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Abstract
Multiscale analysis provides an algorithm for the efficient simulation of macromolecular
assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of
atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted
order parameters (OPs) characterizing nanoscale system features. In practice, implementation of
the probability density involves the generation of constant OP ensembles of atomic configurations.
Such ensembles are used to construct thermal forces and diffusion factors that mediate the
stochastic OP dynamics. Generation of all-atom ensembles at every Langevin timestep is
computationally expensive. Here, multiscale computation for macromolecular systems is made
more efficient by a method that self-consistently folds in ensembles of all-atom configurations
constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the
temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is
shown that efficiency and accuracy of the OP-based simulations is increased via the integration of
this historical information. Accuracy improves with the square root of the number of historical
timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8
without loss of accuracy. The algorithm is implemented into our existing force-field based
multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers.
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I. Introduction
A focus of interest in theoretical and computational nanosciences is to predict the behavior
of macromolecular assemblies such as viruses using their N -atom description and Newton’s
equations of motion.1 Molecular dynamics (MD) has been widely used to achieve such
simulations. However, the simulation time for nanometer scale assemblies has been limited
to tens or sometimes few hundred nanoseconds.2, 3 While an advantage of N-atom
approaches is that, given an inter-atomic force field, they offer the possibility of calibration-
free modeling, they are limited by the system size, simulation timestep and hardware
requirements. Recently, billion atom MD simulations have been accomplished.4–6 However,
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these simulations neglect one or more of Coulomb interactions, bonded forces, and rapidly
fluctuating hydrogen atoms. All the latter are central to biomolecular structure and
dynamics. Thus, all-atom simulation of large macromolecular assemblies remains a
computational challenge.7, 8

Standard MD packages include CHARMM,9 GROMACS,10 and NAMD.11 Interest in large
systems has stimulated the development of MD algorithms that take advantage of
computational efficiencies enabled by parallel and graphical processor unit
implementations.12, 13 A variety of coarse-grained approaches including bead, shape-
based,14, 15 rigid region decomposition,16 and symmetry constrained17–19 models, as well as
principal component analysis20, 21 and normal mode analysis guided approaches21 have
been introduced to reduce the computational burden of large system simulations, but they do
so at the expense of losing atomic scale resolution.

We have undertaken a deductive multiscale approach that folds the physics underlying the
existence of slowly evolving variables into the computations for large systems.22–25 These
variables, denoted space warping order parameters (OPs),26, 27 describe coherent, overall
structural changes of the system. Furthermore, mathematical reformulation of the underlying
molecular physics simultaneously captures high frequency atomic fluctuations and evolves
the coarse-grained state. More precisely, we start with the N-atom Liouville equation and
obtain Langevin equations for stochastic OP dynamics.28 Since specifying the coarse-
grained variables leaves great uncertainty in the detailed all-atom state, quasi-equilibrium
ensemble of all-atom configurations consistent with the instantaneous state of the OPs is
generated. This ensemble is used with Monte Carlo (MC) integration to construct factors
(forces and diffusions) in the Langevin equations needed to advance the OPs to the next
timestep. Such an approach yields a rigorous way to transfer information between variables
on different space-time scales, avoiding the need to make and calibrate phenomenological
expressions for evolving the state of OPs. This scheme has been implemented as the
Deductive Multiscale Simulator (DMS) software system (denoted SimNanoWorld in
previous publications).22, 29 DMS is used to capture polyalanine folding from a linear to a
globular state,27 Ostwald’s ripening in nanocomposites,30 nucleation/front-propagation and
disassembly pathways involving the structure and stability of virus capsids,31, 32 counter-ion
induced transition in viral RNA and stability of RNA-protein complexes over a range of
salinity and temperatures.26 Result from DMS simulations are comparable to those from
conventional MD (notably NAMD), but the former is faster and more statistically significant
as it is derived from evolving ensembles of all-atom configurations.29 The objective here is
to further accelerate these calculations while maintaining accuracy and all-atom resolution.

The Langevin model of Brownian motion has been extensively used to describe the
dynamics of particles in a heat bath under conditions near equilibrium.33 Several MC
techniques have been used to numerically integrate ordinary and general Langevin-type
equations.34 Their applicability depends on the magnitude of Langevin timesteps relative to
that of velocity autocorrelation functions decay. Similarly, there are MC schemes based on
the independent single-variate velocity and displacement distribution functions.35 Other
extensively used numerical integrations schemes include ones proposed by Gunsteren and
Berendsen,35 Brooks-Brunger-Karplus, and the Langevin impulse integrator.36 The accuracy
of these schemes ranges from first to second order. These schemes present a general
numerical procedure for integrating Langevin equations. However, they are not meant to
explicitly address the coevolution of slow structural variables with an ensemble of rapidly
fluctuating ones, as is the case here.

