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Abstract
Virtual screening using pharmacophore models is an efficient method to identify potential lead
compounds for target proteins. Pharmacophore models based on protein structures are
advantageous because a priori knowledge of active ligands is not required and the models are not
biased by the chemical space of previously identified actives. However, in order to capture most
potential interactions between all potentially binding ligands and the protein, the size of the
pharmacophore model, i.e. number of pharmacophore elements, is typically quite large and
therefore reduces the efficiency of pharmacophore based screening. We have developed a new
method to select important pharmacophore elements using hydration-site information. The basic
premise is that ligand functional groups that replace water molecules in the apo protein contribute
strongly to the overall binding affinity of the ligand, due to the additional free energy gained from
releasing the water molecule into the bulk solvent. We computed the free energy of water released
from the binding site for each hydration site using thermodynamic analysis of molecular dynamics
(MD) simulations. Pharmacophores which are co-localized with hydration sites with estimated
favorable contributions to the free energy of binding are selected to generate a reduced
pharmacophore model. We constructed reduced pharmacophore models for three protein systems
and demonstrated good enrichment quality combined with high efficiency. The reduction in
pharmacophore model size reduces the required screening time by a factor of 200–500 compared
to using all protein pharmacophore elements. We also describe a training process using a small set
of known actives to reliably select the optimal set of criteria for pharmacophore selection for each
protein system.
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Introduction
Pharmacophore models are widely used to screen large chemical datasets to identify
potential actives for a specific target protein. These models are typically derived from an
analysis of several known actives. In addition to manual definition of pharmacophores by
experienced medicinal chemists, a number of methods1–5 have emerged to deduce structural
features common to biologically active ligands and predicted to be important for the
biological activity. If explicit information about the 3D structure of the binding site of the
target protein is known, this data can be used to guide the development of the
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pharmacophore model. In the program LigandScout6, for example, interactions between
protein and ligand in an experimentally determined protein-ligand structure are utilized to
guide the pharmacophore selection process. Pharmacophores that are not present in the
particular protein-ligand structure but could be important for the binding of structurally
different ligands, however, may be neglected in the resulting pharmacophore model.
Alternatively, the binding site of the target protein can also be utilized for pharmacophore
perception without the inclusion of ligand information.7 An interaction map between probes
characterizing potential ligand features and binding site residues is translated into potential
locations of pharmacophore elements. These potential pharmacophores are not restricted to
previously identified active ligands. However, the size of the pharmacophore model, i.e. the
number of pharmacophore elements, is typically quite large in order to include most of the
potential interactions between all potentially binding ligands and the protein. Therefore
clustering methods are applied to reduce the number of pharmacophores in the resulting
model.

In the present study, we hypothesize that the number of pharmacophores derived from a
protein structure can be reduced using free energy of desolvation estimates, resulting in
pharmacophore models with good enrichment quality and increased efficiency compared to
models containing all possible pharmacophore elements from the binding site. The
underlying assumption is that water molecules bound to the ligand-free protein are released
into bulk solvent when a ligand binds to this particular moiety. If the displaced water
molecule gains free energy upon release, this energy contributes to the binding free energy
of the ligand. Friesner and co-workers have used this concept in the displaced-solvent
functional (DSF) method to predict the contribution of solvent displacement by a bound
ligand to the overall free energy of binding.8–9

In this paper, we developed a related concept in the context of pharmacophore selection. The
basic premise is that ligand functional groups which replace water molecules bound to the
ligand-free protein contribute strongly to the overall binding affinity of the ligand. This is
due to the additional free energy gained from releasing the water molecule into the bulk
solvent.

The pharmacophore modeling process starts with the identification of potential protein
pharmacophores based on an analysis of accessible hydrogen bonds and hydrophobic
cavities in the binding site. Then, hydration sites defining the potential location of the water
molecules are identified in the binding site of the protein. The free energy of water released
from each hydration site is computed using thermodynamic analysis of molecular dynamics
(MD) simulations. Finally, overlap between hydration sites and the potential protein
pharmacophores is determined. Only pharmacophores displaying overlap with hydration
sites with estimated favorable contribution to the overall free energy of binding are selected
for the final reduced pharmacophore model. We tested various sizes of pharmacophore
models and different overlap criteria on three protein systems. Finally, we developed a
training process using a small set of known actives to reliably select the optimal criterion for
pharmacophore selection in each protein system.

Material and Methods
Dataset and target proteins preparation

As a proof-of-concept study, we first applied our method to factor Xa (fXa). Three different
protein-ligand complexes of fXa (PDB code: 1F0S10, 1MQ611, 1NFU12) were used to study
the influence of different starting structures on the construction of the pharmacophore
models. We also tested our method on HIV protease-1 (HIVPR, PDB code: 1AJV13) and
Pneumocystis carinii dihydrofolate reductase (pcDHFR, PDB code: 1DAJ14). For each
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protein structure, the side-chain conformations of ASN, GLN and HIS, and tautomers and
protonation states of HIS were adjusted using the Reduce program15. Hydrogen atoms were
added to the structures using the tleap module of AMBER1016.

The dictionary of useful decoys (DUD)17 dataset was used to perform virtual screening
studies. For each active in the DUD dataset, there is a corresponding set of decoys with
similar physical properties but dissimilar topology. The dataset we used was composed of
146 actives and 5717 decoys for fXa, 62 actives and 2020 decoys for HIVPR, and 102
actives and 2094 decoys for pcDHFR. For each ligand, multiple conformations were
generated using Openeye Omega18 with the energy window of 15 kcal/mol and 1000
conformations in maximum. Duplicate conformers were removed using a 0.2 Å RMSD
cutoff for ligands with zero to three rotatable bonds, a 0.3 Å cutoff for ligands with four to
six rotatable bonds, and a 0.4 Å cutoff for all ligands with more than six rotatable bonds.

Our in-house program clusterconformer was used to define the pharmacophore elements for
each ligand conformation. Hydrogen-bond pharmacophores are placed at the position of
potential donor and acceptor groups of the ligand. Ligand atoms (excluding hydrogen atoms)
are defined to be hydrophobic if they are not hydrogen-bond donor or acceptor or directly
bonded to a ligand’s donor or acceptor atom. The hydrophobic atoms from each ligand
conformation were clustered using hierarchical clustering with a minimum distance between
cluster centers of 2.0 Å. Clustering is performed to reduce the number of hydrophobic ligand
pharmacophores. This significantly reduces the cost of clique detection and consequently
increases the efficiency of pharmacophore-based screening.

