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Abstract
The notion of activity cliffs is an intuitive approach to characterizing structural features that play a
key role in modulating biological activity of a molecule. A variety of methods have been
described to quantitatively characterize activity cliffs, such as SALI and SARI. However, these
methods are primarily retrospective in nature; highlighting cliffs that are already present in the
dataset. The current study focuses on employing a pairwise characterization of a dataset to train a
model to predict whether a new molecule will exhibit an activity cliff with one or more members
of the dataset. The approach is based on predicting a value for pairs of objects rather than the
individual objects themselves (and thus allows for robust models even for small structure-activity
relationship datasets). We extracted structure-activity data for several ChEMBL assays and
developed random forest models to predict SALI values, from pairwise combinations of molecular
descriptors. The models exhibited reasonable RMSE’s though, surprisingly, performance on the
more significant cliffs tended to be better than on the lesser ones. While the models do not exhibit
very high levels of accuracy, our results indicate that they are able to prioritize molecules in terms
of their ability to activity cliffs, thus serving as a tool to prospectively identify activity cliffs.

1 Introduction
The landscape paradigm for structure-activity relationship (SAR) data was first proposed 20
years ago1 and has recently seen a resurgence with a number of studies describing new ways
to quantify and visualize activity landscapes. When SAR data is viewed as a landscape, with
the X-Y plane representing structural characteristics (which will usually be a 2-dimensional
representation of a multi-dimensional descriptor space) and the Z-axis representing the
observed activities, one can identify two broad types of regions on the landscape - smooth
rolling regions, corresponding to set of molecules exhibiting continuous SAR (i.e., similar
structures and similar activities) and rough, gorge-like regions (i.e., very similar structures,
but large differences in activity) corresponding to molecules that exhibit SAR discontinuity.
The latter have also been term activity cliffs.2 From a medicinal chemistry point of view, the
latter regions of a landscape can be the most interesting as they can provide insight into
structural features that are key to improving (or conversely reducing) potency. There is a
rich history of methods that have correlated structural differences with corresponding
differences in activity – matched molecular pairs,3 SAS maps4 and more recently SALI5 and
SARI.6 Both SALI and SARI focus on numerically characterizing a structure activity
landscape. The former is defined for a pair of molecules as

(1)

where Ai and Aj represent the observed activities of molecules i and j, and sim(i, j)
represents the structural similarity between the two molecules (usually based on some form
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of fingerprint similarity). Using the SALI metric, one can take a collection of n molecules
and represent them as an n × n matrix of SALI values - larger values representing more
significant activity cliffs. The SARI approach is based on a score defined as

(2)

where the individual score terms are derived on the basis of potency and pairwise
similarities. The reader is referred to Ref. 6 for a detailed discussion of this approach.

In either case, one can take the numerical values and visualize them in a variety of ways
ranging from heatmaps of SALI matrices to network representations.5, 7 These visualizations
then allow the user to explore the landscape, quickly identifying a range of activity cliffs,
which an then be examined in detail. Apart from identifying individual activity cliffs, a
variety of other SAR constructs, such as “activity ridges”8 and multi-target landscapes9 can
also be identified and characterized.

A feature common to all, recently published work on activity landscapes is that they are
primarily retrospective. That is, the methodologies developed are used to analyze SAR
datasets for which activities have already been experimentally obtained. For example, using
the SALI, one can characterize SAR patterns in a dataset but does not provide insight into
whether a new molecule may be part of an activity cliff, with respect to the original dataset.
A number of applications have attempted to extract SAR rules based on the landscape (e.g.,
similarity potency trees10 and multi-target landscape analyses11) or directly identify
structural modifications that lead to activity cliffs.12, 13

1.1 Motivation
The preceding discussion highlights the utility of retrospective analyses of SAR data using
the activity landscape paradigm. But equally, if not more, interesting is determining whether
a new, untested molecule might be an activity cliff in the context of the original dataset. For
the remainder of this work we focus on the use of SALI to quantify activity landscapes.
More specifically, the ability to predict SALI values would be useful as it would allow us to
both fill in empty regions of an activity landscape as well as extend a structure-activity
landscape. Note that this approach to expanding the extent of a SAR dataset does not lend
itself to scaffold hopping since the premise of scaffold hopping is that one generates new
cores, which differ substantially from the starting structure.