The purpose of this study is not to discover a new Langevin integrator. Rather, we introduce
a procedure that effectively enhances the size of aforementioned quasi-equilibrium
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ensembles by using configurations from earlier times (i.e., as ones move back in “history”)
and simultaneously accounts for the dynamical OP and noise characteristics. In this way,
statistical error for the numerical integration of factors in the Langevin equations is reduced.
As a result, one can perform a multiscale simulation which still provides all-atom detail, but
now with less stringent limitations on the Langevin timestep for OP evolution. With this,
enhanced numerical efficiency of multiscale simulations is achieved without compromising
with accuracy. Computational cost of Langevin OP simulations is mediated by the
characteristic OP time, size of the all-atom ensemble for MC integration, and number of
historical ensembles considered in extended MC sampling. Contributions from these three
factors are evaluated to obtain a range of parameters that imply optimal simulation
efficiency.

In the following, we review our OP based multiscale methodology and extend discussions
on the use of dynamical ensembles to enhance the sample size for MC computation of
thermal average forces (Sect. II). This algorithm is numerically demonstrated for all-atom
simulations of Human Papillomavirus16 (HPV16) capsomers (Sect. III). Interplay between
several numerical parameters is studied to identify those providing simulation accuracy as
well as efficiency. Simulations with such parameters are used to investigate contrasting
long-time behavior of different capsomer constructs. Conclusions are drawn in Sect. IV.

II. Methodology
In this section various components of our deductive multiscale approach are discussed. A
central element of our multiscale analysis is the construction of OPs for describing the
coarse-grained features of a macromolecular assembly. An OP mediated model captures the
separation in timescales between the coherent (slow) and non-coherent (fast) degrees of
freedom. In effect, OPs filter out the high frequency atomistic fluctuations from the low
frequency coherent modes. This property of OPs enables them to serve as the basis of a
multiscale approach for simulating the dynamics of macromolecular systems. Here, our
methodology is outlined and discussion is extended on a dynamical ensemble enhancement
scheme to accurately compute factors in the Langevin equation for OP dynamics.

A. Order Parameters
Consider a macromolecular assembly described via the positions of its N constituent atoms

labeled i = 1,⋯ N. Let the i-th atom in the system be moved from its original position  via

(1)

where the  are k-th OP and basis function respectively. For example, the
use of k have been taken to be products of Legendre polynomials in the X, Y, Z Cartesian

directions, i.e., .23  is the reference position of atom i
which, through the OPs and the Eq. (1) is deformed into the instantaneous position r⃑i. Since
we seek a dimensionality reduction, the number of Φ⃑ḵ is much less than the number N of
atoms. Given a finite truncation of the k sum in Eq. (1), there will be some residual
displacement (denoted σ⃑i) for each atom in addition to the coherent deformation generated
by the k sum.

An explicit expression for the Φ⃑k is obtained by minimizing the mass-weighted square
residual with respect to the Φ⃑k.23 One obtains
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(2)

where mi is the mass of atom i. Inclusion of mi in developing Eq. (2) gives Φ⃑k the character
of a generalized center-of-mass. For example, if Uki is independent of i then Φ⃑k is
proportional to the center-of-mass of the assembly. A subset of OPs defined in this way
constitutes a strain tensor accounting for compression-extension-rotation, while others
describe more complex deformations such as tapering, twisting, bending and their various
combinations.26, 27 The µk serve as effective masses associated with each OP, implying the
spatial scale they capture. The masses primarily decrease with increasing complexity of
Uki.26 Thus, OPs with higher k probe smaller regions in space. In summary, a model based
on this set of OPs simultaneously probes structure over a diverse range of spatial scales via
different orders in k.

B. Deductive Multiscale Approach
Eq. (2) implies that for a given set of atomic positions the corresponding OPs are uniquely
defined. However, the converse is not true, i.e., there exist multiple all-atom configurations
consistent with a given set of Φ⃑k. Thus, an OP-based theory of macromolecular assemblies
is statistical in character since specifying the coarse-grained variables leaves great
uncertainty in the detailed all-atom state. To address this issue, the theory should provide an
algorithm for evolving the coarse-grained variables and another for coevolving the
probability of the detailed all-atom states. This conceptual framework has been shown to
yield stochastic equations for the propagation of the slow OPs and those for constructing the
coevolving ensemble of all-atom configurations.