Overview of procedure to generate hydration-site restricted pharmacophore models
Scheme 1 displays the overall procedure to generate hydration-site restricted pharmacophore
models. Alternative protein conformations are generated based on principal component
analysis of a short MD simulation. The hydrogen-bond and hydrophobic potentials averaged
over the various protein conformations are projected on a 3D grid, and clustering over the
grid points is used to generate protein pharmacophores. Hydration sites were defined based
on the positional occupancy of water molecules on a 3D grid computed over a MD trajectory
of the apo protein. The spatial overlap between hydration sites and protein pharmacophores
is used to define hydration-site restricted pharmacophore models with reduced number of
pharmacophore elements. The details of this procedure will be discussed in the following
sections.

Protein pharmacophore identification
We included small-scale protein flexibility during the process of identifying protein
pharmacophores in order to account for the binding of diverse ligands.19–22 The amplitude
of the protein conformational change was estimated by using principal component analysis
of the covariance matrix derived from a 50 ps apo simulation of each protein using our in-
house MD program.23 Simulations are performed with the Amber02 force field using a
water cap of 25 Å around the center of the binding site and temperature coupling utilizing a
Berendsen thermostat.24 A group-based cutoff of 10 Å was chosen for all non-bonded
interactions. The coordinates of residues in the binding site were translated by the first
principal component in both directions. The principal components on a short MD trajectory
allow only for the modeling of small-scale protein flexibility. Thus, the size of the protein’s
conformational change is limited to approximately 1–2Å RMSD. A 3D grid with 0.4 Å
spacing between grid points was placed in the binding site for each of the three protein
structures (minimized X-ray structure and two structures derived by coordinate translation
following first principal component). The interaction potential for hydrogen-bonding and
hydrophobic ligand atoms placed at individual grid points was computed using a continuous
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form of the ChemScore25–26 scoring function. In detail, the interaction potential for a
hydrogen-bond donating atom i on a grid point j was computed by

(1a)

with

(1b)

and

(1c)

with rij = |r − 1.85 Å| and r was the distance between atom i and grid point j. The angle φ
was defined by the angle between lone pair, acceptor of protein and grid point. The same
functional form was used for hydrogen-bond acceptors with φ defined by the angle between
protein’s donor hydrogen atom, donor heavy atom and grid point. The hydrophobic potential
was computed by

(2)

 is the sum of van der Waals radii of protein atom and grid point. The grid point can be
considered to represent a potential binding site of a hydrophobic ligand atom. Thus, the van
der Waals radius of a carbon atom is assumed for the grid point as carbon atoms are most
frequently engaged in hydrophobic contacts between protein and ligand. The distance and
angle threshold values in equations 1 and 2 were adjusted to reproduce the overall form of
the original ChemScore scoring function. The modified function, however, provides
continuous derivatives of the potential with respect to the coordinates.

For each protein donor or acceptor group one pharmacophore element was defined with the
center of the pharmacophore computed by

(3)

The sum is over all grid points i with favorable interaction potential from the particular
protein donor and acceptor based on equation 1 where xi and εi are the coordinates and
interaction potential of each grid point, respectively.

The hydrophobic pharmacophore elements were defined by k-means clustering of all grid
points with negative hydrophobic scores. The number of clusters, k, was adjusted until the
minimum distance between a cluster center i and any other cluster center was on average
smaller than 2 Å. The type of protein pharmacophore was defined by the type of ligand atom
that would produce favorable binding to the protein atoms associated with the
pharmacophore. For example, a protein donor group could favorably interact with a ligand
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acceptor. The protein pharmacophore associated with that interaction is defined to be an
acceptor protein pharmacophore.

Hydration site identification
A molecular dynamic (MD) simulation with the binding site filled with explicit water
molecules was performed for each target system. The ligand in each protein-ligand complex
was removed, but the crystallographic water molecules were kept. The protein was then
solvated in an octahedron SPC27 water box with a minimum of 10 Å between any protein
atom to the edge of the box. Chlorine and sodium ions were then added to neutralize the
systems.

We performed the MD simulations using GROMACS28 with AMBER03 force field. Each
system was energy minimized for 5000 steps using steepest descent algorithm to relieve the
steric clashes within the system. The water molecules of the systems were then equilibrated
for 250 ps with periodic boundary conditions in all three dimensions and with all protein
heavy atoms harmonically restrained (spring constants of 1000 kJ mol−1 nm−2). The Nose-
Hoover thermostat29–30 was used for temperature coupling at 300K, and the Parrinello-
Rahman31 approach was used for pressure coupling at 1 bar. The electrostatic interactions
were calculated exactly for atom pairs within 10 Å and by Particle Mesh Ewald32–33 method
for pairs beyond this cutoff. The Lennard-Jones interactions were truncated at 14 Å. Another
1 ns equilibration was performed under the same settings with the protein unrestrained.
Finally a 10 ns production run was performed and the coordinates were saved every 10 ps to
generate 1000 frames for subsequent analysis.

Using the 1000 snapshots generated from the MD simulation, the hydration sites were
identified. First, the protein binding site was defined as a box surrounding its original ligand
plus 3 Å in each dimension. A 3D grid was placed over the binding site using a grid spacing
of 0.25 Å. In each snapshot, the positions of all the waters’ oxygen atoms in the binding site
were determined. A Gaussian distribution function centered on the oxygen atom centroid
was distributed onto the 3D grid (Figure 1). To keep consistent with the definition of the 1 Å
radius hydration sites described below, we used 0.33 Å as the standard deviation of this
Gaussian function such that the Gaussian distribution covers 99.7% of the water occupancy
within a 1 Å (three times the standard deviation) radius sphere. The distribution function
was averaged over the MD trajectory and pronounced peaks in this averaged function
represent tightly binding water molecules which maintain their position throughout the MD
simulation.

