-dependence of permeation.
Along with combining these physical aspects with extensive conformational sampling, our
major contribution is the systematic evaluation of different aspects of the model through a
large and diverse group of experimental data sets as summarized in Table 1. The examined
data ranges from in vitro measurements, which include parallel artificial membrane
permeability assays (PAMPA), Caco-2 cell-based assays, and Madin-Darby canine kidney
(MDCK) cell-based assays, to in vivo data, which includes percentage absorption in human
(%Abs) and rat in situ perfusion assays.66–74

With the exception of PAMPA, all measurements involve biological membranes. The
artificial membrane in PAMPA is typically composed of lipids and organic solvent, thus the
assay measures strictly passive diffusion across an organic layer. The cell-based assays
measure permeability across a monocellular layer. The Caco-2 and MDCK cell lines are
well established models for biological processes, such as intestinal absorption or penetration
across the blood brain barrier. The cellular membranes possess active transport facilitated by
transport proteins and paracellular transport through cell junctions, in addition to
transcellular passive permeation. Common approaches to evaluating passive permeation in
these assays include using inhibiting substrate for transporter proteins, identifying possible
active efflux or influx by measuring permeations in both apical-to-basolateral (A→B) and
basolateral-to-apical (B→A) directions,71 measuring permeability of paracellular permeants
as a control,72 and genetically knocking out known transporters.75

The in vivo data examined in this study are absorption measurements in human or rat. The
percentage human absorption (%Abs) refers to intestinal absorption in human. The in situ
perfusion assay allows assessment of gut absorption in rat by perfusing the substance of
interest through the cannulated gut of an anesthetized rat and monitoring the change in
substance concentration.76 Although the extent of drug absorption involves many properties,
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including solubility, passive membrane permeability is critical to the absorption process.
Therefore, in vitro permeability measurements and calculated “hydrophobicity” measures,
such as LogPo/w and PSA, are often utilized to predict absorption.

By evaluating the physics-based permeability model with respect to the different data types
and conventional regression-based in silico models, the results highlight the generality of the
approach and the ability to systematically improve the model.

THEORY
The physical models of passive membrane permeability considered here are based upon
solubility-diffusion theory. The conceptual underpinnings and applications of this model
have been described and reviewed in detail previously.50,53,54,55,60 A key concept of the
theory is that membrane permeability is inversely related to the resistances presented in the
permeation process, including the internal resistance of the membrane and the resistance at
the water-membrane interface. If the aqueous unstirred layers and interfacial resistances are
assumed to be negligible, then conceptually, the rate limiting step involves traversing a
barrier region, i.e. the region of the membrane where the free energy of the molecule reaches
a maximum. Molecule dynamics simulations suggest that this region, for molecules with
polar groups, is located close to the middle of the membrane, where most permeants become
nearly or completely desolvated.32,54

Using these assumption, solubility-diffusion theory estimates the permeation rate based on
membrane/water partition, membrane diffusion and the permeation distance. Considering
the membrane as a planar barrier in the xy-plane that varies only in the z direction, i.e. any
plane parallel to the membrane is homogenous, the partition coefficient between water and
the membrane, Km/w, and the diffusion coefficient in the membrane, Dm, can be expressed
in terms of the membrane depth along the z-axis, z. In the steady state, the diffusional
resistance of such membrane with thickness of d can be written as the reciprocal of the
membrane permeability coefficient, Pm:

(1)

If the rate of permeation is limited by a homogenous “barrier region”, which the partition
and the diffusion coefficients can be considered to be independent to the membrane depth,
then the permeation rate across the membrane depends on the thickness of the barrier region,
and the integral of Eq. 1 can be simplified as Eq. 2:

(2)

where Kbarrier is the permeant’s barrier/water partition coefficient of the permeant, Dbarrier is
the diffusion coefficient within the barrier, and δbarrier is the effective thickness of the rate-
limiting barrier. Conceptually, this model implies that rates of permeation are dominated by
the free energy cost of desolvating the molecules in the hydrophobic interior of the
membrane, as well as other free energy costs of inserting a molecule in the membrane, such
as the free energy cost of creating a cavity of the appropriate size and shape; the rate of
diffusion in the semi-ordered membrane environment is the other major contributor.

The functional form of Pm in this work follows Eq. 2. The overall scheme of the model is
outlined in Figure 1. The focus of this study is on estimating the membrane/water partition
based upon an expanded physical model of interfacial transfer in which the permeant is
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postulated to assume a neutral “membranephilic” state from the “hydrophilic”
conformational ensemble in order to partition into a size-sensitive low-dielectric barrier
region. The transmembrane diffusivity is estimated by diffusion coefficient across the low
dielectric barrier. The effective thickness of the barrier is treated as an intrinsic characteristic
of the membrane which is, in turn, assumed to be consistent for each assay of the same study
and unaffected by the permeant. Since predictions were not cross-compared between
different data sets or data types, the value of δbarrier was defined as 18 Å for a general
membrane in all reported calculations.54

Partition coefficient estimation
Following the barrier domain model proposed by Xiang and Anderson from experimental
and theoretical studies,53,54 the lipid/water partition coefficient was estimated from the
partition between water and a bulk organic solvent that resembles the membrane
environment. In order to reproduce the chemical environment in the membrane, organic
solvents with comparable hydrophobicity as that of the lipid membrane are employed as the
model medium, such as 1,9-decadiene and 1-hexadecene.54 As such a reference medium is
isotropic in nature, the estimation is augmented by a size-dependent factor to incorporate the
anisotropic property of size/shape selectivity in membrane permeation. In essence, the
correction factor relates the permeant’s size to the spatial constraints in the membrane,
where are different from those in a disordered organic liquid; the correction factor is
formulated as the reversible work of creating a cavity to accommodate the permeant under
the pressure exerted by the lipid molecules. In the present implementation, the lipid barrier/
water partition coefficient, Kbarrier, is computed from the partition coefficient between water
and chloroform, Kc/w, and the size selectivity factor, ξ V, as Eq. 3 below.

(3)

Based upon properties of both the permeant (volume) and the membrane (interior pressure
within the membrane), ξ V is defined as:

(4)

where kB is the Boltzmann constant, T is the temperature, Vp is the volume of the permeant,
P‖ is the normal pressure, and P⊥ is the lateral pressure exerted by the lipid molecules. In the
current model, P‖ and P⊥ are set to 1 bar and 300 bar, respectively.54 This factor lowers the
partition coefficient exponentially as the volume of the permeant increases, thus
incorporating at least a part of the observed size-dependence of membrane permeability. As
shown elsewhere, differences in membrane composition, such as the addition of cholesterol,
can be approximated as differences in lateral pressure.77

In our previous model, we effectively ignored the size-dependence of permeation, a
limitation that we remedy here, along with other improvements. The focus of our previous
work was explicit treatment of conformational flexibility of permeants, a strength that we
retain in this work. Permeability was evaluated as the conformation-dependent partition free
energy between a high dielectric environment (water) and a low dielectric environment
(chloroform) using a conformational search approach.61–65 A key concept of the model was
to link permeability with the structural flexibility of the permeant by allowing
conformational change in response to the change of the surroundings from water to
membrane. The predicted relative permeabilities were based on the lowest energy
conformation in the low dielectric continuum, which we termed the low dielectric
conformation (LDC). With the assumption that the desolvation penalty is proportional to the
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free energy cost of the partitioning, the partition free energy was calculated as the free
energy of transfer of the LDC from water to chloroform, ΔGtransfer, as Eq. 5.

(5)

where ECHCl3 and EH2O are, respectively, the energies of the LDC in chloroform and water.
Although this simple model clearly ignores many aspects of the actual permeation process,
the predicted ΔGtransfer values, namely the desolvation costs, correlated well with
experimental permeability measurements for cyclic peptides and drug-like molecules.61–65

Those promising results indicate that conformational sampling of the permeant can be
important for flexible molecules, and the approximation of the lipid/water interface with
implicit solvent models is reasonable in the context of the model.