The description adapted starts with the probability density ρ of the N atomic positions and
momenta Γ. However, this formulation masks the underlying hierarchical organization of a
macromolecular assembly. To address this, here, ρ is hypothesized to depend on Γ both
directly, and via a set of OPs, indirectly. This “unfolding” of the N-atom probability density
makes the multiple dependencies of ρ on Γ and time t explicit. With this ansatz, a
perturbation analysis of the Liouville equation yields sets of coupled Langevin equations for
the OPs

(3)

28 where the diffusivity factors  are related to the correlation function of OP momenta Π⃑k
via

(4)

28 Π⃑k is the value of the OP momentum for a given N-atom configuration, Π⃑k'(t) is advanced
in time through Newtonian mechanics, and the 〈⋯〉 implies thermal average over

configurations. Variance of noise ξ⃑k is bound by . The thermal average force f⃑k is given
by
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(5)

22 for OP-constrained Helmholtz free-energy F, where

(6)

Q(Φ, β) = ∫ dΓ* Δ(Φ − Φ*)e−βH*
 is the partition function constructed from configurations

consistent with the set of Φ⃑k (denoted Φ collectively). Eq. (3) implies overall structural
dynamics through evolution of the OPs. It has been implemented as the DMS nanosystem
simulator for the case of a single system29 and more recently for a set of interacting
subsystems.37

A commonly used approach for treating far-from-equilibrium systems involves projection
operators.35, 38–40 It is very general in the sense that no approximations are made in arriving
at an equation for the reduced probability of a subset of variables (OPs in our case).
However, this kinetic equation requires construction of a memory function, which usually
can only be constructed using extensive MD simulations or experimental data. This is
numerically expensive for N-atom problems except when the memory functions have short
relaxation times.38 In our analysis, the OPs of interest are much slower than the
characteristic rate of atomistic fluctuations, and therefore the relaxation times are typically
short relative to characteristic times of OP dynamics.28 Under these conditions, our
multiscale approach leads to the same set of Langevin equations as those from projection
operators. However, the multiscale approach is more direct; we do not start with the
projection operators and eventually resort to perturbation methods for constructing memory
functions. Rather we make an ansatz that the N-atom probability density has multiple
(initially unspecified) space-time dependencies, and analyze the resulting Liouville
equation.25

While several coarse-grained modeling approaches account for large-scale processes,
important all-atom features of an assembly can be lost.41 However, processes like the
interaction of an antibody with a viral capsid can depend sensitively on atomic
structure.39, 40 To capture such details, in DMS, an ensemble of all-atom configurations
consistent with the42, 43 instantaneous OPs description is constructed. To accomplish this,
residuals σ⃑i are constructed by changing those Φ⃑k that do not contribute to the k-sum (Eq.
(1)). By definition, OPs with higher k probe smaller regions in space. Consequently, they
account for small-scale incoherent displacement of each atom in addition to coherent
deformations generated by the other, lower k, OPs. Short MD (NAMD) runs are performed
starting with configurations from this residual-generated ensemble to arrive at an enriched
ensemble that is consistent with a given set of OPs (Φ). This procedure for generating
ensembles is called hybrid sampling. Further details are provided elsewhere.22

Given an all-atom structure at time t=0, a set of space warping OPs is constructed via Eq.
(2). Then, an ensemble of all-atom configurations consistent with this set of OPs is
generated via the aforementioned hybrid sampling scheme. This ensemble is then employed

to compute factors (thermal average forces f⃑k and diffusion coefficients ) that mediate
the Langevin Φ⃑k dynamics. The f ⃑k are expressed in terms of atomic forces F⃑i via
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(7)

28

The atomic forces F⃑i computed for each member of an OP-constrained ensemble of atomic

configurations are used to calculate the macroscopic force (or OP forces) . MC

integration averaging of  over the ensemble is carried out to obtain the thermal average
force f⃑k. Short MD runs (~1 ps) are performed on configurations from this ensemble to

calculate the OP velocity correlation functions needed to construct the  (Eq. (4)). Using

these f⃑k and , the OPs are evolved in time via the Langevin equation. The evolved OPs
are used to generate a new ensemble of atomic configurations and the cycle repeats. Thus,
OPs constrain the ensemble of atomic states (Eqs. (1)–(2)), while the latter determine the
diffusion factors (Eq. (4)) and thermal average forces (Eq. (7)) that control OP evolution
(Eq. (3)). With this, the two way transfer of structural information that couples microscopic
motions to large-scale structural dynamics is captured. Also, accounting for the dynamically
changing ensemble of atomistic configurations consistent with the evolving set of OPs
provides statistical significance to DMS predictions.