For defining tight binding water molecules, water molecules were assigned to the position of
the probability peaks using the quality threshold (QT) clustering algorithm: For each grid
point all other grid points that are within 1 Å radius sphere are identified. The sphere that
has the maximum occupancy (summation of the probabilities over all grid points in that
sphere) was selected as first hydration site and all grid points contained in this sphere were
removed from subsequent QT clustering steps. This clustering process was repeated until the
occupancy in an identified hydration site becomes less than twice the expected occupancy of
a 1 Å radius sphere in bulk solvent. The latter was determined by analyzing the pseudo-
hydration sites in a MD simulation of bulk solvent (described in the next section). A pseudo-
hydration site was defined as a randomly selected 1 Å radius sphere in the bulk solvent. The
same Gaussian distribution functions were used to compute the occupancy probability of
each grid point. The occupancy of a pseudo-hydration site was thus a simple summation of
the probabilities on the grid points inside the defined sphere. Water molecules from the MD
trajectory were assigned to each hydration site if its oxygen position is within the hydration
site sphere. The 1 Å radius sphere, which has been used in previous hydration site
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studies,8–9 ensures there is at most one water molecule in each hydration site per MD
snapshot.

Free energies of desolvation of hydration sites
The desolvation energy of each hydration site was determined by analyzing the enthalpy and
entropy change of the water molecules inside a hydration site with respect to bulk solvent:

(4)

Where ΔHhs and ΔShs are the enthalpic and entropic change of transferring a water
molecule from the bulk solvent into the hydration site of the protein cavity. The change of
the pressure-volume work associated with a volume change can be neglected.34 Thus the
enthalpic change can be estimated by the change of the interaction energies:

(5)

where Ehs is the interaction energy of a water molecule in the hydration site with the
surrounding protein and water atoms. It was determined based on the average sum of van
der Waals and electrostatic interactions between each water molecule inside a given
hydration site with the protein and all the other water molecules. In detail, water molecules
inside each hydration site were recorded for each frame of the MD trajectory. Each recorded
water molecule was defined as an energy group and its van der Waals and electrostatic
interactions with the surrounding environment were extracted using the g_energy analysis
tool in the GROMACS package. Ebulk is the interaction energy of a water molecule with its
surrounding environment in the bulk solvent. To calculate Ebulk, a 10 ns MD simulation of a
water box with 3272 explicit SPC27 water molecules was performed following the same
procedures and parameters as the solvated protein simulation described above. Averaging
the interaction energies of 2058 water molecules with their surrounding environment over
the 10 ns MD trajectory leads to an estimated Ebulk of −18.18 kcal/mol (standard error:
0.002 kcal/mol), a value comparable to that documented by Friesner and co-workers using
the TIP4P water model.9

Assuming no change in the momenta part of the partition function upon transferring a water
molecule from the bulk solvent into the protein cavity, ΔShs can be estimated by35

(6)

where C° is the concentration of pure water (1 molecule/29.9Å3), R is the gas constant, and
pext(q) is the external mode probability density function (PDF) of the water molecules’
translational and rotational motions during the molecular dynamics simulation. It should be
noted that higher-order correlations between water molecules in the binding site36 are
neglected in this approach.

To estimate pext(q) for each hydration site, we analyzed the translational and rotational
motions of the water molecules in that hydration site using a method adapted from
McCammon and co-workers.35 For each hydration site, the translational degrees of freedom
of water molecules in this site were defined by the fluctuation of the position of its center
oxygen in the protein coordinate system. The Euler angles representing the spatial
orientation of the water molecules in reference to the Cartesian coordinate system were used
to calculate the rotational degrees of freedom. In detail, the rotated system (X, Y, Z) for
quantifying the rotation of a water molecule was defined based on its H1-O-H2 plane: the
unit vector in the direction of O-H1 defines X, the unit vector orthogonal to X in the H1-O-

Hu and Lill Page 6

J Chem Inf Model. Author manuscript; available in PMC 2013 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



H2 plane defines Y, and the unit vector orthogonal to the H1-O-H2 plane defines Z. The
Euler angles were then computed based on this rotated system. Two 3×3 zero-mean
covariance matrices were constructed for the translational and rotational motions
respectively assuming decoupled translational and rotational motions. One 6×6 zero-mean
covariance matrix was also constructed assuming the translational and rotational motions are
coupled. Principal components analysis was performed by diagonalizing the zero-mean
covariance matrices and the original coordinates from the 1000 snapshots were projected
onto each of the principle component dimensions. A histogram was constructed for each
principle component dimension with 70 bins to allow pext(q) to be calculated by normalizing
the histogram. The configurational entropy of each dimension was then numerically
integrated using the composite Simpson’s rule. The overall configurational entropy is then
summed over all the principal component dimensions. No significant difference of the
estimated configurational entropy was observed between using the two 3×3 matrices and the
one 6×6 matrix by performing the paired t-tests at the significance level of 0.01. Therefore,
the results discussed in this paper all utilize the two 3×3 matrices. The estimated
configurational entropy using 6×6 matrix is reported in the Supporting Information S1.

Construction of hydration-site-restricted pharmacophore (HSRP) models
To test the hypothesis that the number of pharmacophore elements derived from a protein
structure can be reduced using free energy of desolvation estimates to increase efficiency
combined with good enrichment quality of the pharmacophore models, we used the
hydration site information to construct a set of hydration-site-restricted pharmacophore
(HSRP) models for virtual screening. Those hydration sites with positive ΔGhs (posHS)
should be energetically rewarding if replaced by the ligand, therefore we constructed HSRP
models based on rewarding hydration sites with positive ΔGhs. To accomplish this, we
superimposed the pre-computed protein pharmacophore elements onto the identified
hydration sites using the original crystal structure as a common reference frame. The
pharmacophore elements that were within 1.0 Å (radius of the hydration site) to any of the
hydration sites centers were selected to construct the posHS HSRP models. Because the
protein pharmacophore elements were generated based on three protein conformations
whereas the hydration sites were identified by analyzing the MD trajectory, it might be too
restrictive to simply use the radius of the hydration site as a selection criterion. Therefore we
also used 1.5 Å and 2.0 Å distance cutoffs to construct the HSRP models.

In addition to using an absolute cutoff (i.e. with positive ΔGhs) in defining the rewarding
hydration sites, we also selected the hydration sites based on their free energy rankings. We
first ranked all the identified hydration sites in a descending order based on their estimated
free energies. Then we used top 25% (T0.25), top 50% (T0.50), top 75% (T0.75) or all of
the hydration sites (allHS) to select the pharmacophore elements following the same
methods and distance cutoffs described above.