Building upon this simple model and the work of others, this work presents a more
sophisticated model with improved estimation of the Kbarrier. Here, the permeant is assumed
to retain a neutral (deionized, if possible) state, as stated by the pH partition theory,78 and to
adopt one particular “membranephilic conformation” when diffusing across the membrane.
Conceptually, we utilize a thermodynamic cycle in which all the additional contributions to
Kbarrier concern the permeant in the water phase prior to membrane permeation, including
(1) the deionization penalty, (2) the tautomerization penalty of maintaining a certain
tautomeric state, and (3) the conformational change from the lowest energy conformer in
water to the membranephilic conformer (Fig. 1).

Charged molecules permeate through membranes much more slowly than neutral
compounds, and our model assumes that for drug-like molecules, the permeation rate is
dominated by the neutral species, even if it is present at a relatively low concentration in
water. The free energy cost of charge neutralization of the permeant can be assessed by first
predicting the pKa values for possible ionizable groups, followed by quantifying the free
energy required to maintain a zero net charge with all ionization groups deionized, if
possible, at a desired pH. Most in vitro assays are performed with the aqueous phase at pH
7.4, and so we adopted this value for the results represented here; it is straightforward to
generate results for other pH’s if desired. Similarly, a tautomerization penalty is derived
from possible tautomer states and their estimated relative populations. These two processes
are combined as a state penalty, ΔGstate, that represents the free energy cost for the permeant
to adopt a particular neutral, tautomeric form for membrane permeation.

In previous work, we emphasized the role of internal hydrogen bonds in minimizing the free
energy cost of partitioning into the membrane. However, adopting such a LDC with
favorable hydrogen bonds may result in internal strain in the compound as well as entropy
loss relative to the ensemble of states present in water, both of which would reduce
permeation rates. To estimate these effects, we assumed that each permeant has only one
probable membranephilic conformation, which we identify by conformational sampling. The
free energy cost corresponding to this conformational change is quantified as the conformer-
focusing free energy, ΔGcf, which reflects the cost of retaining a specific conformation.
Such an approach for quantifying the conformational penalty as ΔGcf was originally
employed in the context of protein-ligand binding with the purpose of estimating the free
energy cost required for the unbound ligand to adopt the bound conformation while giving
up other conformational states.79 In light of the similar scenario in our model of passive
permeation, this two-state model is applied to estimate a conformational penalty of adopting
the membranephilic conformation. The conformational shift to the membranephilic state is
assumed to occur in water, so the calculation of ΔGcf requires knowledge of the
conformational ensemble and the corresponding energetics in water. In the simple case
where the permeant has i conformational states in the high dielectric environment but only
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one state in the low dielectric environment, i.e. the membranephilic state, the ΔGcf can be
estimated as the following:

(6)

where ELDC(HD) is the energy of the sole low dielectric state in the high dielectric
environment, EHDC is the energy of the lowest energy conformer in the high dielectric
environment, namely the high dielectric conformation (HDC), EHD,i is the energy of state i
in the high dielectric environment, and ni is the degeneracy of state i. The first term in Eq. 6
is the reorganization cost obtained from the relative energy difference between the
membranephilic state and the HDC in the high dielectric environment. The second term
accounts for the loss of conformational states, which is quantified by the modified partition
function that includes the relative energy difference between the HDC and all other
conformation states in the high dielectric environment. While this approach is highly
approximate, it is more rigorous than estimating the effect by rotatable bond count, which
can be misleading without considering the conformational ensemble.80 As the calculation of
ΔGcf is relatively straightforward, we tested whether this simple approximation would
contribute positively to the ability to reproduce experimental permeation rates.

Combining ΔGtransfer with the state and conformational penalties, the partition free energy
between chloroform and water, ΔGc/w, and the corresponding Kc/w can be obtained from
Eq. 7 and Eq. 8, respectively.

(7)

(8)

Finally, Kbarrier can subsequently be computed from Kc/w and ξV as defined in Eq. 3.

An alternative method reported by Seelig et al. to estimate Kbarrier from the air/water
partition is examined as well.60 The formulation of Kbarrier in this approach is very similar to
that of Eq. 3 from which the air/water partition is scaled by a shape-dependent insertion
factor. This approach to calculating Kbarrier is investigated with our physics-based model by
which the air/water partition is derived from the solvation free energy and the shape is
measured as the cross-sectional area of the permeant. However, relative to the barrier
domain model using the chloroform/water partition as the reference state, application of this
method does not result in any significant improvement in accuracy. A more detailed
discussion of this approach and its performance against various experimental data is
included in the Supporting Information.

Diffusion coefficient
We use a very simple assumption that the rate-limiting barrier is similar to that of the bulk
solvent, and the Stokes-Einstein relation is applied to describe the diffusion across the
barrier.53 The size-dependent diffusion coefficient of the permeant in the barrier, Dbarrier, is
computed using the Stokes-Einstein equation for spherical particle:

(9)
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where ηm is the membrane viscosity that is assumed to be 1 poise and rp is the radius of the
permeant. Following the spherical approximation of Eq. 9, rp is estimate from volume of the
permeant, Vp.

(10)

In this work, we do not consider the rate of diffusion across the unstirred water layer,
because the width of this barrier will vary significantly between assays and is difficult to
estimate.

COMPUTATIONAL PROCEDURES
The overall workflow of the permeability calculation is outlined in Figure 2. The
coordinates of compounds were downloaded from the PubChem database if available or
prepared in Maestro.81 All downloaded 2-dimensional structures were converted to 3-
dimensional structures by the Ligprep module (Schrödinger). Prior to the permeability
calculations, all compounds were minimized using MacroModel (Schrödinger) with the
OPLS2005 force field and the implicit water model.82–84 Molecular descriptors and QSPR
regression-based predictions were computed by QikProp (Schrödinger) for all optimized
input structures.85

Using EPIK, the probable ionization states and tautomeric forms of the permeant were first
generated along with their pKa values, followed by the estimation of the free energy cost of
neutralizing the compound at pH 7.4.86,87 The next step was to generate conformers for each
of these neutral states using the PLOP program.88 The OPLS2005 force field parameters of
the permeant were generated by the hetgrp_ffgen program (Schrödinger). A semi-exhaustive
sampling in the torsional space was carried out to identify sterically allowed conformations,
as described elsewhere.88 The subsequent clustering based on Cartesian atomic coordinates
identified a maximum of 400 representative conformations. A major difference between the
current protocol and previously published work is that, rather than focusing only on one
LDC, all low energy conformations of the permeant were processed and evaluated. Energy
evaluations in chloroform and water were performed for all unique conformations with the
use of the implicit solvent model.89–91 For computational efficiency, only conformers that
are within a 5 kcal/mol threshold from the lowest energy conformation in either water or
chloroform were included in the final conformer ‘ensemble’. The solvent-accessible volume
in water of each of the selected conformations was computed by QikProp to calculate the
size-selectivity factor and diffusion coefficient. Finally, the conformer with the highest
predicted permeability was selected as the membranephilic conformation. The calculation on
average takes about 2–4 minutes per molecule on a single-core CPU using PRIME
(Schrödinger) for conformational search and energy calculations.92 The Li set, which
consists of flexible peptidomimetics with 11–18 rotatable bonds, is the only exception, with
average CPU time of 38.6 minutes per molecule.

RESULTS
To benchmark and evaluate the computational models, we collected permeability data from
the literature, which is dominated by PAMPA and cell-based assays. In many cases, the
permeability studies were performed to evaluate or parameterize other methods. The general
criteria we followed in selecting data sets include 1) permeability data reported from the
same source (for at least one data type), 2) the dynamic range of the data spans at least 1 log
unit, and 3) broad chemical diversity, including both diverse and congeneric series of drug-
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like (FDA approved drugs or other small molecules) and non-drug-like compounds
(peptidomimetics that do not follow Lipinski’s Rules). The 9 examined data sets include 188
compounds in total from which 36 compounds have data reported in multiple sources.