In traditional QSAR modeling approaches, one simply predicts the activity of a new
molecule and would then evaluate the SALI (or SARI or some other measure) to determine
whether the molecule leads to an activity cliff. However, the fact that an activity cliff
represents a SAR discontinuity2 implies that most statistical and machine learning methods
will be unlikely to predict very different activities for two structurally similar molecules. In
other words, a new molecule, similar to a subset of the training set, will tend to have a
predicted value that is similar to those molecules, rather than a drastically different value.

An alternative approach, that is the focus of this paper, is to directly predict SALI values for
pairs of molecules. Thus rather than predict individual activities, we predict SALI values for
pairs of molecules. This approach is somewhat similar to the SPREAD method14 which
identified substructures that were predictive of activity differences. However, our solution
considers both activity differences and structural similarities. As a result, instead of ranking
compounds in terms of their predicted activity, we instead rank a compound in terms of its
predicted SALI; i.e., its predicted ability to exhibit an activity cliff when paired with other

Guha Page 2

J Chem Inf Model. Author manuscript; available in PMC 2012 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



molecules in the dataset. This approach could be useful when deciding how far to extend an
analog series as well as prioritizing scaffolds for further study.

This does not completely alleviate the problem of discontinuities, since SALI values are
infinite when the Tc is 1.0. However, predicting SALI values allows us to work with smaller
datasets (since the objects to predict are pairs of molecules), that would ordinarily lead to
unreliable models if we were working with activities. Of course, this means that the
approach is not practical for very large datasets.

The paper is organized as follows. Section 2 describes the datasets used in this study.
Section 3 presents the methodology we employ to predict activity cliffs and Section 4
discusses the results of the predictive models. Finally, Sections 5 and 6 discusses some of
the issues underlying this approach and possible extensions of this work.

2 Datasets
For this study we considered a number of datasets, which are summarized in Table 1. The
Cav-alli dataset was employed in our previous studies consisted of 30 molecules studied by
Cavalli et al15 as possible hErg inhibitors using a CoMFA modeling approach. The reported
endpoint for the molecules was a pIC50. The remaining datasets were obtained from
ChEMBL. All three assays in-volved direct binding to a human target and we considered the
subset of molecules in each assay that had non-censored experimental values. The Costanzo
dataset16 consisted of 60 α-ketoheterocyclic inhibitors of α-thrombin. The reported IC50
values ranged from 3 nM to 82 μM. The Kalla dataset17 consisted of 38 8-(C-4-pyrazolyl)
xanthines, identified as antagonists of the A2B adenosine receptor. The reported Ki values
ranged from 0.9 nM to 42 μM. Finally, the Dai dataset18 consisted of 44 3-aminoindazole
derivatives studied for their ability to inhibit the VEGF and PDGF receptor families, with
IC50 values ranging from 3 nM to 12 μM.

3 Methodology
As noted above, the problem of identifying activity cliffs involving new molecules can be
reduced to predicting the SALI value for the new molecule and a preexisting molecule. Note
that this does not result in an activity prediction for the new molecule; rather, it allows us to
rank a set of new molecules in terms of their predicted ability to exhibit a significant activity
difference with respect to one or more of the molecules in the training set.