Virtual screening
Virtual screening was performed using our in-house program, Hydro-Pharm. The program
enumerates all possible matches of protein and ligand pharmacophores using a modified
Bron-Kerbosch clique detection algorithm37–38, then translates these matches into binding
poses and selects the optimally ranked ligand poses using a pharmacophore-based scoring
function adapted from LigandScout.6 First, the length of the edge between each pair of
ligand pharmacophores was determined. The edge lengths were also determined for the
protein pharmacophore pairs. All ligand pharmacophore edges that match the protein
pharmacophore edges based on physicochemical properties (hydrophobicity, hydrogen bond
donor/acceptor) of their vertices and edge lengths were identified. A 1.0 Å tolerance was
allowed in the matching of the edge lengths. This matching can be represented by a graph in
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which each node represents a matching ligand-protein pharmacophore pair. The clique
detection algorithm then identifies all the completely connected subgraphs from this graph.
The Kabsch algorithm39 was then used to position the ligand into the protein binding site
based on the matching pharmacophore elements.

The ligands that were positioned inside of the protein binding site were scored using the
“pharmacophore fit” scoring function adapted from LigandScout.6 The scoring function is
based on the matching between the ligand and protein pharmacophore features. The feature
matches are defined as following: a ligand pharmacophore with donor/acceptor properties
matches with a donor/acceptor protein pharmacophore (see the definition of protein
pharmacophores above) if the distance between the ligand and protein pharmacophores is
within 1.0 Å and the angle formed by the donor-hydrogen vector and acceptor-lone pair
vector is within 45°; a ligand pharmacophore with hydrophobic property matches with a
hydrophobic protein pharmacophore if the distance is within 1.5 Å.

The scoring function is defined as:

(7)

where c is the weighting factor for the number of matched feature pairs with the default
value of 10. NMFP is the number of geometrically matched feature pairs. SRMSD is the root-
mean square deviation (RMSD) distance score of the matched feature pair defined as:

(8)

where RMSDFP is the RMSD of the matched feature pair distances.

Measures of virtual screening success
To analyze the virtual screening results, the ligands for each protein system were ranked
based on their pharmacophore fit scores. The Receiver Operating Characteristic (ROC)
curve displaying the fraction of ranked actives (true positive rate) at a given fraction of
ranked decoys (false positive rate) was plotted for each virtual screening run. The
enrichment factor, defined as

(9)

was calculated at 1% (EF1), 10% (EF10) and 20% (EF20) of ranked decoys. The area-
under-the-curve (AUC) was also calculated for each ROC curve and used to assess the
enrichment quality of the pharmacophore models.

Model selection by training on enrichment of small subsets
As described in the construction of the HSRP models, we selected the protein
pharmacophores using different energy cutoffs for the free energy of desolvation of a
hydration site and different cutoffs for the maximum distance between hydration sites and
protein pharmacophores. To reliably select the optimal HSRP models for different protein
systems, we performed a training process on small subsets of the DUD dataset for each
protein system. Subsets with 5 (sub5), 10 (sub10), and 20 (sub20) active ligands were
randomly selected from the DUD dataset of each protein system. Based on the proportion of
actives to decoys in the full DUD dataset, a corresponding number of decoys were randomly
selected for the sub5, sub10 and sub20 sets. This random selection was repeated 20 times for
each subset. The virtual screening was then performed on these subsets using different
HSRP models.
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Results and Discussion
Identification of protein pharmacophore elements

We first generated the protein pharmacophores for the three protein systems and analyzed
how the pharmacophores collocate with residues known to be involved in protein-ligand
interactions. The pharmacophore elements identified in the 1NFU structure of fXa are
shown in Figure 2a. The fXa binding site can be defined by the S1 and S4 sub pockets. The
anionic S1 pocket contains several hydrogen bond donor/acceptor pharmacophore elements,
many of which are contributed by residues Asp189, Ser195 and Tyr228, which line the S1
pocket. Several hydrophobic features are also found surrounding the phenol ring of Tyr228
in the S1 pocket. The S4 pocket is surrounded by the aromatic residues Tyr99, Phe174 and
Trp215. A number of hydrophobic pharmacophore elements are identified surrounding the
benzene ring of Phe174 and the indole group of Trp215. This agrees with the experimental
results that the S4 pocket has a high affinity for hydrophobic groups.40–41 Although these
pharmacophore elements are identified in the 1NFU x-ray structure and cover the key
interactions with its co-crystallized ketopiperazine inhibitor 1NFU:RRP (Figure 2b), they
also encompass key interactions between the sulfonamidopyrrolidinone inhibitor 1F0S:PR2
(Figure 2c) and the nonamidine inhibitor 1MQ6:XLD (Figure 2d) with fXa.

The binding site of HIVPR contains eight charged residues (Asp25/25’, Asp29/29’,
Asp30/30’, Arg8/8’).42 These charged residues contribute the majority of hydrogen bond
donor/acceptor groups to the pharmacophore model (Figure 3 left). Hydrophobic features
are identified surrounding the flaps and the S1/S1’, S2/S2’ sub sites of HIVPR. These
pharmacophore elements also contain key interaction features between the ligand and the
binding site residues (Figure 3 right).

The binding site of pcDHFR contains many hydrophobic residues (Figure 4 left). Therefore
a large number of hydrophobic pharmacophore elements are found in the binding site of
pcDHFR. Hydrogen bond donor/acceptor pharmacophore elements were found near the
polar side chain of residues Lys37, Arg79, Glu32 and Thr144 (Figure 4 right). Two
conserved structural water molecules (WT1 and WT2 in Figure 4) are found in many crystal
structures14, 43–44 of pcDHFR. WT1 is present in 1DAJ and mediates the interactions
between the classical antifolate MTXO and Thr144.

Enrichment using all pharmacophore elements
We performed a virtual screening study for each protein system using all pharmacophore
elements identified in the protein’s binding site (denoted as “FPP”: full protein
pharmacophore model). The pharmacophore-based scoring function from LigandScout was
adapted to rank the ligands. To understand the influence of different starting protein
conformations on the virtual screening performance, we compared the results from the three
fXa structures, 1NFU, 1F0S, and 1MQ6. As shown in Table 1, the overall enrichment
qualities indicated by the AUC of the ROC plots are quite similar among the three different
fXa structures with values exceeding 0.8 for all three systems. The largest difference
between the three protein structures was obtained for the enrichment factor at 1% ranked
decoys showing a better early enrichment for using 1F0S than using the other two structures.