C. Role of Dynamical Ensembles
A factor limiting the efficiency of the above algorithm is the need to generate a sufficiently
rich all-atom ensemble at every OP timestep. If the ensemble is too small, statistical errors in
the thermal forces and diffusion factors can misdirect the evolution and therefore limit the
size of the Langevin timestep Δt needed to advance the system from a given time t to t + Δt.
Thus, to increase the Δt, larger ensembles are required. This would then increase the
computational expenditure of the multiscale simulation. Here, we address this issue by
constructing ensembles from timesteps in the history prior to t to effectively enhance the
ensemble needed to proceed to t + Δt. This is accomplished in a manner that accounts for
the coevolution of the all-atom ensemble with the OPs as follows.

Let t be the present time and th be a time NhΔt in the past (th = t − NhΔt). Consider the
integration of Eq. (3) from a time th to t + Δt. The result is

(8)

Investigation of the  (Eq. (4)) shows that the diagonal factors dominate when the Uki are
orthogonalized.28 With this Eq. (8) becomes,

(9)

In a simple lowest order method Nh is taken to be 0. Here, we take Nh > 0 to fold historical
ensemble information into the timestepping algorithm as follows. Breaking the integration
interval into 1 Nh + 1 segments of length Δt yields
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(10)

Since the thermal average forces depend on the OPs, which to a good approximation change
slowly, the first term inside the integral can be approximated via a simple rectangle rule.
With this the thermal average force contribution becomes

(11)

Such discretization applies provided .44 Since
the force ξ fluctuates rapidly around zero, integration of the stochastic term is taken to
follow the Ito formula.45 When ξ is white noise, one obtains

(12)

where . Thus, the fact that the ensemble is changing
over history as manifest in the diffusion and forces is accounted for. With this, the
discretrization algorithm becomes

(13)

This is the basis of our history enhanced multiscale algorithm that is implemented in DMS
via the workflow of Fig. 1. To arrive at Eq. (13) it has been assumed that the Langevin
timestep is constant. This framework can be easily generalized to address adaptive
timestepping. Furthermore, we demonstrate the method using a simple Langevin integrator.
In a follow-on work, this workflow will be implemented to higher-order numerical
integration schemes.

An error analysis of the above approach is now considered. To simplify this analysis, and as
observed for the demonstration system here, the diffusion factors are approximately constant
in the interval th to t. With this, Eq. (13) becomes

(14)

Using the definition of Δt, the second term in Eq. (14) takes the form , where
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(15)

Dividing f⃑k into  and g⃑k, where  is calculated from a very large ensemble the sum in
Eq. (15) becomes

(16)

The sum of the  is of O(Nh) as the  change coherently on the timescale of OP
evolution. In contrast, the g⃑k contribution is a sum of random factors of fluctuating sign and
zero mean since g⃑k represents the MC error associated a finite ensemble. Therefore, the

latter is of the order . The magnitude of the g – terms divided by that of the f∞ –

terms is thus of . Next, let Ne be the number of all-atom configurations in the
ensemble used to calculate thermal average forces at a given timestep. The MC integration

error is .34 Thus, assuming the ensembles at each timestep are statistically
independent (shown below), the error in the history enhanced ensemble is O((NeNh)−1/2).

Since ensemble errors in the thermal average forces misdirect the OP evolution, the 

error implies a limit on the Langevin timestep which is improved by a factor of  when
history enhancement is used (i.e., upper bound on the value of Δt in Eq. (13) increases by

 with increase in the number of history terms (Nh) in the associated fk-summation).
Overall accuracy of the history enhancement method also reflects the limit on (a) Δt due to
the characteristic time of OP evolution and (b) Nh due to the need for periodic refreshment

of reference structure, , (denoted re-referencing) for “on-the-fly” OP definition during a
DMS run. The interplay of these factors is investigated in the next section in the context of
obtaining optimal simulation parameters for numerical efficiency.