Given a training set of N molecules, we generate a new training set of  objects, where
each object is a pair of molecules from the original training set. The dependent variable for
each pair i, j, is the SALI value, Si,j. SALI values were evaluated using the 1051-bit BCI
keyed fingerprints (Digital Chemistry, UK) or the CDK19, 20 1024-bit path fingerprints.
Based on the definition of SALI, it is possible that a pair of molecules have a Tc = 1.0
resulting in infinite values. For such cases, we replaced the infinite value with the highest
non-infinite SALI value for that dataset.

The next step is to generate a set of independent variables. Since the new dataset consists of
pairs of molecules, we consider the descriptors for the resultant objects as a function of the
descriptor values of the individual molecules. For an object, representing the i’th and j’th
molecules, its descriptor vector can be taken as the arithmetic mean of the descriptor vectors
of the individual molecules. We denote this aggregation function as fmean. Alternative
functions that were investigated included the absolute difference of the individual
descriptors, denoted by fdiff and the geometric mean of the individual descriptor vectors,
denoted by fgeom.
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Given the independent and dependent variables for the pairwise dataset, we can now
proceed to model development. For this study we focused on the use of random forest
models.21 This was motivated by the fact that such models tend not to overfit the training
data (given a sufficiently large number of trees) and the fact that the algorithm implicitly
performs feature selection. As a result, this allows us to forgo an explicit feature selection
step and work directly with the descriptor pool (after removal of correlated and constant
descriptors). Furthermore, there is no reason, a priori to assume that the underlying SAR’s
are linear. A random forest model, being an algorithmic approach22 (as opposed to a
distributional one such as linear regression) makes no such assumptions. We employed the
implementation of random forest from the randomForest package, in R 2.11.0.23 The models
were built using 500 trees, and randomly sampled the descriptor pool for a given dataset,

using  descriptors at a time, where N is the number of descriptors in the pool. By
default, the method builds individual trees using 63% of the dataset and tested on the
remainder (the so called out-of-bag data). The final predicted values are obtained by
averaging the predictions for each observation from from all 500 trees. We initially
employed a training/test set split (80% of the dataset was randomly assigned to the training
set) and these results are reported in Table 2. We also developed models (Section 4.1) using
the entire dataset and observed similar RMSE and R2 values. Given the fact that the random
forest algorithm builds a model based on out-of-bag data, the similarity in performance of
models built using the entire dataset and models built using a training/test split is not
surprising.

We employed the CDK to evaluate 109 2D and constitutional descriptors for each molecule.
For each dataset, we performed objective feature selection by removing descriptors with
constant or near-constant values followed by removal of descriptors that are highly
correlated with others (using an R2 cutoff of 0.8). The sizes (Ndesc) of the final descriptor
pool for each dataset are summarized in Table 1.

A side effect of the proposed approach is that one can build relatively robust models for
datasets of small size – say, 20 molecules. Of course, a large training set is just one aspect of
a reliable model and other considerations such as diversity, descriptor selection and so on
still play an important role.

3.1 Is structural information duplicated?
The preceding discussion raises the issue of explicitly duplicating structural information in
the independent and dependent variables. More specifically, both the dependent variable
(i.e., the SALI values) and the aggregated (topological) descriptors characterize the
molecules’ structure. One might therefore ask whether models built using such data perform
over-optimistically. Given the nature of the descriptors used in the independent and
dependent variables (the former being based on multiple atom and bond features and the
latter derived from purely topological paths), we believe that such a phenomenon is unlikely.
Fig. 1 displays a histogram of the pairwise Pearson correlations between the SALI values
and each of the descriptor values for the Cavalli15 dataset, using the different aggregation
functions described above. It is evident, that the highest R2, between any of the descriptors
and the SALI values is less than 0.15. Similar behavior was observed for all the datasets
used in this study. These observations suggest that problems arising from the inclusion of
structural information simultaneously in the dependent and independent variables is
minimal.