Considering the other two protein system, the overall virtual screening performance for
HIVPR was also significantly better than random with an AUC of 0.81. However, the AUC
for pcDHFR (0.51) was not significantly better than random (0.50). As there are two
conserved water molecules (Figure 4) observed in many crystal structures of
pcDHFR14, 43–44, one possible explanation for the weak performance of the pharmacophore
model is that the water-mediated interactions were not included in the model.
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Although a high AUC value was achieved for both fXa and HIVPR, the FPP models contain
more than 130 protein pharmacophore elements (Table 1). This extensive pharmacophore
model allows a comprehensive search of binding poses and in combination with a sufficient
scoring function might result in a low false negative rate. However, it should be recognized
that the scoring function used for the pharmacophore-based virtual screening is typically a
simple feature-matching function. Consequently, the inclusion of a large number of
pharmacophore elements can potentially result in a high false positive rate. Furthermore, it is
computationally prohibitive to search and score all the possible ligand binding poses against
such an extensive pharmacophore model. The process took more than 1,200 seconds per
ligand for fXa and approximately 900 seconds per ligand for HIVPR and pcDHFR (Table
1). As such, the FPP model would not be suitable for virtual screening using large
compound libraries with hundreds of thousands compounds.

Hydration site identification
The release of water molecules upon ligand binding can contribute both enthalpically and
entropically to the free energy of binding. Water molecules in the binding site with a less
negative free energy will contribute more to the free energy of ligand binding when replaced
by the ligand. To compute the free energy of a water molecule in the binding site (see
Materials and Methods: Free energies of desolvation of hydration sites), we performed a 10
ns MD simulation and used QT clustering to identify spherical regions (1 Å radius) in the
protein binding sites that have higher density of water molecules compared to the density in
bulk solvent. These spheres with high-water density were denoted as hydration sites. In the
binding site of fXa, we identified 20, 33 and 30 hydration sites for 1F0S, 1MQ6 and 1NFU,
respectively (Figure 5). This variation is due to the differences in the size of the binding sites
which were determined by the size of the co-crystallized ligands (see Materials and
Methods) as well as a slight variation among the protein structures (Supporting Information
S3). An overlay of the hydration sites of the three fXa structures showed that 26 hydration
sites were shared by at least two structures and 16 hydration sites were shared by all three
structures (Figure 5 right). Compared with the original complex structures (Figure 2), we
found that the non-shared hydration sites were either on the surface of the protein or in a
narrow cavity not accessible to the ligands. The hydration sites in common are mostly
located within the S1 and S4 sub pockets in which most ligands bind. Therefore, the starting
protein conformation does not seem to significantly influence the identification of hydration
sites associated with ligand binding.

Based on the probability distribution functions (PDF) for translational and rotational degrees
of freedom of the water molecules in each hydration site, we estimated the entropic cost of
transferring a water molecule from the bulk solvent into the hydration site. The enthalpic
cost was estimated based on the average sum of van der Waals and electrostatic interactions
between the water of interest with its surrounding environment throughout the MD
trajectory. A list of the estimated free energy for each hydration site in the three protein
systems can be found in Supporting Information S1. Because the water molecules are
assumed to be freely rotatable in the bulk solvent (Eq. 4), each water molecule contributes
entropically to the free energy of ligand binding upon being released into the bulk solvent.
Therefore, all the identified hydration sites are entropically rewarding if the water molecules
in those positions were replaced by the ligand. However, depending on the specific protein
environment of the hydration sites, the enthalpic contribution can be either favorable or
unfavorable. Therefore, the overall contribution of the replacement of a water molecule by a
ligand to the free energy of binding depends on the sum of the enthalpic and entropic effects.
For example, the S4 sub-pocket of fXa contains three aromatic residues, Tyr99, Phe174 and
Trp215 (Figure 5 left). The water molecules adjacent to these residues cannot form the same
number of hydrogen bonds with the residues as compared to the bulk solvent state.
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Therefore replacing these water molecules by ligand atoms will potentially contribute both
entropically and enthalpically to the free energy of binding. As expected, the water in
hydration site HS1 (Figure 5, left) identified in the S4 pocket of 1NFU was estimated to gain
1.14 kcal/mol enthalpically and 2.54 kcal/mol entropically if released into bulk solvent. On
the other hand, water molecules in the hydration site HS2 can form hydrogen bonds with the
surrounding residues Ile175 and Thr98. Releasing a water molecule in this position is
estimated to result in an enthalpic loss of 3.44 kcal/mol, which is slightly larger than its
entropic gain (2.85 kcal/mol). Therefore, releasing a water molecule in the HS2 position to
bulk solvent would not contribute favorably to the free energy of binding. This agrees with
the fact that a conserved water molecule was observed in the HS2 position of the holo
structures45 (1F0S, 1MQ6 and 1NFU) (Figure 2) as well as the apo structure of fXa
(1HCG46). The hydration site HS3 co-localizes with the WT2 position in 1NFU (Figure 2b).
Based on our estimation, the enthalpic loss (1.28 kcal/mol) of the water molecule in HS3
position is not as large as its entropic gain (2.12 kcal/mol). Therefore, releasing the water
molecule in HS3 will potentially contribute favorably to the free energy of binding.
However, the mediating role of WT2 in 1NFU suggests that the hydrogen bond donor/
acceptor groups on the ligands are able to stabilize the water molecules in this position,
therefore making the water molecule energetically favorable in the protein-ligand complex.
To further confirm our postulate that the starting protein conformation does not significantly
influence the identification of the hydration sites associated with ligand binding in fXa, we
compared the estimated free energies of the overlapping hydration sites (Supporting
Information S2). The standard deviations of the predicted free energies between the
overlapping hydration sites of 1F0S and 1MQ6 is 0.69 kcal/mol, between that of 1F0S and
1NFU is 0.83 kcal/mol, and between that of 1MQ6 and 1NFU is 0.48 kcal/mol. This
indicates that the estimated energy contributions of the hydration sites are consistent across
all three protein structures.

For HIVPR, 26 hydration sites were identified (Figure 6, left). The water in hydration site
HS1 surrounding residues Ile50/50’ is estimated to provide a favorable free energy
contribution if replaced by the ligand. This is consistent with the results from nonpeptide
cyclic urea inhibitors designed to mimic the hydrogen bonding features of water molecules
in these positions.40 One example is illustrated by 1AJV (Figure 3 right) where a sulfonyl
group replaces the conserved water molecule to form hydrogen bonds with Ile50/50’. Six
hydration sites are estimated to be energetically stable. Not surprisingly, these hydration
sites are next to the charged residues Asp25/25’, Asp29/29’ and Asp30 respectively, where
the ability of water molecules to form hydrogen bonds with these residues negates the
entropic gain of releasing those water molecules. However, being energetically stable does
not necessarily prohibit the replacement of a hydration site by a ligand. For example, in the
case of 1AJV (Figure 3, right) the ligand replaced water molecules in hydration sites HS2
and HS3 to form hydrogen bonds with Asp25/25’.

