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ABSTRACT: The inclusion and accessibility of different methodologies to explore chemical data sets has
been beneficial to the field of predictive modeling, specifically in the chemical sciences in the field of
Quantitative Structure−Activity Relationship (QSAR) modeling. This study discusses using contemporary
protocols and QSAR modeling methods to properly model two biomolecular systems that have historically
not performed well using traditional and three-dimensional QSAR methodologies. Herein, we explore, analyze, and discuss the
creation of a classif ication human Ether-a-go-go Related Gene (hERG) potassium channel model and a continuous Tetrahymena
pyriformis (T. pyriformis) model using Support Vector Machine (SVM) and Support Vector Regression (SVR), respectively. The
models are constructed with three types of molecular descriptors that capture the gross physicochemical features of the
compounds: (i) 2D, 2 1/2D, and 3D physical features, (ii) VolSurf-like molecular interaction fields, and (iii) 4D-Fingerprints.
The best hERG SVM model achieved 89% accuracy and the three-best SVM models were able to screen a Pubchem data set with
an accuracy of 97%. The best T. pyriformis model had an R2 value of 0.924 for the training set and was able to predict the
continuous end points for two test sets with R2 values of 0.832 and 0.620, respectively. The studies presented within demonstrate
the predictive ability (classification and continuous end points) of QSAR models constructed from curated data sets, biologically
relevant molecular descriptors, and Support Vector Machines and Support Vector Regression. The ability of these protocols and
methodologies to accommodate large data sets (several thousands compounds) that are chemically diverse − and in the case of
classification modeling unbalanced (one experimental outcome dominates the data set) − allows scientists to further explore a
remarkable amount of biological and chemical information.

■ INTRODUCTION
The field of toxicology modeling, and in general predictive
modeling, borrows heavily from nonphysical science based
research areas such as statistics, psychology, sociology, and
computer science. Thus, the field of predictive modeling
benefits from a cornucopia of methodologies and protocols that
is adept at managing data that is unbalanced, diverse, and
correlated due to hidden factors. Like most areas of chemistry
and biology, or any active research area, there are some systems
(data sets) that have yet to be adequately described or analyzed
because satisfactory methods and protocols have not been
discovered.
The recently published article by Huang and Fan1 explores

two notoriously difficult systems to adequately model: the
inhibition of the human Ether-a-go-go Related Gene (hERG)
potassium channel and the toxicity and mutagenesis of
Tetrahymena pyriformis (T. pyriformis). A genetic algorithm2

was used to select molecular descriptors that were then
provided to a support vector machine (SVM)3−5 to construct
the models; the importance of each molecular descriptor was
determined by the SVM. Unfortunately the work presented by
Huang and Fan1 did not take advantage of protocols or
methodologies that would have improved the predictive
abilities of their models. Using the hERG and T. pyriformis
data sets and a universal protocol that is similar to the one

implemented in the Huang and Fan’s article,1 the predictive
models discussed herein are markedly better at discerning if a
compound is hERG active or toxic to T. pyriformis for their
respective data set. The presented protocols take advantage of
known physical properties to analyze and focus the data sets,
while commonly employed protocols are used to construct
sound models. The protocols are presented in a straightforward
manner that can be easily adapted and used to construct
predictive models for other data sets.
The human Ether-a-go-go Related Gene potassium channel

is considered a critical and major component associated with
QT interval prolongation and development of arrhythmia called
Torsades de Pointes (TdP). When the corresponding hERG
potassium channel is inhibited, a fatal disorder called long QT
syndrome6−9 occurs. Development of robust, sound, and
expandable in silico models for predicting hERG potassium
channel affinity is high on the list of current computational
ADMET goals. Many in silico hERG models, using Quantitative
Structure−Activity Relationship (QSAR) approaches, have
been published to predict if a drug candidate has the inclination
to block the hERG channel.10−13 Among the applied
classification methodologies14,15 are Bayesian,16 decision
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tree,17 neural network,15 support vector machine,18−21 and
partial least-squares (PLS).22 A PLS classification hERG model
built by Keseru22 had an accuracy of 85% for a training set of 55
compounds and an accuracy of 83% for a test set of 95
compounds. Sun16 published a Bayesian-based classification
model using a training set of 1979 in-house compounds and a
test set of 66 compounds. Sun’s hERG classification model had
a receiver operating characteristic (ROC) accuracy of 87% for
the training set and a ROC accuracy of 88% for the test set.
Gepp and Hutter17 reported a decision tree hERG classification
model with an accuracy of 92% for a training set of 264
compounds and an accuracy of 76−80% for a test set of 75
compounds. Roche et al.15 implemented supervised neural
networks to construct a hERG classifying model with an
accuracy of 93% for a 244 compound training set and an
accuracy of 82% for a test set comprised of 72 compounds. Li et
al.23 published a hERG classification model that employed a
SVM and achieved an overall classification accuracy of 74% for
the training set of 495 compounds and an accuracy of 73% for a
test set of 1877 compounds from a PubChem data set (AID
376).24 Overall, a sampling of successful hERG models from
the literature has mostly used machine-learning methods to
achieve high accuracy for the training set compounds. Among
the studies presented above, only the model built by Li et al.
resulted in a lower accuracy for the training and test sets than
the other studies, but they used a considerably larger training
set of 495 samples (compounds) and a test set with close to
1800 more compounds than the other models (72 to 95
compounds). Moreover, the previously presented model
constructing methods − with the exception of Li et al.’s
protocol − lacked sufficient model validation because they were
only applied to small test sets containing between 72 and 95
compounds. Huang and Fan1 used Li et al.23 hERG training set
of 495 compounds to construct SVM classification models
whose descriptors were selected by a genetic algorithm2,25,26

(GA). The classification model was applied to an external test
set of 1948 compounds from the PubChem bioassay database
(AID 376). The best resulting model had an accuracy near 87%
for the training set and 82% for the test set.1