For the cell-based assay data, a major concern is that the permeability measurements were
polarized by facilitated transport mechanisms, which are beyond the scope of the current
model. It is important to reinforce the idea that the observed permeability from these assays
is a combined effect of passive permeation, facilitated transport and paracellular transport.
The cellular permeation rate in the A→B direction can be considered as an additive rate of
different processes:

(11)

where Pcell,A→B is the cellular permeability rate in the A→B direction, Ptranscellular is the
passive transcellular permeability, Pparacellular is the paracellular permeability, Pactive,A→B is
the active “influx” rate in A→B direction, and Pactive,B→A is the active “efflux” rate in the
B→A direction. Assessing passive permeability solely based on unidirectional cell-based
permeability data may not be straightforward. For example, a non-PGP substrate with low
passive permeability and a strong PGP substrate with high passive permeability may have
similar Pcell,A→B values. In the present study, we invoke the assumption that the
transmembrane or transcellular permeability is the dominant component of the overall
permeation process. We identified 37 compounds in the data sets that have reported active
transport with PGP or other transporters. As listed in the Supporting Information, six cell-
based assay data sets, including the Avdeef, Balimane, Bermejo, Fujikawa and the two
Irvine sets, have compounds with reported active transport mechanisms. Hence, in addition
to the analysis with all compounds, a passive permeation subset with active transport
compounds excluded was also examined for each of these sets. The following analyses and
discussions for these cell-based data sets are based on the results from the passive
permeation subsets. The analyses with all compounds including those with reported active
transport are reported in the Supporting Information. The Caco-2 permeability
measurements for the Goodwin set were obtained in the presence of a PGP substrate,
verapamil, which was used to minimize the effect of facilitated transport. The reported
efflux ratio also provided evidence that active transport did not take place, so we did not
exclude any compounds from this data set. For the Li set, information from the original
article is insufficient to identify actively transported compounds, and we did not eliminate
any from this set either.

The metrics for assessing the performance of the computational predictions include 1) the
correlation coefficient (r2) and the slope (m) from the linear regression model with the
experimental data, and 2) the Spearman’s rank correlation coefficient (ρ), which compares
the rankings by predictions and experimental data. We do not combine data sets from
different papers, because there are frequently significant differences in the assay conditions
and other experimental details. Some compounds appear in multiple data sets and indeed the
reported permeation rates vary significantly in some cases. As a result, we focus our analysis
on the ability to reproduce relative, not absolute, permeation rates. Also, few predictions
with statistical insignificant ρ (p-value >0.05) are noted in the analyses. These predictions
mostly show low correlation with the experimental data, or are for data sets that have either
a small sample size (<10) or a relatively small dynamic range (Whitlock set).

Results for in vitro measurements
The correlation coefficients (r2) from linear regression analyses and the Spearman’s rank
correlation coefficients (ρ) between the in vitro permeability data and our physics-based
predicted permeabilities are summarized in Tables 2 and 3. Following the relationship stated
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in Eq. 8, the calculated free energy values were converted to LogK for comparisons with
LogPm and experimental data. The linear regression models for the original
(LogK(ΔGtransfer(LDC))) and the present (LogPm) physics-based predictions are shown in
Figures 3 (PAMPA) and 4 (cell-based assays). Overall, the physics-based predictions
correlate well with experimental data, producing r2 >0.55 and ρ >0.70 for most data sets.

In order to evaluate the performance of the updated method in calculating the partition free
energy systematically, new components were added to the model progressively. Obtaining
the free energy of transfer from the refined ensemble of low energy conformations
(ΔGtransfer) instead of from the single lowest-energy conformation in low dielectric
(ΔGtransfer(LDC)) has no significant effect on the correlation between calculations and
experiments for most sets. The incorporation of either the state penalty (ΔGtransfer+ΔGstate)
or the conformational penalty (ΔGtransfer+ΔGcf) is shown to be favorable for modeling both
types of in vitro permeability data. Including the ΔGstate term leads to significant
improvements in r2 and ρ for many data sets, reflecting the importance of accounting for
neutralization of ionizable groups and tautomerization. While imposing the conformational
penalty is constructive as well, the beneficial effects are noticeably smaller than that of the
state penalty. We speculate that this may be due to the fact that the examined data sets
contain many relatively rigid drug-like molecules for which the conformational effect is
likely to be small.93 As anticipated, the biggest improvement in r2 by introducing the ΔGcf
term alone is seen with the PAMPA data of flexible peptidomimetics with 11–18 rotatable
bonds from the Li set (Δr2 = 0.13 between ΔGtransfer and ΔGtransfer+ΔGcf). Computing the
partitioning free energy with both the state and conformational penalties (ΔGc/w) yields
similar correlation coefficients as those by including ΔGstate alone for both PAMPA and
cell-based data, suggesting that ΔGstate is the dominant term.

An important aspect of the physical model considered here, building on prior work, is the
dependence of membrane permeation and diffusion on the size of the permeant. The results
from LogKbarrier values of conformations with the highest LogPm values illustrate that the
size-selectivity term does improve r2 over predictions by ΔGc/w for more than half of the in
vitro data sets. However, the resulting improvements in accuracy are relatively small for
either PAMPA or cell-based data as most changes in either correlation coefficient are less
than 0.05. The addition of the size-dependent diffusion coefficient is also shown to have no
significant effect. Given that the diffusion coefficient is inversely proportional to the radius
of the permeant and the molecular sizes within each set are not very different, the diffusion
terms of any pair of molecules are thus expected to be similar.

The slopes of the linear regression models are reported in Tables 4 and 5 for the PAMPA
and cell-based assays, respectively. These slopes are variable and generally greater than one.
The slopes do not generally vary dramatically based on which aspects of the model are
included. That is, as previously reported, the simplest model based on ΔGtransfer(LDC) values
(conformation-dependent solvation free energy) produces linear regression models with
slopes steeper than one.63 It is important to note that the slopes are sensitive to the dielectric
constant used for the membrane; using chloroform as the reference state, with dielectric ~4,
may underestimate the effective dielectric constant of the barrier region. We cannot fully
account for the variability in slope observed for the different data sets. Differences in assay
conditions, such as pH, the composition of the artificial membrane, cell layer, may
contribute. We speculate that entropic losses, which we cannot account for in a rigorous
manner, may contribute to this variability as well (i.e. some of the series involve larger,
more flexible ligands, while others have predominantly small, rigid compounds). In
addition, the current model neglects the aqueous boundary layer at the water/membrane
interface, which can act as another rate limiting region for passive permeation. The volume-
based size-selectivity factor in the present implementation is a relatively simple
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approximation. Exploring other approaches, such as free-surface-area theory used to model
membrane order, may also be constructive.57,58

Overall, the results suggest that the conformation-dependent free energy cost of desolvating
permeants (as quantified as ΔGtransfer) is a dominant factor affecting the rate of permeation.
However, other factors expected to also be important, such as charge neutralization and size-
dependent effects, do appear to also contribute, in that including these terms improves
correlation with in vitro measures of permeability. The Pm prediction yields higher r2 and ρ
values with experimental data than the previous basic model of ΔGtransfer for almost all
cases, illustrating the ability to improve a physical model by incorporating description of the
underlying physical processes. Further improvements may be possible in future work.

In contrast to the obvious improvements when comparing the PAMPA data, the favorable
effects of the additional components to the model are less profound for the cell-based assay
data but, as expected, the physical model performs better for compounds not known to be
substantially affected by active transport (Supporting Information). These findings suggest
that the model does capture key aspects of the permeation process across the biological
membrane, albeit that many assumptions and approximations have been made to simplify
the calculations required. On the other hand, many of the compounds with known active
transport mechanisms are predicted as outliers by our model when compared to the cell-
based data, such as occurs in the Irvine set (Supporting Information).

Results for in vivo measurements
Our focus in this study is comparison with in vitro permeability assays, but three of the
studies whose data we employ also reported in vivo measurements, and we provide
comparisons to those data as well. While the current permeability model does not include
other cellular transport components, such as active transport and paracellular transport, the
following comparisons with in vivo data are done under the simple assumption that passive
transmembrane permeability is a major contributor to the absorption process. Despite being
overly simplistic and approximate, such an assumption is implicit in other QSPR models of
absorption and in the physiochemical principles underlying Lipinski’s Rules of Five for
druglikeness, i.e. LogPo/w <5 and the hydrogen bond donor and acceptor counts.