27 hydration sites were identified for pcDHFR (Figure 6 right). Two conserved structural
waters (WT1 and WT2 in Figure 4 right) near Trp27, Glu32 and Thr144 are present in many
pcDHFR x-ray structures.14, 36–37 We found that the hydration site (HS1) near WT1 is both
enthalpically (2.09 kcal/mol) and entropically (2.75 kcal/mol) rewarding to the free energy
of binding if replaced by the ligand. However the enthalpic loss (2.72 kcal/mol) of hydration
site (HS2) near WT2 is larger than its entropic gain (2.33 kcal/mol) therefore making HS2
energetically stable in the binding site.

Enrichment using hydration-site-restricted pharmacophore (HSRP) models
The importance of binding site water molecules and their contribution to the free energy of
ligand binding led us to hypothesize that the information derived from the identified
hydration sites can be used to reduce the number of protein pharmacophores increasing the

Hu and Lill Page 11

J Chem Inf Model. Author manuscript; available in PMC 2013 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



efficiency of virtual screening when compared to the FPP model without losing enrichment
quality. To test our hypothesis, we selected protein pharmacophores based on their overlap
with identified hydrations sites. We first constructed the hydration-site-restricted
pharmacophore (HSRP) models based on the hydration sites with positive estimated free
energies (posHS), i.e. the hydration sites that are energetically rewarding if the water
molecules were replaced by the ligand. All pharmacophore elements within 1.0 Å radius of
energetically favorable hydration sites sphere were selected to construct the posHS HSRP
models for each of our test systems. Table 2 shows the number of protein pharmacophore
elements selected for each model. It is worth noting that not all the hydration sites
encompass pharmacophore elements. The most prominent example is in HIVPR where 20
hydration sites were estimated as energetically contributing, however only eight
pharmacophore elements were found to be encompassed by these hydration sites. One
potential reason for this mismatch might be the process of generating the hydrophobic
pharmacophore elements itself. For performing clique detection throughout the
pharmacophore search, the number of protein pharmacophores need to be limited. Thus, the
hydrophobic pharmacophores are defined by clustering over hydrophobic grid points using a
radius of 2 Å. As such, the 1.0 Å radius criterion for defining overlap between
pharmacophore elements and hydration sites may be too restrictive for the selection of
protein pharmacophore elements. Therefore, another set of HSRP models was constructed
using pharmacophore elements within 1.5 Å of the centers of the hydration sites. Using the
1.0 Å cutoff, AUC values of 0.68, 0.68, 0.57 were achieved for 1F0S, 1MQ6, 1NFU of fXa
respectively (Figure 7, left). When the distance cutoff was increased to 1.5 Å, the AUC of
all the three fXa structures increased to 0.73 (Figure 7, right). The AUC for HIVPR and
pcDHFR were 0.59 and 0.61 under the 1.0 Å cutoff and 0.58 and 0.57 under the 1.5 Å
cutoff. The increase of the distance cutoff did not significantly alter the screening quality for
these two protein systems.

In general, we found that the enrichment quality using the posHS HSRP models is
comparable to that of using all pharmacophore elements in the binding site (FPP model) for
three out of five protein structures, but lacks in enrichment quality for fXa:1NFU and
HIVPR. However, the posHS HSRP models provide a large improvement in virtual
screening efficiency. Depending on the protein system, the posHS HSRP models are 300–
600 times more efficient than using the FPP models (Table 3). This makes our HSRP model
more attractive than the FPP model for screening virtual libraries with hundreds of
thousands to millions of compounds. However, to further improve the enrichment quality of
our HSRP model, we addressed the question whether using only hydration sites with
positive estimated free energies is too restrictive in selecting key pharmacophore elements
for ligand binding. As discussed before, the ligands can potentially replace water molecules
in energetically stable hydration sites to form hydrogen bonds with the protein (example of
HS2 and HS3 in HIVPR). The ligands can also stabilize water molecules in an enthalpically
unstable hydration site by forming hydrogen bonds with the water molecules (example of
WT2 in fXa:1NFU). Furthermore, the underlying molecular mechanics approach which
utilizes a classical force field may be limited in its accuracy in computing the enthalpy and
entropy of desolvation. In a recent study, Friesner and coworkers developed the so called
“displaced-solvent functional” to estimate the contribution of each hydration site to the
binding free energy.9 The “ab initio” form of the functional uses the estimated excess
entropy and enthalpy from the thermodynamics calculation directly in defining the
rewarding hydration sites. They also trained their functional on a set of known fXa inhibitors
to find cutoff values in selecting the energetically rewarding hydration sites. Their results
showed that the ability of the “ab initio” form to predict binding affinities is not as good as
the prediction using fitted parameters.9 Therefore, simply using the estimated entropy and
enthalpy as absolute cutoffs for defining energetically rewarding hydration sites can fail to
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identify the most relevant pharmacophore elements and potentially lead to a poor
enrichment quality.

As a first attempt to overcome the above discussed obstacles, instead of using a hard cutoff,
we propose to select a number of the hydration sites based on the ranking of their estimated
free energies. We first ranked all the hydration sites in a descending order based on their
estimated free energies. The top 25% (T0.25), 50% (T0.50), 75% (T0.75) or all of the
hydration sites (allHS) of each protein system were chosen and used to select co-localized
pharmacophore elements using both 1.0 Å and 1.5 Å cutoffs. The number of selected
pharmacophore elements is documented in Table 2. Note that the number of the hydration
sites selected by different top percentages can be equal to the number of hydration sites with
positive estimated free energy thus resulting in the same HSRP models.

The virtual screening results using the set of HSRP models with 1.0 Å cutoff were compared
with the posHS model in Figure 7. For fXa, we observed that as the number of hydration
sites used to restrict the pharmacophores was increased the enrichment quality also
increased. The most prominent case is in 1F0S where the AUC value for the allHS model
(0.82) was nearly identical to that of the FPP model (0.84). It is interesting to note that the
hydration sites that are predicted to be energetically stable are also included in constructing
the allHS models in 1F0S. This again confirms our postulate that being energetically stable
does not necessarily prohibit the replacement of this water from a hydration site by a ligand.
We also observed that the AUC values of the other two fXa structures were not as high as
that of 1F0S. The top 25% results are comparable among the three fXa structures, but as the
top percentage was increased the AUC values for 1MQ6 and 1NFU dropped below those for
1F0S. We attribute this to the larger number of hydration sites identified for these two fXa
structures due to their larger defined active sites which might cause a large number of false
positives.