For better predictive accuracy and mechanistic understanding
of the system of interest, it is preferred that only a single
chemical mechanism is being captured within the QSAR model.
In the field of toxicology predictive modeling, however, it is
hard to confirm the detailed chemical mechanism being
measured in the toxicological experiment. Moreover, many
toxicological experiments are comprised of complicated
chemical reactions, but effective predictive models are still
needed to represent these toxicological experiments.27 Addi-
tionally, the risk of overfitting or construction of models by
chance is reduced due to the structural diversity of the training
set and the use of a multiclass trial descriptor pool. Thus these
models can be incorporated into a toxicology screen and have
the potential to reduce the need for bioassays.
The Tetrahymena pyriformis assay was developed for

predicting the aqueous toxicity of a compound as it relates to
fish lethality.28 Schulz and co-workers have analyzed more than
2,400 compounds and constructed the TETRATOX database29

that is not publicly available. The Schulz and Cronin’s
group30−34 have published many T. pyriformis QSAR studies
and models that explore subsets of the compounds based on
functional groups. For these sets of QSAR models, the authors
applied linear regression to a set of physicochemical molecular
descriptors, such as HOMO and LUMO energies and logP (the

octanol−water partition coefficient), to construct the QSAR
models. Although these QSAR models had regression
coefficient of determination values that indicate statistical
significance (R2 > 0.8), the predictive abilities of these QSAR
models was tuned for compounds that are similar to those used
to build the model, i.e. the training set compounds.
Zhu and colleagues35 built a general QSAR model to predict

the T. pyriformis toxicity of compounds, collected 983
compounds from Schultz’s publication, and randomly divided
the compounds into a training set (644 compounds) and a test
set (339 compounds). To validate the training set models, Zhu
et al. collected an additional 110 compounds that were
published more recently by Schultz et al.,34 as a secondary
test set. In the study by Zhu and co-workers, they applied
several commonly used model construction methods to
construct discrete QSAR models. Specifically, individual
QSAR models were constructed using k-nearest neighbors
(kNN), support vector machine (SVM), machine-learned
ranking (MLR), ordinary least-squares (OLS), partial least-
squares, associative neural network (ASNN), and artificial
neural network (ANN); the optimal model from each method
was combined to form a consensus model. The consensus
model returned an R2 value of 0.94 for the training set, 0.88 for
test set 1, and 0.77 for test set 2. The individual models
comprising the consensus model possessed a mean Q2 value of
0.85 for the training set, and these values ranged from 0.72 to
0.95 for the individual models. Additionally, the mean R2 value
for the individual models applied to test set 1 was 0.75 (ranging
from 0.49 to 0.85) and 0.51 for test set 2 (ranging from 0.37 to
0.66). The best performing individual model not included in
the consensus model was constructed using ASNN; this model
had an R2 value of 0.85 and a Q2 value of 0.83 for the training
set and R2 values of 0.85 and 0.66 for test sets 1 and 2,
respectively.
In the study by Huang and Fan,1 the authors used a GA2,25,26

to select the molecular descriptors and a SVM to construct a
continuous model for the T. pyrifomis data set. However, the
GA descriptor selecting protocol made it difficult to find
important descriptors that influence the model and was most
likely the rational for Huang and Fan to suggest that molecular
descriptors are not important when building a QSAR model.
The best T. pyrifomis SVM-GA model in the Huang and Fan
study had a Q2 of 0.86 and coefficient of determination (R2)
values of 0.88 and 0.60 for test sets 1 and 2, respectively.
Additionally, the data sets of Zhu and co-workers have been
used to explain factors that might influence a QSAR model. In
the study of Tetko et al.,36 the T. pyriformis data set was used to
demonstrate that the applicability domain of a QSAR model is
determined by the distance (molecular similarity) between the
compound whose end point is being predicted (commonly the
test set compound) and the training set.
The training set is the cornerstone of a sound and robust

predictive or QSAR model. Constructing a training set
comprised of diverse and unique compounds that are within
known physicochemical limits aids the predictive ability of
models. To improve the accuracy of the SVM-based hERG
model, compounds for the training set were carefully selected
in an effort to filter out redundant information. In a previous
study, we reported a hERG binary classification QSAR model37

constructed using the genetic function approximation38 (GFA)
methodology, and this model was better at predicting a
compound’s propensity to be a hERG channel blocker than
other published classification models.15,22,23,39−42 The training
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set was constructed from a set of 250 structurally diverse
compounds obtained from the literature with known hERG
activity and a condensed version of the PubChem bioassay
(AID 376) containing 876 compounds. This hERG classi-
fication model achieves 91% accuracy for the training set and
83% accuracy for the test set. Furthering our work in the area of
hERG blocking classification modeling, we published another
study43 addressing the active-versus-inactive imbalance typically
seen in high-throughput screening results. The PubChem
hERG Bioassay data set (AID 376; 163 active and 1505 inactive
compounds) was used as the training set after it was pruned of
compounds violating Lipinski’s Rule-of-Five and those that did
not fall within the specified logP range.43 To avoid overfitting
the SVM model, the linear SVM modeling and deletion
procedure was applied to reduce the size of the training set
descriptor pool used to construct the model and then
judiciously selected molecular features from the reduced
descriptor pool. This is the preferred approach and maximizes
the correct classification of compounds for hERG toxicity. An
external data set (the test set) consisted of 356 compounds
collected from available literature data and was comprised of
287 actives and 69 inactives; this collection of compounds was
used to validate the models. The accuracy, sensitivity, and
specif icity of our best model determined from 10-fold cross-
validation were 95%, 90%, and 96%, respectively; the overall
accuracy was near 87% for the external test set. The knowledge
gained from our previous hERG studies is applied to the data
set used by Huang and Fan1 along with the descriptor selection
and model construction methods presented here to construct
robust predictive models.

■ MATERIAL AND METHODS

hERG Data Sets. The hERG training set used in this study
was derived from the one used in the study by Huang and Fan.1

Huang and Fan combined the 495 training set compounds and
the 66 external compounds collected by Li and co-workers23

and designated this as their training set. In this study, Huang
and Fan’s initial training set of 561 compounds was cleaned to
remove compounds complexed with metal ions along with
those that sampled unstable conformations during the
molecular dynamics simulation for the calculation of 4D-
Fingerprints (4D-FPs). A total of 546 compounds remained
and our training set consisted of 210 active and 336 inactive
compounds. Initially, the hERG test set contained 1948
compounds obtained from the PubChem BioAssay AID
376.24 The hERG test set was reduced to 1795 compounds
(220 active and 1575 inactive) in the study by Huang and Fan,1

because the molecular descriptors for 153 compounds could
not be calculated by the chosen molecular descriptor
application; DRAGON.2 It is not uncommon for several
compounds of a large data set to have difficulties when
calculating their molecular descriptors. We used the same
cleaning protocol for the hERG test set− as for the training set
− and compounds with metal ions, structurally ambiguous
compounds (an SDfile entry with two or more compounds),
hERG activators, and compounds also present in our training
set were removed. The cleaned test set contained a total of
1668 PubChem compounds comprised of 163 active and 1505
inactive compounds. The hERG data set compounds from
PubChem AID 376 and the literature compounds were
obtained as 2D molecular structures, converted into 3D
structures using HyperChem 7.044 and geometry optimized

using HyperChem 7.0s MM+ force field (based on the Allinger
MM2 force field45).