As with the cell-based data sets, compounds with known active transport were not included
in the analyses below for the in vivo data sets and the analyses with all compounds included
are reported in the Supporting Information. The correlation coefficients r2 and ρ are
summarized in Table 6. The linear regression models of predictions, LogK(ΔGtransfer(LDC))
and LogPm, are shown in Figure 5, and the slopes of linear regression models are
summarized in Table 7. Overall, these results are consistent with the previous findings from
comparisons with the in vitro data. Excluding compounds with active transport yields higher
r2 for both Balimane and Irvine sets, while the changes in r2 are minor for the Bermejo set as
only two compounds are excluded (Supporting information). The physics-based predictions
correlate well with the in vivo measurements, yielding r2 ≥0.7 and ρ ≥0.8 for most cases
except for the %Abs data from the Irvine set.

Relative to the basic desolvation model, the current model of Pm prediction show improved
correlations with Balimane (%Abs) and Bermejo (perfusion assay) sets. No improvement is
evident for the %Abs data from the Irvine set, although the physics-based predictions does
give reasonable correlation with the data (r2 ~0.6 and ρ ~0.7 for the passive permeation
subset). Given that in vivo absorption is a complicated biological process, being able to
predict absorption data at this level of accuracy with physics-based passive permeation is
encouraging, especially considering that 1) no prior training with existing data was
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performed, and 2) there is no reason to expect a simple linear relationship between our
computed values and %Abs.

To compare the performance of different approaches in predicting human absorption data,
the correlation coefficients with %Abs from both experiments and predictions for the
Balimane and Irvine sets are summarized in Table 8. The LogPm model is shown to predict
%Abs with accuracy comparable to PAMPA data (Balimane set), as well as cell-based assay
data when excluding compounds that are actively transported (Irvine set). However, without
discriminating compounds with active transport, the cell-based assays are demonstrated to
have a stronger correlation with %Abs than the passive permeability prediction for both data
sets, as expected.

Comparison to other computational methods
To further evaluate the utility of the physics-based permeability model, its predictive power
is compared to that of common regression-based QSPR physiochemical descriptors and
permeability predictions computed by QikProp, including molecular weight (MW), solvent-
accessible volume (Vol), octanol/water partition coefficients (QPlogPo/w), polar surface
area (PSA), predicted Caco-2 permeability (QPPCaco), predicted MDCK permeability
(QPPMDCK), and predicted percentage human oral absorption (QP%HOA). The results of
linear regression analyses and Spearman’s rank correlation coefficients between these
descriptors and experimental data are summarized in Tables 2, 3 and 6.

For the in vitro data (Tables 2 and 3), MW and Vol show weak or no correlation with
experimental data in most cases, whereas QPlogPo/w and PSA produce stronger
correlations. Among all the regression-based predictions, LogQPPCaco, which was trained
using many of the compounds in these data sets, yields the highest correlations for both the
PAMPA and cell-based assay data, as anticipated. While QPPMDCK is optimized for
MDCK data, its performance is similar to that of QPPCaco. In comparison, the physics-
based LogPm values correlate better with the PAMPA data than those by QikProp
predictions for most cases, generating higher r2 and ρ values. For cell-based assay data,
predictions by LogPm values are more accurate than QPlogPo/w and comparable to the
QPPCaco and QPPMDCK models.

These parameterized models are, as expected, most effective in predicting sets containing
FDA-approved drugs and small molecules, such as for the Avdeef, Irvine and Fujikawa sets
(r2 >0.7 for Caco-2 data and r2 >0.8 for MDCK data), which dominate the training sets, but
are less optimal for sets with congeneric series and peptidomimetic compounds, like the
Bermejo and Li sets (r2 <0.6 for Caco-2 data). An exception is the congeneric series of
Goodwin set (LogQPPCaco: r2 = 0.84) from which the Caco-2 permeabilities correlate well
with the hydrophobicity of the side-chain substitutions as supported by the strong correlation
with PSA (r2 = 0.83). The physics-based model, on the other hand, performs considerably
better in predicting relative permeabilities among congeneric series and peptidomimetic
compounds. In addition, the quality of the physics-based predictions for drug-like molecules
is frequently nearly as good as those given by the regression-based models that were trained
specifically for this chemical space.

A notable difference between the two computational approaches is that the slopes of linear
regression models with QikProp permeability predictions (QPlogPo/w, QPPCaco and
QPPMDCK) are closer to 1 than those by physics-based predictions as shown in Tables 4, 5
and 7. However, the slopes of these QikProp models do vary across different data sets, and
the range of slopes is similar to that of the physics-based predictions. This suggests that the
slopes of the correlations between the experimental data and computational predictions may
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be related in part to the details of the experimental assays, and not solely due to limitations
of the computational models.

DISCUSSION AND CONCLUSIONS
The performance of a physical model for passive membrane permeability was investigated
by comparing its predictive power to experimental data of nine diverse compound sets, as
well as regression-based in silico QSPR predictions. In general, the physics-based prediction
of Pm is shown to consistently correlate well with the assorted permeability data that covers
diverse chemical space. In many cases, the QSPR descriptors (PSA and QPlogPo/w) and
parameterized permeability models (QPPCaco, QPPMDCK, and QP%HOA) also deliver
comparable agreement with the experimental data. However, a “fair” comparison between
the physics-based model and the regression-based model is not straightforward because
many compounds in the examined data sets are part of the training sets for the parameterized
models. Although QSPR prediction is still significantly faster than the physics-based
method, the CPU time of the LogPm calculation is short enough to be practical for many
drug design applications (~15 ligands per CPU-hour). As the physics-based predictions are
fundamentally different from the QSPR method, performing both types of calculation can be
of value as the agreement or disagreement of the results may provide further insight into the
molecule.

We wish to emphasize several other potential advantages of this “physics-based” approach.
First, the performance in predicting relative permeability differences for a wide-range of
data types and compounds reflects the general applicability of the molecular-mechanics
based approach. Second, systematically analyzing the contributions of different components
of the model provides important physical insights into the contribution of each physical
component, such as the effects of ionizable groups and conformational flexibility,
elucidating the underlying basis of permeability. Third, as we have shown here, a physically
grounded model is systematically improvable by escalating the level of theory and methods
employed. The current model can be further improved: in particular, our attempts to estimate
entropic losses and the size dependence of the diffusion rate are rather crude (largely for
computational expediency), possibly accounting for their limited contribution to the
accuracy of the model.

On the other hand, as a future direction, we envision that components of the physics-based
model presented here may be used as QSPR descriptors in order to provide a better
description of the physical process than many commonly used physiochemical descriptors.
That is, the “physics-based” and empirical/statistical approaches may be complementary.
For example, we posit that the permeant’s polarity or hydrophilicity, which is often
measured by its PSA, is better described by the solvation free energy. Similarly, molecular
size and shape are likely more appropriate descriptors than molecular weight. Therefore, we
envision a regression-based model using physically-meaningful terms, such as ΔGtransfer,
ΔGsolv, and ΔGcf; reweighing each component to better agree with experimental data would
be possible while retaining the same functional form of the current model. One potential
advantage of such a model would be the ability to estimate a confidence in the prediction
that is related to the distance in chemical space between the compounds of interest and the
training set.

The current physical model performs best at reproducing the PAMPA data. Considering that
the artificial membrane of PAMPA is essentially two half-membrane layers sandwiching a
middle organic/hydrophobic layer, the physics-based model and PAMPA both share the
same approximation in mimicking the membrane with a low dielectric organic or lipophilic
layer. On the other hand, passive permeation across the cell layer in the cell-based assays is
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more complicated. Efforts were made in the current study to filter the cell-based
permeability data by excluding compounds with possible active transport mechanisms.
However, factors like paracellular transport and variation in the cell monolayers are
expected to also introduce noise in the comparisons. By the same token, intestinal absorption
and perfusion assays include contributions from many biological events, in addition to
passive permeation. The fact that the proposed model of passive permeability provides
reasonable predictions that rival the accuracy of in vitro assays is promising.