4 Results
We first consider the application of the SALI prediction methodology to the Cavalli dataset.
We developed three random forest models, using the three aggregation descriptor
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aggregation functions described in Section 3. Fig. 2 presents the predicted versus observed
SALI values from the three models and Table 2 summarizes the performance metrics for the
three models. Overall the different aggregation functions do not differ dramatically in terms
of the final model performance as root mean square error (RMSE) on the test set ranges
from 1.01 to 1.07 log units, which is lower compared to the standard deviation of the
dependent variable. However, fmean appears to lead to the best performance (RMSE = 1.01
and R2 = 0.58). In contrast, the RMSE and R2 values for Y-scrambled24 models using the
different aggregation functions ranged from 1.58 to 1.61 log units and 0.003 to 0.01,
respectively.

Note that the predictions on the low end of the SALI values are not as important as those at
the high end - simply because low SALI values correspond to small activity cliffs, which are
likely not very interesting. Given that observation, it is encouraging to observe that all three
models perform relatively well at the higher end of the SALI spectrum. For this example, the
three most significant activity cliffs are in fact not very significant activity cliffs in an
absolute sense - the Tc for the three pairs are just 0.2, 0.30 and 0.29, though the activity
differences were 4.93, 5.0 and 5.11 log units respectively. But more importantly, it is clear
from all three panels that the there appears to be two different systematic prediction errors -
smaller SALI values are overestimated whereas larger values are underestimated. A possible
explanation for this behavior is that the descriptors do not sufficiently differentiate
observations with low and high SALI values. In other words, the descriptor profile for
observations with low SALI values is sufficiently similar to those with high SALI values. To
test this, we split the Cavalli dataset into two groups - low and high - using the median SALI
value as the cutoff. We then evaluated the pairwise descriptor distance distributions for each
each of the groups, using the Euclidean distance between all descriptors in the pool. Figure 3
indicates that the distance distributions are essentially identical. Though random forest
models employ a subset of the descriptor pool for each tree, the same reasoning can be
applied to these subsets. These trends appear in the other datasets (Figure 4) but to varying
degrees and not always consistently. For example, in the Costanzo dataset, we see that the
higher SALI values are somewhat underestimated. The concept of descriptor similarity
could also be applied to these cases. But a more fundamental explanation of this behavior is
not available at this time.

We observed that the performance of models based on geometric mean aggregation function
did not differ substantially from those built with the arithmetic mean. This was also true of
the other datasets and so the following discussion omits the results obtained when using
fgeom. In fact, a paired t-test between the predicted SALI values (for the training set) using
models built with the different aggregation functions (i.e., fmean vs fdiff, etc.) indicated that
the differences between the sets of predictions was statistically insignificant (all p-values >
0.1). Fig. 4 summarizes the models built on the ChEMBL datasets using fdiff and fmean as the
aggregation functions. Table 2 reports the model statistics Of the three, the Costanzo stands
out as being rather poor given the training and test set RMSE values being quite close to (or
greater than) the standard deviation of the dependent variable. While the differences in
model performance do not vary significantly with the aggregation function used, we see that
for all the ChEMBL datasets, fdiff leads to a slightly better model in terms of RMSE and R2

than when using fmean. As with the Cavalli dataset, the SALI models exhibit more variance
for small SALI values (i.e., less significant cliffs) but appear to perform better at the higher
end of the SALI values. However in all three cases, systematic prediction errors are
apparent. Based on these observations, we arbitrarily chose fdiff as the aggregation function
for subsequent analyses. Table 3 and Figure 5 summarizes the performance of the models
built using the reported activity data (original, single molecule activity) for the Costanzo,
Kalla and Dai datasets. Each of these models employed the entire dataset (rather than
splitting into a training and testing set) and exhibit relatively poor performance as indicated
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by the RMSE (ranging from 0.76 to 1.00 log units) and R2 (0.18 to 0.34). The model for the
Kalla dataset is especially poor, given the RMSE is greater than the standard deviation of the
dependent variable. The poor performance of these models can be partially ascribed to the
small sizes of the dataset. It should be note that this methodology is not aimed at modeling
the original, usually small, SAR dataset. It is well known (and evident from the current
analyses) that small datasets do not necessarily lead to very robust or reliable machine
learning models. Instead, the methodology focuses on pairwise datasets –which are usually
large enough for a statistically significant model. Based on the poor performance observed
for the Costanzo dataset, we excluded it from our subsequent discussions.