III. Results and Discussion
Here, DMS implementation of the history enhanced Langevin algorithm (Sect. II) is
demonstrated via all-atom simulations of HPV16 capsomers in 0.3M NaCl solution. The
T=1 L1 HPV16 Virus-Like Particle (VLP) contains 12 pentamers joined by “attacking
arms” that stabilize it via strong hydrophobic interactions.46 Each pentamer is composed of
five L1 protein monomers. A C-terminal of the L1 protein consists of four helical regions
h2, h3, h4 and h5 that maintain intra- and inter-pentameric connectivity. While h2, h3 and
h5 are responsible for L1 protein folding and pentameric stability, h4 maintains inter-
pentamer organization and, thereby, overall T=1 structure.46 It has been experimentally
shown that h4-truncated L1 proteins successfully form stable pentamers but fail to organize
into a T=1 VLP, while h2,h3,h4 truncation prevents stable pentamer formation.46 We
simulate the expansion and consequent stability of a h4-truncated pentamer when it is
isolated from the rest of the VLP. Simulations presented include 24 5ns DMS runs with
different ensemble sizes (Ne) and number of history timesteps (Nh); a 5ns MD run for
benchmarking results of these DMS runs; and 30–40ns DMS runs of complete, h4-truncated
and h2,h3,h4-truncated pentamer showing contrasting long-time behaviors of respective
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structures. These systems contain 3–4×104 atoms. Further details of conditions used for
these simulations are provided in Table I.

In the following, first, data from NAMD simulations are used to introduce the history
enhanced MC scheme for computing thermal average forces. Effect of correlations between
dynamical ensembles on the MC error analysis is discussed. Then, the history enhanced
approach is used with DMS to understand the effects of Langevin timestep (Δt), ensemble
size (Ne) and number of historical ensembles (Nh) on simulation accuracy and performance.
An optimal set of simulation parameters (Δt, Ne and Nh) is obtained and used to simulate
long-time behaviors of three pentamer constructs.

A. Relationship Between Ensemble Size and Langevin Timestepping: Implications for the
history method from MD Results

The magnitude of Langevin timestepping Δt depends explicitly on the spatio-temporal scale
of motion the associated OPs capture. For example, OPs capturing the overall motion of a
macromolecular assembly change much more slowly than ones describing changes in
individual macromolecule. Consequently, Δt for simulating a macromolecule is much less
than that for the entire assembly.

Consider the case of an isolated HPV pentamer. Its degrees of freedom are constrained
inside a T=1 VLP. When all other pentamers in the capsid are removed instantaneously, this
pentamer initially expands and then stabilizes to a new state. A 5ns MD simulation is
performed that captures an early phase of this expansion. Here, this trajectory is used to
investigate the rate of OP dynamics and compute an optimal timestep (Δt) for their
Langevin evolution. Under friction dominated conditions (Eq. (3)), the rate of change of
OPs is directly correlated to the thermal average forces.22 These forces, in turn, are
statistical in nature and require sufficient averaging to accurately predict OP dynamics. For
example, if the ensemble is too small, statistical errors in the thermal forces and diffusion
factors can misdirect the evolution and therefore limit the size of the Langevin timestep Δt.
Therefore, the optimal value of Δt for accurately capturing OP evolution should reflect the
dynamical nature of thermal average forces, which in turn depend on size of the ensemble
used. To understand this effect, structures are chosen every 20ps form the 5ns MD
trajectory, constant OP ensembles are generated via hybrid sampling (Sect. II-B), and
thermal average forces are computed using ensembles of different sizes (Ne) keeping Nh=0
(Fig. 2(a)).

At a given point in time, consider generation of all-atom ensembles with Ne varying over a
range of values from 100 to 3200. While atomic forces in these ensembles show no clear
trend (Fig. S1 in Supporting Information) (even though the underlying structures are

dramatically different), OP forces ( , Eq. (7)) constructed from the same ensembles are
peaked about a given value (Fig. 2(a)–(b)). Such peaks suggest strong thermal average
forces; this induces coherence in large-scale dynamics.22 In the present context, positively
peaked OP forces results in positive thermal average forces. Langevin evolution using these
forces increases magnitude of the corresponding OP, thereby implying overall expansion of
the pentamer. This suggests that the thermal average forces are an effective measure of
coherence in subtle trends of the inter-atomic forces manifested in our OP-constrained
ensembles. Their construction enables self-consistent transfer of structure and dynamics
information from the atomic to the larger-scales.