Using the 1.5 Å cutoff, the AUC values for all HSRP models approached those of the FPP
model for fXa. The differences in AUC values among the three structures are also less
significant than they were for the 1.0 Å cutoff models. This supports the postulate that 1.0 Å
cutoff is too restrictive in selecting the pharmacophore elements for fXa. We tested whether
using 2.0 Å cutoff for the selection of protein pharmacophores would improve the
enrichment quality. Those models, however, generated inferior enrichment results even
when compared to the models using a 1.0 Å cutoff (data not shown). Therefore, 1.5 Å seems
to be the optimal distance cutoff in selecting the pharmacophore models for fXa.

Among the HSRP models for HIVPR using a 1.0 Å cutoff, the one using the top 25%
hydration sites showed a comparable AUC value to that of using the FPP model. As the
number of the hydration sites being used was increased, the quality of the enrichment
decreased. When the 1.5 Å cutoff was used, the enrichment quality in the T0.25 setting was
significantly lower compared to the model using a 1.0 Å cutoff, whereas the AUC values for
the other settings did not change significantly. A comparison between the selected
pharmacophore elements of the T0.25 models using either the 1.0 Å or 1.5 Å cutoff revealed
that the major difference is the inclusion of pharmacophores in HS4 surrounded by residues
Ala28, Asp29, Arg87 and Arg8’ (Figure 6 left). In both the apo (1G6L47) and holo (1AJV)
structure of the HIVPR, there is a conserved water molecule in this small cavity. However,
this cavity does not form the actual binding pocket48. Most inhibitors bind in the protease
subsites S2–S2’ near the middle of the dimer49 (Figure 3 right). This explains the decreased
enrichment quality when pharmacophore elements near HS4 are included in the model.

Finally, in case of pcDHFR, the T0.50, T0.75 and allHS HSRP models did not display
significant difference in enrichment quality compared to the posHS HSRP models using
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either a 1.0 Å or 1.5 Å cutoff; the AUC values are around 0.6 using a 1.0 Å cutoff and
slightly lower when using a 1.5 Å cutoff. For both cutoffs the enrichment quality is
significantly better than that of using all the binding site pharmacophore elements (0.51).

Overall, our studies using the HSRP models suggest that it is possible to find a subset of
pharmacophore elements to achieve comparable (fXa and HIVPR) or better (DHFR)
enrichment performance to that of using all binding site pharmacophore elements. To
confirm that the hydration site information significantly contributes to the selection of
relevant pharmacophore elements, we compared the best HSRP models to pharmacophore
models with identical size but using random selection to select the pharmacophore elements
(Supporting Information S5). We found that the enrichment qualities of the HSRP models
are significantly better than those from the randomly selected pharmacophore models.

In conclusion, we constructed HSRP models using different distances and energy cutoffs for
three protein systems. In the case of fXa, comparable enrichment qualities to the FPP
models are achieved except for fXa:1NFU. In the case of pcDHFR, the HSRP models
performed slightly better than the FPP model. It is interesting to speculate on the observed
differences in enrichment quality for the different protein systems. One potential reason
might be the ratio of number of protein to ligand pharmacophores (see Supporting
Information S4 and Table 2). The smallest ratio of protein to ligand pharmacophores is
found for HIVPR, where in the HSRP models the number of protein pharmacophores
becomes approximately equal to the average number of ligand pharmacophores. Thus the
reduction of protein pharmacophores in HSRP models might cause the removal of relevant
protein-ligand contacts from the scoring process, and consequently lead to a reduction in
enrichment quality. In contrast, the largest ratio of protein to ligand pharmacophores is
observed for DHFR, i.e. the ligands are much smaller than the binding site of the protein. In
this situation, more potential ligand poses can be generated without steric clash of protein
and ligand, increasing the potential for false positives. This is consistent with the overall
lowest enrichment quality of the FPP models for DHFR. Reducing the number of protein
pharmacophores elements in the HSRP models has the highest potential to improve the
enrichment quality as observed in our studies.

In addition, a major advantage of using the HSRP models is the improvement of the
computational efficiency throughout the virtual screening process. As shown in Table 3,
even for the HSRP models with the largest number of protein pharmacophore elements, the
efficiency was increased by at least 500 times for 1F0S, 200 times for 1MQ6, 280 times for
1NFU, 200 times for 1AJV and 270 times for 1DAJ compared to using the FPP models.
Using only eight 12-core AMD6172 processors would require less than 20 hours to screen a
virtual library with 1 million compounds for fXa using the largest HSRP model (Table 2 and
3).

Training process
Using the constructed HSRP models, we achieved similar enrichment quality for fXa and
HIVPR, and better enrichment quality for pcDHFR compared to using the FPP models.
However, the settings of the best HSRP models vary dependent on the protein systems. The
performance of the constructed HSRP models is also sensitive to the selected
pharmacophore elements (as in the example of HIVPR T0.25 models). We attribute this to
1) the uncertainty in the estimated desolvation energies of the hydration sites, which
influences the selection of protein pharmacophores for HSRP models; 2) the neglect of other
factors which contribute to the importance of the different protein pharmacophores for
ligand binding such as the strength of ligand interaction with the protein residues, potential
water-mediated effects and the contributions from ligand desolvation to the free energy of
binding; and 3) the dynamics of the protein structures which contributes to the uncertainty in
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selecting the pharmacophore elements near the hydration sites. Thus, a uniform optimal
setting for different protein systems should not be expected. Therefore, we addressed the
question whether we can find a separate optimal setting for each system by training with a
small set of known active and decoy ligands. The underlying idea is that if a small set of
known active and decoy ligands is available virtual screening can be first performed on this
small training set. The HSRP model that performs best on the small set can then be used for
screening large compound libraries.