Interestingly, the limitations of the physics-based permeability prediction parallel those of
predicting protein/ligand interactions. While the permeability model presented in this work
is demonstrated to be proficient in predicting relative permeability, calculating absolute
membrane permeability would require further development and parameterization. Similarly,
predicting relative binding affinity is technically less difficult, less expensive, and more
accurate than computing absolute binding affinity. The slopes of the correlations between
the computed values and the experimental values are also generally >1 in both cases.
Another common feature between the two is that a congeneric series of similar compounds
is easier to model than a diverse chemical set.

In summary, the performance of a physics-based permeability model is investigated and
benchmarked against in vitro permeability data, in vivo data, and in silico predictions.
Without any training against any existing data, the calculated LogPm values are shown to
correlate well with different types of experimental data from various studies, suggesting that
the model does provide a reasonable physical description of passive membrane permeation.
Efforts to apply the model in the context of molecular design and to develop a physical
model for gut absorption are underway.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The proposed physical model of passive membrane permeability.
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Figure 2.
Computational protocol of the physics-based permeability model.
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Figure 3.
The linear regression models between PAMPA data and physics-based permeability
predictions. Predictions based on LogK(cGtransfer(LDC)): (a) Avdeef set, (b) Balimane set, (c)
Bermejo set, (d) Di set, (e) Fujikawa set, (f) Li set, and (g) Whitlock set. Predictions based
on LogPm: (h) Avdeef set, (i) Balimane set, (j) Bermejo set, (k) Di set, (l) Fujikawa set, (m)
Li set, and (n) Whitlock set.
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Figure 4.
The linear regression models between cell-based assay data and physics-based permeability.
Predictions based on LogK(cGtransfer(LDC)): (a) Avdeef set (Caco-2), (b) Balimane set
(Caco-2), (c) Bermejo set (Caco-2), (d) Fujikawa set (Caco-2), (e) Goodwin set (Caco-2), (f)
Irvine set (Caco-2), (g) Irvine set (MDCK), and (h) Li set (Caco-2). Predictions based on
LogPm: (i) Avdeef set (Caco-2), (j) Balimane set (Caco-2), (k) Bermejo set (Caco-2), (l)
Fujikawa set (Caco-2), (m) Goodwin set (Caco-2), (n) Irvine set (Caco-2), (o) Irvine set
(MDCK), and (p) Li set (Caco-2).
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Figure 5.
The linear regression models between in vivo data and physics-based permeability
predictions for all compounds. Predictions based on LogK(ΔGtransfer(LDC)): (a) Balimane
set, (b) Bermejo set, and (c) Irvine set. Predictions based on LogPm: (d) Balimane set, (e)
Bermejo set, and (f) Irvine set.
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Table 1

The examined data sets and their data types.

Set Compounds Congeneric? Data type (N) Reference

Avdeef FDA drugs No PAMPA (11) 66

Caco-2 (11)

Balamine FDA drugs No PAMPA (22) 67

Caco-2 (21)

%Abs (22)

Bermejo Fluoroquinolones Yes PAMPA (16) 68

Caco2 (14)

Perfusion assay (16)

Di FDA drugs No PAMPA (27) 69

Fujikawa FDA drugs & small chemicals No PAMPA (70) 70

Caco-2 (29)

Goodwin Peptidomimetics Yes Caco-2 (12) 71

Irvine FDA drugs No Caco-2 (50) 72

MDCK (51)

%Abs (53)

Li Peptidomimetics Yes PAMPA (25) 73

Caco-2 (25)

Whitlock 1-(2-Phenoxyphenyl) methanamines Yes PAMPA (8) 74

J Chem Inf Model. Author manuscript; available in PMC 2013 June 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Leung et al. Page 28

Ta
bl

e 
2

T
he

 c
or

re
la

tio
n 

co
ef

fi
ci

en
ts

 b
et

w
ee

n 
PA

M
PA

 d
at

a 
an

d 
co

m
pu

ta
tio

na
l p

re
di

ct
io

ns
. T

he
 k

ey
 c

om
po

ne
nt

(s
) 

of
 e

ac
h 

ph
ys

ic
al

 m
od

el
 is

/a
re

 m
ar

ke
d 

w
ith

 “
X

”.
 P

hy
si

cs
-b

as
ed

 p
re

di
ct

io
ns

 w
ith

 c
or

re
la

tio
n 

co
ef

fi
ci

en
t

di
ff

er
en

ce
s 

(Δ
r2  

or
 Δ
ρ)

 r
el

at
iv

e 
to

 L
og

K
(Δ

G
tr

an
sf

er
(L

D
C

))
 ≥

0.
05

 a
nd

 ≤
-0

.0
5 

ar
e 

hi
gh

lig
ht

ed
 in

 g
re

en
 a

nd
 r

ed
, r

es
pe

ct
iv

el
y.

 Q
ik

Pr
op

 p
re

di
ct

io
ns

 w
ith

 c
or

re
la

tio
n 

co
ef

fi
ci

en
t d

if
fe

re
nc

es
 r

el
at

iv
e 

to
 L

og
P m

 ≥
0.

05

(Δ
|r2 |

 o
r 
Δ

|ρ
|) 

ar
e 

hi
gh

lig
ht

ed
 in

 li
gh

t g
re

en
.

M
od

el
’s

 c
om

po
ne

nt
C

or
re

la
ti

on
 c

oe
ff

ic
ie

nt

P
re

di
ct

io
na

C
on

f.
se

ar
ch

C
on

f.
en

se
m

bl
e

St
at

e
pe

na
lt

y
C

on
f.

pe
na

lt
y

Si
ze

se
le

ct
iv

it
y

M
em

br
an

e
di

ff
us

io
n

A
vd

ee
f

B
al

im
an

e
B

er
m

ej
o

D
i

F
uj

ik
aw

a
L

i
W

hi
tl

oc
k

r2
ρ

r2
ρ

r2
ρ

r2
ρ

r2
ρ

r2
ρ

r2
ρ

L
og

K
(Δ

G
tr

an
sf

er
(L

D
C

))
×

0.
73

0.
82

0.
57

0.
73

0.
77

0.
94

0.
47

0.
67

0.
43

0.
65

0.
57

0.
74

0.
69

0.
97

L
og

K
(Δ

G
tr

an
sf

er
)

×
×

0.
73

0.
83

0.
57

0.
75

0.
80

0.
95

0.
49

0.
68

0.
43

0.
63

0.
52

0.
71

0.
62

0.
89

L
og

K
(Δ

G
tr

an
sf

er
+
Δ

G
st

at
e)

×
×

×
0.

75
0.

90
0.

65
0.

85
0.

90
0.

98
0.

58
0.

71
0.

54
0.

71
0.

79
0.

78
0.

74
0.

85

L
og

K
(Δ

G
tr

an
sf

er
+
Δ

G
cf

)
×

×
×

0.
77

0.
88

0.
57

0.
77

0.
82

0.
94

0.
50

0.
69

0.
47

0.
67

0.
65

0.
76

0.
59

0.
86

L
og

K
(Δ

G
c/

w
)

×
×

×
×

0.
78

0.
88

0.
64

0.
83

0.
88

0.
95

0.
57

0.
72

0.
56

0.
73

0.
82

0.
76

0.
74

0.
85

L
og

K
ba

rr
ie

r
×

×
×

×
×

0.
80

0.
91

0.
62

0.
83

0.
82

0.
95

0.
56

0.
70

0.
58

0.
73

0.
83

0.
81

0.
78

0.
87

L
og

P m
×

×
×

×
×

×
0.

80
0.

91
0.

61
0.

83
0.

81
0.

95
0.

56
0.

70
0.

58
0.

74
0.

83
0.

81
0.

78
0.

87

M
W

Ph
ys

io
ch

em
ic

al
 d

es
cr

ip
to

r
0.

11
0.

33
b

0.
03

0.
13

b
0.

12
0.

62
0.

00
−

0.
31

b
0.

19
−

0.
47

0.
13

0.
33

b
0.

41
−

0.
36

b

V
ol

Ph
ys

io
ch

em
ic

al
 d

es
cr

ip
to

r
0.

21
0.

55
b

0.
10

0.
23

b
0.

22
0.

67
0.

02
−

0.
17

b
0.