The Tetrahymena pyriformis Toxicity Data Set. The
Tetrahymena pyriformis toxicity data set was retrieved from the
article published by Zhu et al.35 This data set provided the
compounds as SMILES strings along with each compound’s
biological end point as the negative logarithm of the
concentration required to inhibit growth by 50% (pIGC50).
The data set was separated by Zhu et al.35 into a training set of
644 compounds and two external validation sets (test sets) with
339 and 110 compounds, respectively. The Zhu et al. T.
pyriformis data set has also been used to explore the domain
applicability of QSAR models36 and factors influencing the
reliability of QSAR models.1 The 3D conformation of the
compounds in the T. pyriformis data set were constructed and
energy minimized using the MMFF94x force field and atomic
partial charges46 with Born solvation (MOE 2010.10
software46).

Molecule Descriptors. The molecular descriptors used to
construct the QSAR models for the hERG and the T. pyriformis
data sets were obtained from two sources. The 2D, 21/2D, 3D,
VolSurf-like, and Semi-Empirical molecular descriptors of each
compound were calculated with Molecular Operating Environ-
ment (MOE) 2010.10 software46 using MMFF94x force field
with the Born solvation model. To capture high-dimensional
dynamic molecular information, 4D-Fingerprints47 of each
compound were calculated and used as molecular descriptors.

Semi-Empirical Molecular Descriptors. Seven AM1 Semi-
Empirical molecular descriptors, calculated with MOE 2010.10,
are part of the trial descriptor pool. These molecular descriptors
values capture the electronic physicochemical properties of the
compounds, specifically the dipole moment, total SCF energy,
electronic energy, heat of formation, the HOMO and LUMO
energies, and the ionization potential.

2D and 21/2D Molecular Descriptors. Adding to the trial
descriptor pool are 228 MOE 2D and 21/2D molecular
descriptors. The 2D molecular descriptors are the numerical
properties evaluated from the connection tables representing a
molecule and include physical properties, subdivided surface
areas, atom counts, bond counts, Kier & Hall connectivity and
kappa shape indices, adjacency and distance matrix descriptors
containing BCUT and GCUT descriptors, pharmacophore
feature descriptors, and partial charge descriptors (PEOE
descriptors). A 21/2D molecular descriptor is defined here as a
3D molecular property represented as an individual (singular)
numerical value and included measures of the conformational
potential energy and its components, molecular surfaces,
volumes and shapes, and conformation dependent charge
descriptors. These descriptors are dependent on the con-
formation of the molecule.

VolSurf Molecular Interaction Fields. The VolSurf48,49

descriptor set contains 76 molecular features based on
molecular interaction fields. These descriptors are alignment
independent and are not strongly dependent on each
compound’s molecular conformation; the 3D molecular
interaction fields are represented as a single numerical value.
The compound is placed in a grid (with the exception of four
VolSurf descriptors that measure the molecular volume, surface
area, globularity, and rugosity), a hydrophobic (dry) and
hydrophilic (wet) probe visits each grid point, and the
interaction energy between the probe and the compound is
calculated. The grid points within an interaction energy range
are considered an iso-contour (iso-surface), and the volume is
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calculated. The combinations of interaction energies and
molecular volumes are used as molecular descriptors.
Universal 4D Fingerprints. The 4D-Fingerprints (4D-FP)

were developed to model47 and classify50 compounds using the
conformation information of a compound from a molecular
dynamic (MD) simulation. With a compound sampling
multiple conformations during a MD simulation, the problem
that too few conformations are analyzed in traditional 3D
fingerprints is alleviated. The descriptor size of 4D-FP varies
related to the number of atoms within a molecule. A total of
613 4D-FPs were calculated and used for T. pyriformis data set,
and 5271 4D-FP descriptors were calculated for the hERG data
set. The difference in the number of 4D-FPs between the
hERG and T. pyriformis data set is due to the physical size of
the compounds in each data set. The largest compound in the
hERG data set contains more atoms than the largest compound
in the T. pyriformis data set, thus the hERG data set required
more 4D-FPs to capture the molecular information contained
in the hERG compounds. The time to compute the 4D-FPs
features of hERG data set and T. pyriformis data set are
approximately 850 and 490 s (or 14 and 8 min), respectively.
These durations are acceptable for the number of compounds
of interest, and inclusion of these descriptors with those of
standard molecular calculation packages is reasonable.
Support Vector Machine (SVM) and Support Vector

Regression (SVR). A support vector machine (SVM)4,5 is a
supervised machine-learning technique that applies a hyper-
plane within the descriptor space in an attempt to separate
(classify) the samples, whereas support vector regression
(SVR)3 applies cost functions to the support vectors and is
suitable for regression model building when the samples have
continuous end points. The end points for each compound
(sample) of the hERG data set are binary − the compounds are
classified as active (1s) or inactive (0s) − while the end points
for the T. pyriformis data set are continuous (the logarithm of
50% growth inhibitory concentration, pIGC50, values ranging
from −2.67 to 3.05). Thus, the hERG classification models
were constructed using a SVM, and the T. pyriformis continuous
models were constructed using a SVR. Models were
constructed and validated using the LIBSVM v2.8851

application and interfaced to R v2.12.252 using the e1071
package v1.6.53

Partial Least Squares (PLS). To identify important
molecular descriptors that accurately represent the pIGC50
end points of the T. pyriformis data set, the PLS loading matrix
was used to assist in the selection of descriptors. PLS applies
principal component analysis and regression methods to
highlight important features and suggests approximate models
using the descriptors and activity values. The pls package v2.254

in R v2.12.252 was used to calculate the PLS loading matrix.
Evaluation of the Classification Model’s Predictive

Ability. To provide a broader understanding of the
classification model’s performance, the accuracy (Acc; correctly
predicted active and nonactive compounds; eq 1), sensitivity
(Sen; correctly predicted active compounds; also referred to as
Recall; eq 2), specif icity (Spe; correctly predicted nonactive
compounds; eq 3), and the Geometric-Mean (G-mean; the
square-root of the sensitivity multiplied by the specif icity; eq 4)
are important model evaluation criteria that should be
considered when examining models. When accuracy is the
only evaluation measure of a classification model reported, the
true predictive nature of the model for the active and inactive
entities can be biased because all of the compounds (entities)

are included in the accuracy measure and inaccuracies in the
prediction of the actives (positives) or the inactives (negatives)
are diminished. Calculating the G-mean value − taking into
consideration the sensitivity and specif icity − provides a single
value (like accuracy) that provides a realistic predictive ability
value of the model (unlike accuracy)

=
+

+ + +
accuracy

tp tn
tp fn tn fp (1)

=
+

sensitivity
tp

tp fn (2)

=
+

specificity
tn

tn fp (3)

‐ = ×Geometric Mean sensitivity specificity (4)

where tp is the number of correctly predicted positives (true
positives; actives), tn is the number of correctly predicted
negatives (true negatives; inactives), fp is the number of
incorrectly predicted positives (false positives; negatives
incorrectly predicted to be positives; inactives predicted to be
actives), and fn is the number of incorrectly predicted negatives
(false negatives; positives incorrectly predicted to be negatives;
actives predicted to be inactives). A fifth method to analyze
classification models is Cohen’s kappa (κ), and it measures the
agreement between classification models or predicted and
known classifications.55 It is defined as