4.1 An alternative validation approach
Since the model is built on pairs of observations, performance measures characterizing the
model are based on the accuracy of pairwise SALI values. Thus the preceding section
validated models based on holding out pairs of observations and evaluating the RMSE and
R2 for the predicted values of these held out pairs.

The model can also be tested in a slightly different approach by checking whether it can
correctly identify cliffs between a new molecule and the members of the training set. In fact,
such a scenario would be the anticipated, prospective use case for such a modeling
methodology. To test this, we consider the original set of n individual molecules in a dataset
and hold out m molecules (as opposed to holding out a set of observations from the pairwise
dataset). We then evaluate the SALI values (n − m)(n−m−1) / 2 pairs of molecules and
develop a random forest model. In contrast to the models previously described, we rebuilt
these models using the entire set of n molecules. The model is then used to predict the SALI
values between the m holdout molecules and the (n − m) remaining molecules. As a result,
instead of a just m predicted values, we obtain m × (n − m) predicted values for the test set.

We first performed this analysis with the Kalla dataset. Since predictions of new molecules
involve n predictions per molecule, we removed ten molecules from the original dataset and
rebuilt the random forest model. The hold out molecules included cases that displayed
significant activity cliffs with various members of the training set, as well as other cases that
did not really exhibit cliffs with any member of the training set. We then evaluated the
pairwise descriptor values for these ten molecules with the training set molecules and
obtained predictions of the log(SALI) values. Figure 6A summarizes the performance of the
model on the training set as well as for the prediction set. From a numerical point of view,
the performance of the model on the prediction set degrades somewhat (RMSE of 0.41
versus 0.63 for the training set). As noted above, the variance of the prediction is higher at
the lower scale of log(SALI) values. This is highlighted in Figure 7, where we divided the
observed log SALI values into three groups, low, medium and high (based on the quartiles
of the values) and aggregated the prediction residuals for the observations belonging to each
group. Clearly, for lower SALI values (i.e., less significant cliffs), the prediction errors are
larger and more widely distributed. While 6A indicates that a number of the more significant
activity cliffs are quite well predicted, Figure 7 indicates that as a group the observations
with higher log SALI values tend to exhibit a small range of non-zero residual errors.
However it is clear from the scatter plot that number of relatively significant activity cliffs
have been underestimated.

Given that large SALI values can arise due to high structural similarity, even when the
activity difference is small, simply examining log(SALI) values is not completely
informative. Specifi-cally, we are interested in the predictions for the actual activity cliffs,
where both the difference in activity and the structural similarity is very high. Figure 6B
visualizes this information. Each point corresponds to a pair of molecules, which are shaded
by the absolute prediction residual for that pair. Thus, the “true” cliffs are represented by
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points lying towards the bottom right corner of the plot. In this case we see that there are a
number of pairs of molecules with 1 − TC ≤ 0.1 and 100-fold or better difference in activity.
While many of these pairs are associated with a high prediction residual, there are a number
with low to medium residuals.

Figure 8 displays the structures of three hold out molecules (top row) and a selection of
structures, which which these hold out molecules were predicted to exhibit an activity cliff.
For each molecule, the Ki value is listed along with the absolute residual value (log(SALI)
units). For molecules 349288 and 349699, the predicted cliffs are relatively accurate, as
evidenced by the low residuals. For 349138 on the other hand, most of the residuals were
were relatively high. While we have highlighted a number of cliffs, Figure 6C makes it clear
that the predictions for this molecule were, on average, worse than for the other two
molecules.