13
−

0.
41

0.
15

0.
32

b
0.

07
0.

13
b

PS
A

Ph
ys

io
ch

em
ic

al
 d

es
cr

ip
to

r
0.

61
−

0.
76

0.
45

−
0.

68
0.

16
−

0.
72

0.
45

−
0.

66
0.

39
−

0.
60

0.
12

−
0.

47
0.

17
−

0.
66

b

Q
Pl

og
Po

/w
Q

SP
R

 r
eg

re
ss

io
n-

ba
se

d 
m

od
el

0.
86

0.
92

0.
52

0.
72

0.
65

0.
81

0.
53

0.
75

0.
18

0.
33

0.
12

0.
36

b
0.

16
0.

68
b

L
og

Q
PP

C
ac

o
Q

SP
R

 r
eg

re
ss

io
n-

ba
se

d 
m

od
el

0.
67

0.
75

0.
71

0.
87

0.
29

0.
80

0.
59

0.
76

0.
47

0.
60

0.
63

0.
84

0.
16

0.
68

b

L
og

Q
PP

M
D

C
K

Q
SP

R
 r

eg
re

ss
io

n-
ba

se
d 

m
od

el
0.

74
0.

76
0.

73
0.

89
0.

28
0.

77
0.

57
0.

76
0.

41
0.

58
0.

70
0.

85
0.

22
0.

73
b

N
(T

ot
al

)c
11

22
16

27
70

25
8

N
(Q

ik
Pr

op
-T

S)
d

10
15

0
14

37
0

0

a O
pt

im
al

 v
al

ue
s 

w
er

e 
de

te
rm

in
ed

 f
ro

m
 th

e 
re

fi
ne

d 
co

nf
or

m
at

io
na

l e
ns

em
bl

e 
fo

r 
ea

ch
 p

hy
si

cs
-b

as
ed

 p
re

di
ct

io
n,

 e
xc

ep
t f

or
 Δ

G
tr

an
sf

er
(L

D
C

),
 w

hi
ch

 w
er

e 
co

m
pu

te
d 

us
in

g 
th

e 
L

D
C

, a
nd

 f
or

 L
og

K
ba

rr
ie

r, 
w

hi
ch

 w
as

 c
om

pu
te

d 
us

in
g 

th
e 

co
nf

or
m

at
io

n 
w

ith
 th

e 
op

tim
al

 L
og

P m
va

lu
e.

b T
he

 p
-v

al
ue

 o
f 
ρ 

is
 g

re
at

er
 th

an
 0

.0
5.

c N
um

be
r 

of
 c

om
po

un
ds

 in
cl

ud
ed

 in
 th

e 
an

al
ys

is
.

J Chem Inf Model. Author manuscript; available in PMC 2013 June 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Leung et al. Page 29
d N

um
be

r 
of

 c
om

po
un

ds
 in

 Q
ik

Pr
op

 tr
ai

ni
ng

 s
et

s 
(Q

Pl
og

Po
/w

, Q
PP

C
ac

o,
 a

nd
 Q

PP
M

D
C

K
).

 T
he

 p
hy

si
cs

-b
as

ed
 m

od
el

 d
oe

s 
no

t u
se

 a
 tr

ai
ni

ng
 s

et
.

J Chem Inf Model. Author manuscript; available in PMC 2013 June 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Leung et al. Page 30

Ta
bl

e 
3

T
he

 c
or

re
la

tio
n 

co
ef

fi
ci

en
ts

 b
et

w
ee

n 
ce

ll-
ba

se
d 

as
sa

y 
da

ta
 a

nd
 c

om
pu

ta
tio

na
l p

re
di

ct
io

ns
. T

he
 k

ey
 c

om
po

ne
nt

(s
) 

of
 e

ac
h 

ph
ys

ic
al

 m
od

el
 is

/a
re

 m
ar

ke
d 

w
ith

 “
X

”.
 P

hy
si

cs
-b

as
ed

 p
re

di
ct

io
ns

 w
ith

 c
or

re
la

tio
n

co
ef

fi
ci

en
t d

if
fe

re
nc

es
 (
Δ

r2  
or

 Δ
ρ)

 r
el

at
iv

e 
to

 L
og

K
(Δ

G
tr

an
sf

er
(L

D
C

))
 ≥

0.
05

 a
nd

 ≤
-0

.0
5 

ar
e 

hi
gh

lig
ht

ed
 in

 g
re

en
 a

nd
 r

ed
, r

es
pe

ct
iv

el
y.

 Q
ik

Pr
op

 p
re

di
ct

io
ns

 w
ith

 c
or

re
la

tio
n 

co
ef

fi
ci

en
t d

if
fe

re
nc

es
 r

el
at

iv
e 

to

L
og

P m
 (
Δ

|r2 |
 o

r 
Δ

|ρ
|) 

≥0
.0

5 
ar

e 
hi

gh
lig

ht
ed

 in
 li

gh
t g

re
en

.

M
od

el
’s

 c
om

po
ne

nt
C

or
re

la
ti

on
 c

oe
ff

ic
ie

nt

P
re

di
ct

io
na

C
on

f.
se

ar
ch

C
on

f.
en

se
m

bl
e

St
at

e
pe

na
lt

y
C

on
f.

pe
na

lt
y

Si
ze

se
le

ct
iv

it
y

M
em

br
an

e
di

ff
us

io
n

A
vd

ee
f

(C
ac

o-
2)

B
al

im
an

e
(C

ac
o-

2)
B

er
m

ej
o

(C
ac

o-
2)

F
uj

ik
aw

a
(C

ac
o-

2)
G

oo
dw

in
(C

ac
o-

2)
Ir

vi
ne

(C
ac

o-
2)

Ir
vi

ne
(M

D
C

K
)

L
i

(C
ac

o-
2)

r2
ρ

r2
ρ

r2
ρ

r2
ρ

r2
ρ

r2
ρ

r2
ρ

r2
ρ

L
og

K
(Δ

G
tr

an
sf

er
(L

D
C

))
×

0.
67

0.
89

0.
56

0.
44

b
0.

39
0.

50
b

0.
32

0.
35

b
0.

83
0.

89
0.

59
0.

77
0.

68
0.

83
0.

49
0.

61

L
og

K
(Δ

G
tr

an
sf

er
)

×
×

0.
70

0.
89

0.
55

0.
44

b
0.

37
0.

45
b

0.
33

0.
35

b
0.

88
0.

96
0.

57
0.

75
0.

67
0.

83
0.

55
0.

69

L
og

K
(Δ

G
tr

an
sf

er
+

cG
st

at
e)

×
×

×
0.

80
0.

89
0.

55
0.

56
b

0.
58

0.
52

b
0.

35
0.

43
b

0.
88

0.
96

0.
68

0.
80

0.
74

0.
84

0.
49

0.
66

L
og

K
(Δ

G
tr

an
sf

er
+

cG
cf

)
×

×
×

0.
75

0.
89

0.
53

0.
54

b
0.

44
0.

47
b

0.
30

0.
30

b
0.

82
0.

92
0.

61
0.

78
0.

70
0.

84
0.

54
0.

65

L
og

K
(Δ

G
c/

w
)

×
×

×
×

0.
83

0.
89

0.
50

0.
56

b
0.

61
0.

55
b

0.
32

0.
41

b
0.

82
0.

92
0.

69
0.

82
0.

75
0.

84
0.

45
0.

64

L
og

K
ba

rr
ie

r
×

×
×

×
×

0.
84

0.
89

0.
55

0.
56

b
0.

59
0.

55
b

0.
34

0.
37

b
0.

86
0.

95
0.

70
0.

81
0.

77
0.

84
0.

45
0.

66

L
og

P m
×

×
×

×
×

×
0.

84
0.

89
0.

56
0.

56
b

0.
59

0.
55

b
0.

34
0.

37
b

0.
86

0.
95

0.
70

0.
81

0.
77

0.
84

0.
45

0.
66

M
W

Ph
ys

io
ch

em
ic

al
 d

es
cr

ip
to

r
0.

00
0.

14
b

0.
31

−
0.

33
b

0.
00

−
0.

01
b

0.
08

−
0.

01
b

0.
05

−
0.