κ = −
−

a e
e

Cohen’s
Pr( ) Pr( )

1 Pr( ) (5)

where Pr(a) is relative observed agreement between the
predicted classification of the model and the known
classification, and Pr(e) is the hypothetical probability of
chance agreement. The Pr(a) and Pr(e) values are calculated
from a confusion matrix. Cohen’s kappa analysis returns values
between −1 (no agreement) and 1 (complete agreement).
Predictive models, when compared to the known classification
of the data set, with Cohen’s kappa values between −1.0 and
0.4 indicate that the model is a poor predictor, values between
0.4 and 0.6 indicate that the model is average, values between
0.6 and 0.8 imply that the model is acceptable, and values
between 0.8 and 1.0 denote that the model is highly predictive.
While G-mean is the primary model evaluation method for this
study, this quintet of classification model evaluation measures
are included to determine the full abilities of the classification
model.

Distance to Model Calculation. Tetko and colleagues
suggested that the descriptor distances between the test
compounds and the training set influence the predictability of
QSAR models.36 To remove potential outliers from test set 2 of
the T. pyriformis data set, the overall and 3-nearest-neighbor (3-
NN) mean Euclidean distance between the training set and
each test set compound was calculated using the scaled
descriptors from the 204-term SVR model.

■ RESULTS AND DISCUSSION
hERG Data Set. SVM Model Building Using the Raw hERG

Training Set. The complete hERG training set (the raw
training set) contains 210 hERG blocking compounds and 336
hERG inactive compounds resulting in a ratio of 5:8, actives to
inactives. All 4D-FPs and MOE descriptors were used to build
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the classification SVM model. The best raw training set SVM
model was selected based on the G-mean metric (eq 4), and the
training and test set performances are listed in the third row of
Table 1. The accuracy, sensitivity, specif icity, and G-mean values
for the training set are listed in the first four columns, while the
last four columns provide these same measures for the test set.
The G-mean value for the raw training set SVM with 10-fold
cross-validation was 81% along with an accuracy of 81%. The G-
mean when applying the model to the external test set was 62%
with an accuracy of 61%. This illustrates that the “best”
classification SVM model built from a raw training set without
limitations applied to the selection of descriptors produces an
overfit model with poor performance when classifying the
hERG test set. Constructing a SVM model using 5577
descriptors (5271 4D-FPs and 306 MOE descriptors) could
reduce the performance of the model’s predictive power since
there is the possibility that a majority of the molecular
descriptors are intercorrelated, and therefore it is harder to
interpret the molecular features associated with a compound
that exhibits hERG blocking behavior.
SVM Model Building Using “F-Score” Filter for Feature

Selection. A simple and effective “F-score” technique for
feature selection was adopted to identify the influential model
features (molecular descriptors) and reduce the need to use a
large descriptor set during SVM model construction.56 F-score
is a simple method that evaluates the discriminative nature of
positive and negative instances. The larger the F-score, the
more likely the molecular feature is especially discriminative.
Used as a criterion to identify if a feature is important for a
SVM model, the F-score was used to explore the impact of
limiting the number of molecular descriptors (features) used to
construct a classification SVM for the hERG data set. The
values of calculated F-scores of the 5577 molecular descriptors
ranged from 0.0 to 0.27. Most of the F-score values for the
molecular descriptors were 0.0 (no significant influence), and
only 200 descriptors had F-score values greater than 0.1. This
indicates that most of the descriptors have small F-scores, and
none of the descriptors have especially discriminative character-
istics based on the F-scores evaluation. Therefore, three F-score
threshold values of 0.0, 0.001, and 0.01 were applied to retain
molecular descriptors with F-score values greater than the
defined thresholds. Trial descriptor pools containing 1289,
1000, and 900 descriptors were used to construct and evaluate
SVM models. The performance of the best SVM model built
using these three feature sets are listed in the fourth to sixth
rows of Table 1. The accuracy, sensitivity, specif icity, and G-mean
values for the training set are listed in the first four columns,
while the last four columns provide these same classification
model evaluation measures for the test set.
The 1289 most influential features based on the largest F-

score values, from the set of 5577 molecular features, were

selected. The best training set SVM model built with 1289
features and subjected to 10-fold cross-validation has a G-mean
value of 80% along with an accuracy of 81%. Applying this
model to the hERG test set resulted in a G-mean value of 61%
and an accuracy of 68%. Compared to the SVM model
constructed for the raw training set with all of the molecular
features, the 1289-feature classification model had approx-
imately the same accuracy for the training set and a pronounced
improvement with respect to the accuracy for the test set. The
1000-feature SVM model for the training set − again evaluated
with 10-fold cross-validation − returned a G-mean value of 82%
with an accuracy of 81%. The G-mean value of the test set when
evaluated with the 1000-feature model was 58% with an
increased accuracy of 74%. The best 900-feature SVM
classification model for the training set with 10-fold cross-
validation had a G-mean value of 81% along with an accuracy of
79%. The G-mean value for the classification of the test set
using the 900-feature SVM model was 59% with an accuracy of
82%. By constructing classification SVM models using the most
prominent molecular descriptors (features) the accuracy of the
predictions for the test sets is improved (the training set
accuracy remains constant), whereas the G-mean score is steady
for the training set while decreasing for the test set. The G-
mean score for the test set is reduced in concert with the
reduction of the number of features used to construct the SVM
models. This is most likely due to the reduction in the number
of molecular features − removal of descriptors that add noise to
the model − while preserving the important information
contained within the subset of molecular descriptors used to
construct the model.

SVM Model Building by Adopting the logP Filter and
Reduced 4D-FPs. Implementing a logP filter to focus the
training set, as carried out in our previous hERG blocking GFA
modeling study,37 combined with the Lipinski’s Rule-of-Five57

filter reduced the size of the training set to 206 compounds (37
active and 169 inactive compounds) and a test set of 876
compounds (29 active and 847 inactive compounds). The
Lipinski’s Rule-of-Five is a well-known filter used to classify
compounds as drug-like or not and can be used as a high-
throughput screening protocol to partition the compounds of
interest. Compounds considered to be nondrug-like, based on
Lipinski’s Rule-of-Five, might have unreliable experimental end
points and were considered noisy data, thus they discarded. It is
well-known that there is a direct correlation between a
compound’s hydrophobic nature and its propensity to induce
hERG blockage; increasing the hydrophobic nature of a
compound increases the hERG blocking effect and vice
versa.20,23,58,59 Thus, compounds were removed from the
training set based on calculated logP values. Specifically, active
compounds with a logP value less than 4.1 and inactive
compounds with a logP value greater than 2.8 were removed to