Figure 9 summarizes the results for the same set of analyzes described above, applied to the
Dai dataset. As before we removed ten molecules (top row of Figure 10) and rebuilt the
random forest on the paired cases with the remaining 34 molecules. We then predicted the
pairwise SALI values for the ten hold-out molecules with the remaining 34 molecules. A
plot of the predicted versus observed log(SALI) values for the training and prediction sets
are displayed in Figure 9A. As before the model performs poorly on the lesser cliffs, but
improves for the more significant cliffs (RMSE for the training set and prediction sets were
0.37 and 0.43 log units respectively). Figure 7 also highlights the fact that the model
performs poorly at the lower end of the log(SALI) spectrum. However, the 2 most
significant cliffs are under-estimated. However, in comparison to the Kalla dataset, the
distribution of absolute residuals aggregated by the hold-out molecule (Figure 9C) are
similar, with a median absolute residual of less than 0.3 log units. For this dataset, the
number of “real” cliffs is relatively low as shown in Figure 9B. Interestingly, the compound
pairs that display moderate to significant cliffs are relatively well predicted - in fact, the
maximum residuals are observed for the least significant cliffs.

We then considered three of hold-out molecules and some of the members of the training set
with which they are predicted to show activity cliffs. For this dataset, there are relatively few
“true” activity cliffs. For example, while molecules 371259 and 371307 have a 1000-fold
difference in activity, their Tc = 0.68, and would not represent a truly significant cliff.
However, the pair is well predicted with a residual of 0.04 log units. if we consider the
subset of predictions where the Tc ≥ 0.8 we note that the median absolute residual is 0.24
log units. However, the activity differences are not always very large ranging from 1.1-fold
to 13-fold. Two such examples are shown in Figure 10, where the only difference is in the
position of the methyl substituent (371259 and 371224). Similar behavior is observed with
the other hold-out molecules.

5 Discussion
The results described above suggest that predicting pairwise SALI values is a useful way to
identify whether a new molecule will form an activity cliff with one or more members of the
training set. As with all QSAR models, one is limited by the nature of the underlying data,
both in terms of accuracy as well as applicability. We have selected a few ChEMBL assays
for the purposes of highlighting this approach. Given that most of the datasets are small in
size (30 to 50 molecules), models built on the actual activity data do not perform very well.
In contrast the models built on the pairwise data usually exhibit improved performance -
which could certainly be ascribed to the larger dataset involved. However, in cases where
the pairwise model does not exhibit improved performance, we believe that predictive
modeling of activity cliffs in the original dataset will not be fruitful.
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Given that many of the models show relatively poor statistics on the pairwise data, it is
important to note that much of this is due to the large variance in the predictions for the less
significant cliffs. One possible reason for the increase in variance for these portions of the
dataset is the fact that the distribution of the log(SALI) values tends to be skewed to the
right (Figure 11). In general we see that the smaller SALI values constitute a relatively small
portion of the dataset.

Another factor affecting the models built on pairwise data is the descriptors that are
employed. While the choice of initial descriptors is always open to debate, we partially
avoid a biased selection by employing a random forest model to perform implicit feature
selection. However, given an initial set of descriptors we observe that the models are robust
to the different aggregation functions to derive a pairwise descriptor representation from the
descriptors for the individual compounds. This is a useful observation given that there
appears to be no rule to select one aggregation function over another a priori. While random
forests do allow us to avoid feature selection, it is clear that other models, such as neural
networks or support vector machines, could lead to more predictive solutions. At this stage,
our aim is to highlight the modeling procedure and we believe that the random forest allows
us to highlight the utility of this approach without sacrificing too much by way of predictive
performance.