23
b

0.
12

−
0.

43
0.

19
−

0.
43

0.
04

0.
18

b

V
ol

Ph
ys

io
ch

em
ic

al
 d

es
cr

ip
to

r
0.

06
0.

37
b

0.
13

−
0.

51
b

0.
01

−
0.

02
b

0.
00

0.
02

b
0.

01
0.

01
b

0.
02

−
0.

21
b

0.
05

−
0.

23
b

0.
06

0.
23

b

PS
A

Ph
ys

io
ch

em
ic

al
 d

es
cr

ip
to

r
0.

41
−

0.
71

b
0.

59
−

0.
59

b
0.

07
−

0.
17

b
0.

34
−

0.
20

b
0.

83
−

0.
89

0.
54

−
0.

79
0.

63
−

0.
78

0.
30

−
0.

66

Q
Pl

og
Po

/w
Q

SP
R

 r
eg

re
ss

io
n-

ba
se

d 
m

od
el

0.
74

0.
71

b
0.

50
0.

71
0.

39
0.

38
b

0.
32

0.
55

0.
53

0.
76

0.
27

0.
48

0.
31

0.
54

0.
15

0.
45

L
og

Q
PP

C
ac

o
Q

SP
R

 r
eg

re
ss

io
n-

ba
se

d 
m

od
el

0.
91

0.
94

0.
47

0.
66

b
0.

42
0.

62
0.

81
0.

81
0.

84
0.

90
0.

74
0.

85
0.

81
0.

88
0.

55
0.

72

L
og

Q
PP

M
D

C
K

Q
SP

R
 r

eg
re

ss
io

n-
ba

se
d 

m
od

el
0.

91
0.

94
0.

51
0.

66
b

0.
32

0.
47

b
0.

68
0.

74
0.

76
0.

83
0.

73
0.

83
0.

81
0.

87
0.

56
0.

68

N
(T

ot
al

)c
6

9
12

20
12

31
32

25

N
(Q

ik
Pr

op
-T

S)
d

6
7

0
12

0
31

32
0

a O
pt

im
al

 v
al

ue
s 

w
er

e 
de

te
rm

in
ed

 f
ro

m
 th

e 
re

fi
ne

d 
co

nf
or

m
at

io
na

l e
ns

em
bl

e 
fo

r 
ea

ch
 p

hy
si

cs
-b

as
ed

 p
re

di
ct

io
n,

 e
xc

ep
t f

or
 Δ

G
tr

an
sf

er
(L

D
C

),
 w

hi
ch

 w
er

e 
co

m
pu

te
d 

us
in

g 
th

e 
L

D
C

, a
nd

 f
or

 L
og

K
ba

rr
ie

r, 
w

hi
ch

 w
as

 c
om

pu
te

d 
us

in
g 

th
e 

co
nf

or
m

at
io

n 
w

ith
 th

e 
op

tim
al

 L
og

P m
va

lu
e.

b T
he

 p
-v

al
ue

 o
f 
ρ 

is
 g

re
at

er
 th

an
 0

.0
5.

J Chem Inf Model. Author manuscript; available in PMC 2013 June 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Leung et al. Page 31
c N

um
be

r 
of

 c
om

po
un

ds
 in

cl
ud

ed
 in

 th
e 

an
al

ys
is

.

d N
um

be
r 

of
 c

om
po

un
ds

 in
 Q

ik
Pr

op
 tr

ai
ni

ng
 s

et
s 

(Q
Pl

og
Po

/w
, Q

PP
C

ac
o,

 a
nd

 Q
PP

M
D

C
K

).
 T

he
 p

hy
si

cs
-b

as
ed

 m
od

el
 d

oe
s 

no
t u

se
 a

 tr
ai

ni
ng

 s
et

.

J Chem Inf Model. Author manuscript; available in PMC 2013 June 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Leung et al. Page 32

Ta
bl

e 
4

T
he

 s
lo

pe
s 

fr
om

 li
ne

ar
 r

eg
re

ss
io

n 
an

al
ys

es
 b

et
w

ee
n 

PA
M

PA
 d

at
a 

an
d 

co
m

pu
ta

tio
na

l p
re

di
ct

io
ns

.

Sl
op

e 
of

 li
ne

ar
 r

eg
re

ss
io

n 
m

od
el

 (
|m

|)

P
re

di
ct

io
n

A
vd

ee
f

B
al

im
an

e
B

er
m

ej
o

D
i

F
uj

ik
aw

a
L

i
W

hi
tl

oc
k

L
og

K
(Δ

G
tr

an
sf

er
(L

D
C

))
0.

96
3.

92
1.

23
3.

10
2.

64
1.

36
3.

76

L
og

K
(Δ

G
c/

w
)

0.
99

4.
73

1.
77

4.
35

3.
29

2.
83

5.
08

L
og

K
ba

rr
ie

r
0.

91
4.

54
1.

61
4.

26
3.

51
2.

74
5.

19

L
og

P m
0.

90
4.

53
1.

60
4.

26
3.

53
2.

74
5.

19

Q
Pl

og
Po

/w
0.

45
1.

41
0.

86
2.

11
0.

64
0.

29
0.

66

L
og

Q
PP

C
ac

o
0.

14
0.

70
0.

17
0.

87
0.

58
0.

46
0.

32

L
og

Q
PP

M
D

C
K

0.
13

0.
77

0.
16

0.
97

0.
61

0.
47

0.
42

J Chem Inf Model. Author manuscript; available in PMC 2013 June 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Leung et al. Page 33

Ta
bl

e 
5

T
he

 s
lo

pe
s 

fr
om

 li
ne

ar
 r

eg
re

ss
io

n 
an

al
ys

es
 b

et
w

ee
n 

ce
ll-

ba
se

d 
as

sa
y 

da
ta

 a
nd

 c
om

pu
ta

tio
na

l p
re

di
ct

io
ns

.

Sl
op

e 
of

 li
ne

ar
 r

eg
re

ss
io

n 
m

od
el

 (
|m

|)

P
re

di
ct

io
n

A
vd

ee
f

(C
ac

o-
2)

B
al

im
an

e
(C

ac
o-

2)
B

er
m

ej
o

(C
ac

o-
2)

F
uj

ik
aw

a
(C

ac
o-

2)
G

oo
dw

in
(C

ac
o-

2)
Ir

vi
ne

(C
ac

o-
2)

Ir
vi

ne
(M

D
C

K
)

L
i

(C
ac

o-
2)

L
og

K
(Δ

G
tr

an
sf

er
(L

D
C

))
1.

32
3.

67
1.

62
3.

63
2.

04
3.

08
3.

59
2.

50

L
og

K
(Δ

G
c/

w
)

1.
52

3.
47

3.
10

3.
49

1.
79

4.
16

4.
65

4.
15

L
og

K
ba

rr
ie

r
1.

49
3.

67
2.

96
3.

49
1.

83
4.

20
4.

71
4.

00

L
og

P m
1.

49
3.

69
2.

95
3.

49
1.

83
4.

20
4.

71
4.

00

Q
Pl

og
Po

/w
0.

51
2.

18
1.

42
1.

57
0.

71
0.

67
0.

70
0.

64

L
og

Q
PP

C
ac

o
0.

22
0.

72
0.

48
0.

95
0.

29
0.

63
0.

70
0.

85

L
og

Q
PP

M
D

C
K

0.
24

0.
76

0.
39

1.
02

0.
20

0.
66

0.
74

0.
82

J Chem Inf Model. Author manuscript; available in PMC 2013 June 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Leung et al. Page 34

Ta
bl

e 
6

T
he

 c
or

re
la

tio
n 

co
ef

fi
ci

en
ts

 b
et

w
ee

n 
PA

M
PA

 d
at

a 
an

d 
co

m
pu

ta
tio

na
l p

re
di

ct
io

ns
. T

he
 k

ey
 c

om
po

ne
nt

(s
) 

of
 e

ac
h 

ph
ys

ic
al

 m
od

el
 is

/a
re

 m
ar

ke
d 

w
ith

 “
X

”.
Ph

ys
ic

s-
ba

se
d 

pr
ed

ic
tio

ns
 w

ith
 c

or
re

la
tio

n 
co

ef
fi

ci
en

t d
if

fe
re

nc
es

 (
Δ

r2  
or

 Δ
ρ)

 r
el

at
iv

e 
to

 L
og

K
(Δ

G
tr

an
sf

er
(L

D
C

))
 ≥

0.
05

 a
nd

 ≤
−

0.
05

 a
re

 h
ig

hl
ig

ht
ed

 in

gr
ee

n 
an

d 
re

d,
 r

es
pe

ct
iv

el
y.