Table 1. Prediction Performance Measures for the hERG Data Set from the Raw Training and Test Set SVM Models
Determined Using All MOE and 4D-FPs Descriptors (Name raw in the Third Row), 1289 Selected Features (Name select1289
in the Fourth Row), 1000 Selected Features (Name select1000 in the Fifth Row), and 900 Selected Features (Name select900 in
the Sixth Row)

training set percentage (number correct/total number) test set percentage (number correct/total number)

model accuracy sensitivity specif icity G-means accuracy sensitivity specif icity G-means

raw 81 (440/546) 85 (179/210) 78 (261/336) 81.4 61 (1015/1668) 64 (105/163) 60 (910/1505) 62.0
select1289 81 (440/546) 76 (159/210) 84 (281/336) 79.9 68 (1136/1668) 53 (87/163) 70 (1049/1505) 60.9
select1000 81 (444/546) 85 (179/210) 79 (265/336) 81.9 74 (1231/1668) 43 (71/163) 77 (1160/1505) 57.5
select900 79 (430/546) 90 (188/210) 72 (242/336) 80.5 82 (1365/1668) 41 (67/163) 86 (1298/1505) 59.4
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match the mean logP value of active and inactive compounds
from our previous binary classification GFA-QSAR model for
hERG blockage prediction.37 Applying the logP constraint
resulted in training sets that were focused toward the
physicochemical requirements of the hERG receptor. The
three-best performing classification SVM models derived from
this data set are listed in Table 2 and ranked by their G-mean
values. The training set values for accuracy, sensitivity, specif icity,
and G-mean are on the left, and the test set values are on the
right, respectively. The best SVM model constructed by this
protocol and validated with 10-fold cross-validation achieved
89% accuracy and a G-mean value of 79%. The three-best SVM
models were used to evaluate the pruned test set (constructed
from the PubChem data set; AID 376). The resulting accuracy
and G-mean values for applying the best SVM model to the test
set are 97% and 80%, respectively. This finding demonstrates
that the best SVM model built from this data set is reliable and
robust for classifying the hERG toxicity of drug-like
compounds. The removal of “noisy compounds” from the
training set, by employing the physical property logP filter in
addition to the Lipinksi’s Rule-of-Five filter, effectively “cleans”
the data sets and correspondingly increases the classification
performance of the models, especially when employing SVM
strategies.

Based on the results and success of our previous study,43

combining the descriptors pool for the training set to consist of
all of the MOE descriptors and a selection of the 4D-FP descriptors
results in the construction of a well-performing hERG
classification SVM model. The “select” set of 4D-FPs contains
the hydrogen bond acceptor (HBA), polar-positive (PP), and
polar-negative (PN) interaction pharmacophore elements
(IPEs) that have been shown to contain important molecular
information needed for hERG blockage classification. To
confirm that a specific IPE is significant for any hERG data
set, a SVM model based on the filtered hERG data set is
constructed using the selected 4D-FPs minus the IPE of interest
and all the MOE descriptors; the results are listed in Table 3.
The top three hERG classification models from the training set
are ranked by their G-mean values, and the accuracy, sensitivity,
specif icity, G-means, and kappa60 values are listed in the first five
columns while the last five columns provide these same
measures for the test set. For the best SVM model, the overall
accuracy is near 90%, with a sensitivity value of 65%, a specif icity
value of 95%, and a G-mean value of 79%. Moreover, the G-
mean value for the top three models constructed from all the
MOE and the selected 4D-FPs descriptors are all near 78%.
The predicted accuracy, sensitivity, and specif icity values for the
test set using the top three models range from 89% to 97%,

Table 2. Prediction Performance Measures from the Top Three Training Set SVM Models Determined Using All MOE and 4D-
FPs Descriptors and Adopting the logP and Lipinski’s Rule-of-Five Constraints for the Herg Data Seta

training set percentage (number correct/total number) test set percentage (number correct/total number)

accuracy sensitivity specif icity G-mean accuracy sensitivity specif icity G-mean

89(184/206) 65(24/37) 95(160/169) 78.6 97(848/876) 66(19/29) 98(829/847) 80.4
84(173/206) 65(24/37) 88(149/169) 75.6 90(788/876) 83(24/29) 90(764/847) 86.4
85(175/206) 62(23/37) 90(152/169) 74.7 91(798/876) 79(23/29) 92(775/847) 85.3

aThe models are ranked using the G-mean metric for the evaluation of the training set.

Table 3. Prediction Performance Measures from the Top Three Training Set SVM Models Determined Using All MOE and
selected 4D-FPs Descriptors and Adopting the logP and Lipinski’s Rule-of-Five Constraints for the hERG Data Seta

training set percentage (number correct/total number) test set percentage (number correct/total number)

accuracy sensitivity specif icity
G-

mean kappa accuracy sensitivity specif icity
G-

mean kappa

90 (185/206) 65 (24/37) 95 (161/169) 78.6 0.94 97 (850/876) 62 (18/29) 98 (832/847) 78.0 0.98
85 (174/206) 65 (24/37) 89 (150/169) 75.9 0.90 91 (798/876) 79 (23/29) 92 (775/847) 85.2 0.95
84 (173/206) 65 (24/37) 88 (149/169) 75.6 0.90 89 (782/876) 83 (24/29) 90 (758/847) 86.4 0.94
aThe models are ranked using the G-mean and kappa metric for the evaluation of the training set.

Figure 1. Prediction performance for the top forty training set SVM models determined using all descriptors and adopting the logP and Lipinski’s
Rule-of-Five constraints of the hERG data set. The X-axis denotes the SVM models constructed using different parameters, and the Y-axis indicates
the corresponding accuracies for the training set (green) and the test set (purple).
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62% to 83%, and 90% to 98%, respectively, with the G-mean
values between 78% and 86%. In Table 3, Cohen’s kappa values
are also provided as another measurement of the classification
accuracy. Similar to the G-mean values calculated for our hERG
classification models, the kappa analysis also highly ranked the
top three models with values between 0.90 and 0.98. This
indicates that these models are highly effective for predicting if
a compound is hERG active. These findings illustrate that the
SVM models constructed using the selected 4D-FPs and all of the
MOE descriptors improves the predictive ability of the models
for the training and test sets.
Comparison of Model Building Methods. Since Huang and