6 Conclusions
We have presented an approach to extending a structure-activity landscape in an indirect
fashion, by predicting the propensity of a new molecule to exhibit an activity cliff with one
or more molecules in a pre-existing SAR dataset. The method is based on building a model
on pairwise SALI values (dependent variable) and pairwise aggregated descriptor values
(independent variables). For a new molecule, we obtain n pairwise SALI predictions (since
we must estimate the SALI value for each training set molecule and the test molecule). The
predicted SALI values can then be used to judge whether the new molecule will exhibit a
cliff and whether such a cliff is in the desired direction (i.e., improving potency versus
worsening potency). To test this strategy we have developed random forest models to
predict SALI values for several ChEMBL datasets. While the model performance statistics
are not stellar, we observe that this is primarily due to high prediction variance at the lower
range of SALI values. In contrast, the more significant cliffs are relatively well predicted,
though, unsurprisingly, the most significant cliffs are not always well predicted.

In summary, this approach extends the activity cliff concept, from that of a retrospective
analysis tool to a prospective tool that could be used to guide synthetic campaigns in their
goals of improved potency.
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Figure 1.
Distribution of Pearson correlations between SALI values and the descriptors for the Cavalli
dataset. Three descriptor aggregation functions are considered.
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Figure 2.
Plots of predicted versus observed SALI values obtained using random forest models, on the
Cavalli dataset. Each panel corresponds to the use of a different descriptor aggregation
function.
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Figure 3.
A comparison of the pairwise descriptor distribution for low and high SALI values in the
Cavalli dataset. This figure employed the descriptor values generated using the fdiff
aggregation function and Euclidean distances were evaluated using all the descriptors in the
pool. The low group is defined as those observations with SALI less than 2.03 and the
remainder are assigned to the high group.
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Figure 4.
Predicted versus observed SALI values, obtained from random forest models for the three
ChEMBL datasets. The three plots correspond to the two different aggregation functions
(fdiff and fmean respectively).
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Figure 5.
Results of random forest models developed using the three ChEMBL dataset. In each case
the model was built using the log10 of the observed activity.
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Figure 6.
Detailed analysis of SALI predictions for the Kalla dataset. A - a plot of predicted versus
observed log(SALI) values for the training set and the hold out set. B - a summary of the
training set, which plots the structural difference versus the logarithm of the ratio of the
activities for each pair of molecules in the prediction set. Points are shaded by their absolute
residual. C - a box plot summarizing the distribution of residuals associated with predictions
from each of the hold out molecules.
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Figure 7.
A summary of the prediction residuals for log(SALI) values, grouped by whether the actual
log(SALI) value for that observation was low, medium or high. The grouping is based on the
quartiles of the observed values.
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Figure 8.
Three of the hold out molecules for the Kalla dataset and training set members with which
the hold outs exhibit predicted activity cliffs. Bold numbers are ChEMBL MOLREGNO
values and numbers in parentheses are the absolute prediction residual in log(SALI) units.
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Figure 9.
Detailed analysis of SALI predictions for the Dai dataset. A - a plot of predicted versus
observed log(SALI) values for the training set and the hold out set. B - a summary of the
training set, which plots the structural difference versus the logarithm of the ratio of the
activities for each pair of molecules in the prediction set. Points are shaded by their absolute
residual. C - a box plot summarizing the distribution of residuals associated with predictions
from each of the hold out molecules.
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Figure 10.
Three of the hold out molecules for the Dai dataset and training set members with which the
hold outs exhibit predicted activity cliffs. Bold numbers are ChEMBL MOLREGNO values
and numbers in parentheses are the absolute prediction residual in log(SALI) units.
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Figure 11.
Distribution of observed log(SALI) values for the three ChEMBL datasets.
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Table 3

Performance metrics for the random forest models built on the single molecule activity data, for each
ChEMBL dataset. In each case the model was built using the log10 of the reported activities.

Dataset Y-range SD RMSE R2

Costanzo 4.67 1.22 0.80 0.18

Kalla 4.44 0.78 1.00 0.32

Dai 3.60 0.94 0.76 0.34
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