To test this idea, we studied whether the optimal HSRP model identified by virtual screening
on a small subset of the DUD dataset is consistent with the best HSRP model for the full
DUD dataset. We randomly selected a series of ligand subsets with the same active-to-decoy
ratio as in the full set. Virtual screening using each HSRP model was then performed on
these subsets. The overall performance indicated by the AUC values was plotted for each
subset size in Figure 8. In general, the HSRP model with the highest AUC value for the
subsets also achieved the best enrichment quality on the full DUD dataset. For example, for
HIVPR the T0.25 HSRP model with a 1.0 Å cutoff performs significantly better than any
other model on all subset sizes and the full DUD dataset. We also observe that multiple
HSRP models have similar enrichment qualities on the small subsets. For example, in the
case of 1NFU, virtual screening results on subsets with 5, 10 or 20 active ligands suggest a
similar performance of the posHS, T0.25 and T0.75 HSRP models using a 1.5 Å cutoff.
Indeed, the enrichment quality using these models also displayed no significant difference
on the full DUD dataset. Overall, our results suggest that we can reliably identify optimal
HSRP models by using a small training sets of known active and decoy ligands.

Conclusions
We presented a new concept to select protein pharmacophore elements important for ligand
binding using hydration site analysis. The underlying hypothesis is that water molecules that
are replaced by the ligand can significantly contribute to the free energy of ligand binding if
those water molecules gain free energy upon release to bulk solvent. Thus, protein
pharmacophore elements spatially co-localized with those hydration sites can be important
for ligand binding. Tests of this concept on five different protein structures (three protein
systems) revealed that HSRP models can be identified that display similar or only slightly
worse enrichment quality for most protein systems but that a training process on a small set
of known actives and decoys might be necessary to select the optimal settings. While no
significant improvement in enrichment quality was observed using HSRP models, the major
advantage is that the virtual screening efficiency is drastically improved by a factor of 200–
500 compared to using all protein pharmacophores. Thus, the reduction of the size of the
pharmacophore model allows HSRP to be utilized for screening of large ligand libraries.

Some limitations of utilizing HSRP models, however, should be noted. First, this concept
requires initial MD simulations of the ligand-unbound form of the protein. However, those
simulations need to be performed only once. Second, the training process requires
knowledge of a small set of actives for the target protein of interest. If such data is not
available, robust but not optimal enrichment can nevertheless being obtained using HSRP
models without the training process. Third, the focus on hydration sites as pharmacophore
selection criteria neglects important contributions of protein-ligand binding. For example,
the strength of hydrogen bonds between protein and ligand can vary due to the protein and
ligand environment. Thus, hydrogen bonding pharmacophores will have different
importance independent of the hydration site data. Strong direct interactions between protein
and ligand or conformational restraints on the binding pose of the ligand can cause the
replacement of energetically favorable water molecules, as shown for HIVPR for HS2 and
HS3 (Figure 6). Also neglected are potential water mediated protein-ligand interactions.
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This problem could be addressed by including pharmacophores representing water-mediated
interactions. In future work, we plan to extend our current concept of HSRP to incorporate
these effects so as to generate even more robust protein pharmacophores models.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
1D example for determining water distribution function. Oxygen atoms (red spots) are
located on grid, and probability of occupancy is mapped using a Gaussian distribution
function (left side). The distribution function is averaged over many snapshots (in this
example: three) of an MD simulation (right side). Tight binding water molecules display
pronounced peaks.
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Figure 2.
Protein pharmacophores identified in the active site of fXa:1NFU (a) compared with the
interaction features between fXa and its co-crystallized ligands (b: RRP in 1NFU, c: PR2 in
1F0S, d: XLD in 1MQ6). The coordinates for binding site residues shown as grey sticks
represent the minimized crystal structure of fXa. a: The pharmacophore elements
representing potential ligand functional groups are coded as follows: orange dots as
hydrophobic groups, cyan lines as hydrogen bond donor groups, pink lines as hydrogen
bond acceptor groups. b–d: Red dash, hydrogen bond interaction; Yellow sphere,
hydrophobic interaction. A conserved water molecule (WT1) observed in all three crystal
structures and a mediating water molecule in 1NFU (WT2) are shown as red spheres.
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Figure 3.
Protein pharmacophores identified in the active site of HIVPR (left) and the interaction
between the cyclic sulfamide HIVPR inhibitor 1AJV:NMB and the binding site residues.
The binding site residues are shown as grey sticks. The pharmacophore features are color-
coded as described in Figure 2.
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Figure 4.
Protein pharmacophores identified in the active site of pcDHFR (left) and the interaction
between the classical antifolate MTXO and binding site residues of 1DAJ (right). The
binding site residues and the co-factor NADPH are shown as grey sticks. The
pharmacophore features are color-coded as described in Figure 2.
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Figure 5.
Hydration sites identified in the binding site of factor Xa. For clarity, hydration sites that are
not accessible to the ligands or on the protein surface are removed. The protein structure
shown is the minimized crystal structure of 1NFU. In the left panel, only hydration sites
identified from 1NFU are shown. Hydration sites that contribute both entropically and
enthalpically when replaced by ligands are shown in blue. The hydration sites whose
entropic gain surpasses the enthalpic loss when replaced by ligands are shown in purple. The
hydration sites whose enthalpic loss is larger than the entropic gain when replaced by
ligands are shown in orange. In the right panel, the hydration sites identified from three
different starting structures of factor Xa were overlaid (red: 1F0S, green: 1MQ6, orange:
1NFU).
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Figure 6.
Hydration sites identified in the active site of HIV protease (left) and pcDHFR (right).
Hydration sites that contribute both entropically and enthalpically when replaced by ligands
are shown in blue. The hydration sites whose entropic gain surpasses the enthalpic loss when
replaced by ligands are shown in purple. The hydration sites whose enthalpic loss is larger
than the entropic gain when replaced by ligands are shown in orange. Some of the
interactions between specific hydration sites and protein residues that are discussed in the
text are shown as red dashed lines.
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Figure 7.
Comparison of AUC values from different virtual screening studies using HSRP models at
1.0 Å cutoff (left) and 1.5 Å cutoff (right).
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Figure 8.
AUC results use different hydration-site-restricted pharmacophore models to screen against
random selected subsets. The AUC was plotted against each subset with 5 (sub5), 10
(sub10) or 20 (sub20) active ligands and the full DUD dataset. Results of the HSRP models
using the 1.0 Å distance cutoff are shown using solid lines and that of the 1.5 Å cutoff are
shown using dashed lines. For AUC of each subset, the standard error was computed on 20
randomly sampled ligand subsets.

Hu and Lill Page 27

J Chem Inf Model. Author manuscript; available in PMC 2013 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 1.
Overall scheme for generating hydration-site restricted pharmacophore models
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