Fan1 only provide accuracy values, we will also focus on the
accuracy values within our discussion. In Figure 1, the
performance of our top 40 SVM models using the logP and
Lipinski’s Rule-of-Five constraints and constructed along with
the classification SVM models constructed with all of the
molecular descriptors for the hERG data set are plotted (the X-
axis denotes the top 40 SVM models and the Y-axis denotes the
accuracy for the corresponding SVM models). The green line
with squares shows the accuracy values for the training set,
while the purple line with the triangles denotes the accuracy
values for the test set. The training set accuracy ranges from
78% to 90% and from 73% to 97% for the test set. The top
SVM model based on training set accuracy, with a value of 90%,
has an accuracy of 97% for the test set. In the study by Huang
and Fan,1 the best SVM model had a training set accuracy near
100%, yet the test set had an accuracy of 77%.1 Selecting the
best hERG classification SVM model from the Huang and Fan
study based on the accuracy of the test set highlights a model
with an accuracy of 83% for the test set and an accuracy near
87% for the training set. The performance of our models
obviously outperforms the models of Huang and Fan (and
other hERG classification studies), and this can be credited to
the use of Lipinski’s Rule-of-Five and logP constraints to focus
and balance the numbers of active and inactive hERG
compounds comprising the training set.
Interpretation of Key Descriptors. In addition to improving

the screening ability, sound predictive models provide the
ability to interpret key molecular descriptors related to hERG
cardiotoxicity. These descriptors can then be visualized on
compounds known to participate − and those known not to
participate − in hERG blockage, providing scientists with
insight to the structural and physicochemical aspects of
molecules that are hERG active and inactive. Since the same
protocols from our previous SVM models43 were applied to
Huang and Fan’s data set to construct improved hERG
blockage predictive models, the important molecular descrip-
tors are the same as those identified in our previous hERG
blockage model. The seven structural features identified
included five positive terms that increase the predicted value
for hERG blockage, logP(o/w), b_ar, a_nCl, SlogP_VSA6, and
ε*(np,np), and two negative terms that reduce the predicted
value for hERG blockage, ε1(np,hba) and ε4(np,hbd). To
visually investigate the contribution of these seven descriptors
to hERG blockage, projecting the structural characteristics onto
molecules from the Huang and Fan data set is helpful. A strong
hERG blocker, Wombat_64, has been selected and depicted in
its 2D chemical structure and 3D ball-and-stick rendering
(lowest energy conformation), Figure 2. All structural features
colored red represent constructive descriptor terms that result
in an increase in predicted hERG activity; the darker the
shading the more influence the descriptor and thus structural

feature imparts. Wombat_64 does not have any structural
features that contribute to the reduction of a compound’s
predicted tendency for hERG blockage. The physical character-
istics (properties) of logP(o/w) and SlogP_VSA6 are
combined and correspond to the effective solvent accessible
surface area for the compound’s nonpolar atoms. The red dots
represent the nonpolar solvent accessible surface area, and
these regions significantly increase hERG affinity and blockage.
Additionally, Wombat_64 has many nonpolar atoms that are in
close proximity to one another and satisfy the significant
constructive (increase the likelihood of hERG blockage)
descriptor ε*(np,np) along with containing many aromatic
atoms to satisfy another positive descriptor, b_ar (number of
aromatic bonds). The atoms associated with these molecular
descriptors are colored red, while atoms that represent one
hERG blocking descriptor − to increase hERG blockage − are
colored pink. A molecular characteristic that increases the
potential for a compound to block the hERG channel is the
number of chlorine atoms, a_nCl, and Wombat_64 also
contains a single chlorine atom. Thus, Wombat_64 −
containing the five molecular descriptors [logP(o/w), b_ar,
n_aCl, SlogP_VSA6, and ε*(np,np)] that are instrumental to a
compound’s ability to block the hERG channel − is an excellent
example of the molecular descriptors that contribute to a strong
hERG channel blocker.

T. pyriformis Data Set. The PLS Descriptor Selection of T.
pyriformis Data Set. To focus the molecular descriptors and
retain those that are closely correlated with the continuous
biological end points, we used the PLS loading matrix to rank
the descriptors. Analyzing the loadings of the first three
components (Figure 3), we highlight six descriptors (Table 4)
that are highly related to the pIGC50 end points. In the
loadings comparison of components 1 and 2 (Figure 3a), the
indicated descriptors were related to the Semi-Empirical
calculated total energy (AM1_E) and electrostatic energy
(AM1_Eele). Principal Moments of Inertia (PMI; pmi, pmi2,
and pmi3) and hydrophobic surface descriptors (vsurf_D1; a
VolSurf-like molecular interaction field 3D molecular descriptor

Figure 2. Wombat_64 (2D depiction and lowest energy conforma-
tion). The structural features that contribute to the compound’s
increased hERG blockage are shown in red. The descriptors that
increase hERG activity are depicted in varying shades of red to reflect
their relative importance; dark red represents the most significant
molecular descriptor. The red dots illustrate the surface regions of the
nonpolar atoms. The biological end point for Wombat_64 is IC50 = 7
μM.
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that describes the hydrophobic volume around a molecule) are
indicated as molecular descriptors that are strongly correlated
with the biological activity of the compounds (Figure 3b and c).
These results may imply that T. pyriformis toxicity of these
compounds is related to electrostatic energy, the ability of the

compound to rotate around an axis, and the hydrophobic
nature of the compound.
To investigate the relationship between the biological end

points (pIGC50) and the six most influential descriptors, the
two most and least active compounds and their associated
descriptors of interest were selected for analysis, Table 5. The
descriptor values of the toxic compounds (most active) are
between four- and eight-times greater in numerical value
compared to the nontoxic compounds (least active). The values
for the pmi-related descriptors of active compounds are
approximately 100-times greater than for the inactive
compounds. Although the molecular similarity and molecular
size are significantly different between the most and least toxic
compounds displayed in Table 5, the existence of a relationship
between the activity and these descriptors is still apparent from
the constructed predictive models.

Figure 3. The PLS loadings for the first three components of the PLS preliminary T. pyriformis data set model. (a) Component 1 versus Component
2. (b) Component 2 versus Component 3. (c) Component 1 versus Component 3. (d) Percent variance explained by each PLS component.
Important descriptors are labeled.

Table 4. Six Descriptors Distinguished by Loadings of the 3
PLS Components of the T. pyriformis Data Set

symbols description

AM1_E total energy applying AM1 semi-empirical parametrization
AM1_Eele electrostatic energy applying AM1 semi-empirical

parametrization
pmi principal movement of inertia
pmi2 second component of principal movement of inertia
pmi3 third component of principal movement of inertia
vsurf_D1 descriptor related to the hydrophobic surface volume
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We built a SVR regression model using these six molecular
descriptors (Figure 4), and the coefficient of determination

(R2) for the training set and two test sets were 0.731, 0.695, and
0.552, respectively (Table 6). A reason for the low R2 values
might be the insufficient amount of information contained
within the initial six descriptors, thus we selected more
descriptors by considering the significant descriptors in the
first-seven loading matrices, PLS components 1 through 7.
The most significant descriptors from the first-seven PLS

components were selected using the maximum-absolute loading
value as a method to rank each descriptor, and the thresholds of
the loading values were set to 0.01 and 0.001, respectively. An
absolute loading threshold value greater than 0.01 resulted in
the identification of 102 descriptors, while an absolute loading

value of 0.001 resulted in 204 descriptors being highlighted.
The results of these two SVR models are shown in Figure 5 and
Table 6, compared with the original 6-term SVR model.
Increasing the number of terms in the SVR model from six to
102 increased the R2 of the training set from 0.731 to 0.912 and

Table 5. T. pyriformis Compounds with Highest and Lowest
pIGC50 Values (Most and Least Active) in the Training Set
and Their Corresponding Descriptor Values for the 6-Term
Model

Figure 4. The predicted pIGC50 value (X-axis), compared with
experimental pIGC50 value (Y-axis), of the SVR Model using
descriptors selected by the loadings of the first three components of
the PLS model constructed from the T. pyriformis data set. The
training set and the test sets 1 and 2 are represented respectively as
green circles, blue triangles, and cyan diamonds.