 T
he

 Q
ik

Pr
op

 p
re

di
ct

io
n 

w
ith

 c
or

re
la

tio
n 

co
ef

fi
ci

en
t d

if
fe

re
nc

e 
re

la
tiv

e 
to

 L
og

P m
 (
Δ

|r2 |
) 

≥0
.0

5 
is

 h
ig

hl
ig

ht
ed

 in
 li

gh
t g

re
en

.

M
od

el
’s

 c
om

po
ne

nt
C

or
re

la
ti

on
 c

oe
ff

ic
ie

nt

P
re

di
ct

io
na

C
on

f.
se

ar
ch

C
on

f.
en

se
m

bl
e

St
at

e
pe

na
lt

y
C

on
f.

pe
na

lt
y

Si
ze

se
le

ct
iv

it
y

M
em

br
an

e
di

ff
us

io
n

B
al

im
an

e
(%

A
bs

)
B

er
m

ej
o

(P
ap

p)
Ir

vi
ne

(%
A

bs
)

r2
ρ

r2
ρ

r2
ρ

L
og

K
(Δ

G
tr

an
sf

er
(L

D
C

))
×

0.
63

0.
66

c
0.

73
0.

87
0.

65
0.

74

L
og

K
(Δ

G
tr

an
sf

er
)

×
×

0.
63

0.
66

c
0.

75
0.

89
0.

66
0.

76

L
og

K
(Δ

G
 tr

an
sf

er
+
Δ

G
st

at
e)

×
×

×
0.

72
0.

84
0.

88
0.

94
0.

62
0.

74

L
og

K
(Δ

G
tr

an
sf

er
+
Δ

G
cf

)
×

×
×

0.
65

0.
76

0.
78

0.
91

0.
63

0.
74

L
og

K
(Δ

G
c/

w
)

×
×

×
×

0.
69

0.
84

0.
88

0.
96

0.
59

0.
72

L
og

K
ba

rr
ie

r
×

×
×

×
×

0.
76

0.
84

0.
86

0.
96

0.
58

0.
73

L
og

P m
×

×
×

×
×

×
0.

76
0.

84
0.

86
0.

96
0.

58
0.

73

M
W

Ph
ys

io
ch

em
ic

al
 d

es
cr

ip
to

r
0.

36
−

0.
30

b
0.

01
0.

34
b

0.
03

−
0.

17
b

V
ol

Ph
ys

io
ch

em
ic

al
 d

es
cr

ip
to

r
0.

10
−

0.
23

b
0.

07
0.

41
b

0.
01

0.
03

b

PS
A

Ph
ys

io
ch

em
ic

al
 d

es
cr

ip
to

r
0.

65
−

0.
84

0.
16

−
0.

70
0.

54
−

0.
59

Q
Pl

og
Po

/w
Q

SP
R

 r
eg

re
ss

io
n-

ba
se

d 
m

od
el

0.
52

0.
76

0.
62

0.
77

0.
40

0.
56

L
og

Q
PP

C
ac

o
Q

SP
R

 r
eg

re
ss

io
n-

ba
se

d 
m

od
el

0.
68

0.
86

0.
38

0.
80

0.
47

0.
55

L
og

Q
PP

M
D

C
K

Q
SP

R
 r

eg
re

ss
io

n-
ba

se
d 

m
od

el
0.

69
0.

86
0.

32
0.

73
0.

44
0.

53

Q
P%

H
O

A
Q

SP
R

 r
eg

re
ss

io
n-

ba
se

d 
m

od
el

0.
70

0.
85

0.
59

0.
84

0.
63

0.
67

N
(T

ot
al

)c
9

14
33

N
(Q

ik
Pr

op
-T

S)
d

7
0

33

a O
pt

im
al

 v
al

ue
s 

w
er

e 
de

te
rm

in
ed

 f
ro

m
 th

e 
re

fi
ne

d 
co

nf
or

m
at

io
na

l e
ns

em
bl

e 
fo

r 
ea

ch
 p

hy
si

cs
-b

as
ed

 p
re

di
ct

io
n,

 e
xc

ep
t f

or
 Δ

G
tr

an
sf

er
(L

D
C

),
 w

hi
ch

 w
er

e 
co

m
pu

te
d 

us
in

g 
th

e 
L

D
C

, a
nd

 f
or

 L
og

K
ba

rr
ie

r,
w

hi
ch

 w
as

 c
om

pu
te

d 
us

in
g 

th
e 

co
nf

or
m

at
io

n 
w

ith
 th

e 
op

tim
al

 L
og

P m
 v

al
ue

.

b T
he

 p
-v

al
ue

 o
f 
ρ 

is
 g

re
at

er
 th

an
 0

.0
5.

J Chem Inf Model. Author manuscript; available in PMC 2013 June 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Leung et al. Page 35
c N

um
be

r 
of

 c
om

po
un

ds
 in

cl
ud

ed
 in

 th
e 

an
al

ys
is

.

d N
um

be
r 

of
 c

om
po

un
ds

 in
 Q

ik
Pr

op
 tr

ai
ni

ng
 s

et
s 

(Q
Pl

og
Po

/w
, Q

PP
C

ac
o,

 Q
PP

M
D

C
K

, a
nd

 Q
P%

H
O

A
).

 T
he

 p
hy

si
cs

-b
as

ed
 m

od
el

 d
oe

s 
no

t u
se

 a
 tr

ai
ni

ng
 s

et
.

J Chem Inf Model. Author manuscript; available in PMC 2013 June 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Leung et al. Page 36

Table 7

The slopes from linear regression analyses between in vivo data and computational predictions.

Slope of linear regression model (|m|)

Prediction Balimane
(%Abs)

Bermejo
(Papp)

Irvine
(%Abs)

LogK(ΔGtransfer(LDC)) 0.09 2.46 0.12

LogK(ΔGc/w) 0.10 3.97 0.14

LogKbarrier 0.10 3.75 0.14

LogPm 0.10 3.73 0.14

QPlogPo/w 0.05 1.86 0.03

LogQPPCaco 0.02 0.47 0.02

LogQPPMDCK 0.02 0.40 0.02

QP%HOA 0.64 19.24 0.54

J Chem Inf Model. Author manuscript; available in PMC 2013 June 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Leung et al. Page 37

Ta
bl

e 
8

T
he

 c
or

re
la

tio
n 

co
ef

fi
ci

en
ts

 b
et

w
ee

n 
ab

so
rp

tio
n 

da
ta

 a
nd

 e
xp

er
im

en
ta

l m
od

el
s.

A
llc

P
as

si
ve

d

Se
t

C
om

pa
ri

so
n

r2
ρ

r2
ρ

B
al

im
an

ea
PA

M
PA

 v
s.

 %
A

bs
0.

67
0.

77

C
ac

o-
2 

vs
. %

A
bs

0.
83

0.
82

0.
89

0.
80

L
og

P m
 v

s.
 %

A
bs

0.
68

0.
82

0.
76

0.
84

Ir
vi

ne
b

C
ac

o-
2 

vs
. %

A
bs

0.
40

0.
54

b
0.

62
0.

66

M
D

C
K

 v
s.

 %
A

bs
0.

46
0.

58
b

0.
59

0.
65

L
og

P m
 v

s.
 %

A
bs

0.
24

0.
50

0.
58

0.
73

a R
ef

. 6
7.

b R
ef

. 7
2.

c C
om

pl
et

e 
co

m
po

un
d 

se
t.

d Pa
ss

iv
e 

pe
rm

ea
tio

n 
su

bs
et

.

J Chem Inf Model. Author manuscript; available in PMC 2013 June 25.