Table 6. Leave-One-Out R2 Validation of SVM Models with
Different Number of Terms Selected by the Preliminary PLS
Model for the T. pyriformis Data Set

training
set

testing set
#1

testing set
#2

6 terms 0.731 0.695 0.552
102 terms max(abs(loadings)) >
0.01

0.912 0.817 0.613

204 terms max(abs(loadings)) >
0.001

0.928 0.832 0.620

Figure 5. The predicted pIGC50 value (X-axis) of the T. pyriformis
data set, compared with experimental pIGC50 value (Y-axis), of the
SVR Models of (a) the 102-term model (maximum abs(loading) >
0.01) and (b) the 204-term model (maximum abs(loading) > 0.001).
The training set and the test sets 1 and 2 are represented respectively
as green circles, blue triangles, and cyan diamonds.
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resulted in test sets 1’s and 2’s R2 increasing from 0.695 to
0.817 and 0.552 to 0.613, respectively. Increasing the number
of descriptors available to 204, and thus constructing a 204-
term SVR model, increased the R2 of the training set and test
sets 1 and 2 to 0.924, 0.832, and 0.620, respectively. The test
set validation results for the 204-term SVR model is
approximate to the models reported by Huang and Fan1 and
Zhu and co-workers.35

To determine if the prediction performance would improve
with additional descriptors, SVR models were built by adding
descriptors based on the order of their maximum absolute PLS
loading values (score). In an iterative fashion, a SVR model was
built with the most important molecular descriptor followed by
the creation of another SVR model built with the two most
important descriptors. This process was continued until all 719
molecular descriptors were used to construct a SVR model. The
coefficient of determination (R2) is plotted in Figure 6 for the

training and test sets. As illustrated in Figure 6, the R2 values of
test sets 1 and 2 start to decrease once the SVR model is
constructed with more than approximately 300 of the most
important molecular descriptors − based on PLS loading
values. A reason the predictive ability of the models’ decreased
with each additional descriptor (for models with greater than
approximately 300 molecular descriptors) for each of the test
sets is most likely that the models are exhibiting signs of
overfitting. Therefore, the 204-term SVR model was selected
for the following outlier removal experiments because of its
predictive abilities for the training and test sets.
Outlier Removal Using “Distance to Model” Methods.

Tetko et al. suggested that within a QSAR model the distance
between the descriptor values of the training set and the test
set, or the compound(s) of interest, influences the error in the
predicted activity.36 The descriptor space − the numerical
range that each descriptor in the model (training set) covers −
directly impacts how well the model will predict compounds
that were not used to construct the model, commonly referred
to as the “Applicability Domain” of a model. In the studies

relating to the T. pyriformis data set,1,35,36 the R2 values of test
set 2 were below 0.70. Typically, R2 values below this value
indicate that a QSAR model was not very adept at predicting
the bioactivity for a series of compounds, and, in this example,
the model is not able to adequately predict the experimental
bioactivity values for test set 2 of the T. pyriformis data set. A
possible reason for the low predictive performance of the
models when applied to test set 2 is that there were some
compounds outside of the “Applicability Domain” as defined by
the training set compounds. To explore the applicability
domain of our 204-term SVR model, the descriptor distance
between each test set compounds and the training set was
calculated; this is commonly referred to as the “Distance to
Model”.
We compared the “Distance to Model” to the prediction

error (Figure 7) and calculated the Pearson’s correlation
coefficient (R; Table 7) between the two values. The training
set’s correlation coefficient between the error of prediction and
the “Distance to Model” was 0.100, while the correlations
coefficients for test sets 1 and 2 were 0.273 and 0.215,
respectively. A test set compound might only need a small
portion of the compounds in the training set to adequately
describe its activity. To explore this concept the distance
between the nearest neighbor distances were explored.
Accordingly, the pairwise distances between all of the training
set and test set compounds were calculated to determine the 3-
nearest-neighbor (3-NN) distances. Using the 3-NN method,
the training set R increased to 0.118, and the correlation
coefficients of the two test sets increased to 0.368 and 0.316,
respectively. Reducing the number of neighboring compounds
from “all compounds” to “three compounds” for the correlation
between the error of prediction and the “Distance to Model”
evaluation resulted in a “stronger” correlation. These results can
be interpreted in several ways; the first is that more than three
compounds are needed to sufficiently predict the end point for
the compounds in the training and test sets, the second is that
the prediction error cannot be estimated by calculating the 3-
NN distance, and the third is that it can be determined if a test
set compound fits the model and thus can aid in removing
outliers.
Using the 3-NN criteria to filter outliers from the test set was

explored by restricting the “distance” between the test set
compound and its three nearest-neighbors of the training set;
the 3-NN distance was bound to less than or equal to 20, 15,
and 10. Investigating the effects of outlier removal was focused
on test set 2 due to the poor performance of the QSAR model
and to provide insight regarding the removal of test set
compounds that are not similar to training set compounds
(outliers). The R2 (predicted versus experimentally determine
end points) for the complete version of test set 2 was 0.620 and
is not as impressive as test set 1’s R2 of 0.832. Using the 3-NN
distance as a filter, test set 2 compounds with a distance greater
than 20, 15, and 10 were removed, and the R2 was recalculated
for each remaining allotment of test set 2 compounds.
Including only test set 2 compounds with a “Distance to
Model” less than 20 from the training set slightly improved the
R2 to 0.621. Reducing the distance threshold to 15 increases the
R2 value to 0.675, while further reducing the threshold to 10
caused the R2 value to decrease to 0.645. The decrease in the R2

value when reducing the threshold value from 15 to 10 might
be due to compounds that fit within the applicability domain −
and helps to explain the important physicochemical properties
of the test set 2 compounds − were filtered out. While the R2

Figure 6. The R2 of SVM models built by descriptors added to the
model by sorting of the maximum of absolute value of loadings of the
T. pyriformis data set. The training set and the test sets 1 and 2 are
represented respectively as green, blue, and cyan lines.
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value for test set 2 only increases by 0.055 (0.620 to 0.675)
when removing possible outliers, comparing the complete and
filtered versions of test set 2 using the nearest-neighbor method
of filtering compounds (“Distance to Model” threshold value of

15) is a sound method to determine if a test set compound fits
within the domain of the model. The calculated R2 values after
filtering are presented in Table 8.

Comparison of Model Building Methods. For the T.
pyriformis data set, the primary difference between the model
construction methods in this study and those applied in Huang
and Fan’s study1 relates to the descriptor selection method.

Figure 7. The distance to model calculations of the T. pyriformis data set using the mean and median of Euclidean distances between the test set and
training set compounds, compared with the prediction error. (a) The mean distance to all training set compounds for each compound. (b) The
median distance to all training set compounds for each compound. (c) The mean distance to the 3-nearest training set compounds for each
compound. (d) The median distance to the 3-nearest training set compounds for each compound.

Table 7. Pearson Correlation Coefficient Between “Distance
to Model” and the Prediction Error of the T. Pyriformis Data
Set

training set test set #1 test set #2

all mean 0.100 0.273 0.215
median 0.077 0.255 0.208

3-NN mean 0.118 0.368 0.316
median 0.117 0.378 0.308

Table 8. Validation Result of R2 of Outlier Removal of the
Test Set 2 of the T. pyriformis Data Set

training
set

test set
#1

test set
#2

test set #2
(D < 20)

test set #2
(D < 15)

test set #2
(D < 10)

R2 0.928 0.832 0.620 0.621 0.675 0.645
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The utilization of a genetic algorithm (GA)25 is a familiar
practice for descriptor selection and the construction of an
ensemble of QSAR models. Where the GA protocol of Huang
and Fan fails is the duration of the GA’s evolutionary growth.1

It is common to terminate a GA after several hundred
generations (a thousand generations is considered standard)
without a change to the surviving population (best models).
The GA parameters, as described by Huang and Fan,
constrained the number of descriptors in each model to
between three and ten molecular descriptors − which is
acceptable − but the low number of models within the
population (50 models) and the extremely short evolutionary
period (30 generations) did not allow the GA to adequately
explore the descriptor space. The short period of model
creation might highlight a few influential molecular descriptors,
but it is definitely not enough evolutionary time to construct a
sufficiently sound QSAR ensemble and reveal the truly
meaningful descriptors. An efficient and sound protocol to
determine the most relevant molecular descriptors is the
analysis of a preliminary PLS model. Our final SVR model was
built from approximately 300 molecular descriptors that were
ranked using the PLS loading values; this protocol resulted in a
suitable SVR model that did not exhibit overfitting.

■ DESIGNING THE PROTOCOLS TO IMPROVE THE
MODELS

The protocols used to assemble the training set along with the
selection of descriptors and the construction of the model have
the most influence over the models’ robustness and predictive
ability. For the hERG data set, the training and test sets were
comprised of compounds that passed the Lipinski’s Rule-of-
Five57 and were within a specific relative lipophilicity (octanol/
water partition coefficient, logP, values) range (training set
compounds: active compounds with a calculated logP value less
than 4.1 and inactive compounds with a logP value greater than
2.8).37 Additionally, the hERG descriptor trial pool included a
reduced set of the 4D-FP descriptors based on PLS loading
values to ensure the SVM model’s hyperplanes contained
(molecular) information that was strongly relevant to the
biological end points. These key features of the hERG data set
protocols resulted in a SVM model with an improved predictive
nature for the training set and, most importantly, the test set.
The T. pyriformis data set was defined by Zhu et al.,35 thus

the protocol to improve the predictive ability of the models was
focused on the manner of selecting molecular descriptors for
the SVR model and developing a better understanding of the
relationship between the compounds in the training set and test
sets. While it can be argued that the models presented herein
are marginally better than Zhu and co-workers,35 the overall
knowledge gained by including a mixed-class and biologically
relevant set of molecular descriptors provides a better
molecular understanding of the overall toxicology for the data
set. As noted above, the GA search for collections of important
molecular descriptors in the Huang and Fan1 study did not
have adequate evolutionary periods, and thus the most
important descriptors were not passed on to the SVR models.
Instead of using a GA to select the descriptors, the work
presented here used the PLS loadings to determine the set of
descriptors that relate to the biological end points.
The two data sets − hERG blockage (a discrete data set) and

T. pyrifomis (a continuous data set) − were discussed and
explored because they are commonly considered difficult with
respect to constructing practical predictive models. Each data

set presented different hurdles to overcome and provided the
opportunity to demonstrate the protocols and methodologies
that are commonly used in building sound predictive models
for discrete and continuous data sets. For example, selecting
descriptors for the hERG data set required the use of the F-
score, yet this methodology cannot be applied to continuous
data sets like the T. pyriformis data set, while the PLS loading
score method used to distinguish important molecular
descriptors in the T. pyrifomis data set is not suitable for
discrete data sets. However, like all experiments, the protocols
and methodologies must be adapted to suit the data set of
interest.

■ CONCLUSION
The ability to construct, evaluate, and apply a QSAR model
using contemporary methodologies and protocols is not a
trivial process and requires attention to detail. The data sets,
hERG and T. pyriformis, explored in this work have been
extensively investigated, and each study provides additional
information about the overall molecular system and/or insights
to the modeling protocols and methods. The focus of this study
was to provide insight to robust protocols, demonstrate current
QSAR methodologies, and the implementation of these
protocols and methodology to notoriously difficult data sets.
Using various statistical methods, sound predictive models were
constructed and analyzed. Selecting significant molecular
descriptors using PLS loadings values to construct a SVR
model reduced the number of weightless molecular descriptors.
Harnessing the power of biologically relevant molecular
descriptors across multiple descriptor class improves the overall
interpretability of the models,60 while the combination of sound
protocols and methodologies helps to showcase the possibilities
of QSAR modeling.
Overall, the protocols used for the hERG and T. pyriformis

data sets have common threads that can be applied to any
predictive modeling study: (i) construct the trial descriptor
pool from relevant descriptors, (ii) remove the noise from the
training set (whether this be molecules or other entities), (iii)
select descriptors that are strongly related (correlated) to the
end points of interest to construct the models, and (iv) analyze
and understand the results for the training and test sets. While
these protocols are somewhat apparent and universal, the
manner they are applied can vary from system to system, and
discovering the optimal combination is key to robust and
insightful predictive models.
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R2 = coefficient of determination
LOO = leave-one-out
Q2 = leave-one-out cross-correlation
MD = molecular dynamic
IPEs = interaction pharmacophore elements
HBA = hydrogen bond acceptor
PP = polar-positive
PN = polar-negative
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