Well resolved peaks in the distribution of OP forces suggest that many of the atomistic
configurations in the ensemble contribute to similar OP forces. Such configurations are
restricted to those consistent with instantaneous OP values. Together, these imply a modest
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size atomistic ensemble is sufficient for computing thermal average forces ( ).
However, generating these modest ensembles is still computationally expensive. Thus,
practical sampling limits impose statistical errors in thermal average forces. As ensemble
size decreases, the g-term in Eq. (16) increases. These g contributions randomly shift the
numerically computed average forces around their correct values (Fig. 2(a)). To preserve
accuracy of the predicted OP dynamics using such incomplete forces, the Langevin timestep
should be reduced. This is because an erroneous thermal average when applied throughout a
large timestep can take the system far away from its correct evolution pathway. But, over a
sequence of small timesteps, these random errors tend to cancel (See below, Sect. III-C).
However, this implies loss of multiscale simulation efficiency.

Here, we introduce a procedure that uses Nh ensembles from timesteps in the history prior to
a given time t to effectively enhance the ensemble needed to proceed to t + Δt.
Consequently, a slowly evolving ensemble is accounted for as a collection of small, less
compete ones each of which captures some of the instantaneous influence of the evolving
OP. With this history algorithm, statistical error in the MC integration of thermal average
forces (resulting from lack of complete ensembles) is reduced and therefore numerical
restrictions of Δt decreases limiting it to those values inherent in the accurate OP dynamics.

A rough estimate of maximum allowed Δt value can be obtained using the forces in Fig.

2(a) and their ratio with their derivatives, i.e.,  when Nh=0. This is shown as a
function of ensemble size in Fig. 2(b). As ensemble sizes increases from 100 to 800 the

required time step increases as , as expected from the statistical arguments of Sect.
II. Larger ensemble size removes numerical noise making the force more coherent.
Consequently, the numerical timestep increases and reaches a limit implied by the
characteristic timescale of OP evolution. For the present example, approximately a timestep
Δt of ~60ps is achievable using a sample size Ne of 800 or more. However, generating such
ensembles is computationally expensive for the macromolecular assemblies of interest. To
address this, a composite ensemble of size 3200 is obtained by sampling 400 structures over
8 timesteps (i.e., using Nh=8 and Ne=400) in the history of a given time t. The population
distribution of the history enhanced OP forces is in agreement with those from a large
ensemble at a given time (Fig. 2(c)). Furthermore, the history enhanced thermal average
forces are in agreement with those computed from Ne=3200, Nh=0 ensembles for the entire
5ns trajectory (Fig. 2(c)). Using the history enhanced thermal average forces implies that the
characteristic Langevin timestep is increased from 20 to 60ps (Fig. 2(b) (green point)), i.e.,

 when Ne=400 and Nh=0, but when Nh=8 keeping Ne fixed

. Thus, the limiting OP timestep of 60ps obtained
using Ne=3200 is recovered via Ne of 400 enhanced over 8 history steps. Other
combinations of Nh and Ne that reproduce similar results are shown in the Supporting
Information (Fig. S2). This analysis is valid only if all-atom ensembles used in the history
enhancement are mutually uncorrelated, as shown in the following.

B. Applicability of the Multiscale Approach and Correlation Between Ensembles
The OP velocity autocorrelation function provides a criterion for the applicability of the
present multiscale approach. If the reduced description is complete, i.e., the set of OPs
considered do not couple strongly with other slow variables, then the correlation functions
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decay on a time scale much shorter than the characteristic time(s) of OP evolution.
However, if some slow modes are not included in the set of OPs, then these correlation
functions can decay on timescales comparable to those of OP dynamics. This is because the
missing slow modes, now expressed through the all-atom dynamics, couple with the adopted
set of OPs. The present approach fails under such conditions. For example, putting the lower
limit of integral in Eq. (4) to −∞ is not a good approximation and the decay may not be
exponential; rather it may be extremely slow so that the diffusion factor diverges.
Consequently, atomistic ensembles required to capture such long-time tail behavior in
correlation functions are much larger than those for capturing a rapid decay. In Fig. S3 it is
seen that the velocity autocorrelation function decays on a scale of >10ps when an OP Φk
with k1=1, k2=0 and k3=0 (Eqs. (1)–(2)), implying extension-compression along the X-axis
is missing, but on a scale of ~1ps when it is included. Here, such situations are avoided via
an automated procedure of understanding the completeness of the reduced description and
adding the OPs when needed (discussed briefly in Sect. SI1 of Supporting information).26

Adapting this strategy ensures that the OP velocity autocorrelation functions decay on
timescales orders of magnitude shorter than those characterizing coherent OP dynamics, and
thus the present multiscale approach applies. Consequently, the history enhanced multiscale
method allows one to use larger timesteps (i.e., 10ps or more versus <1ps, to account for the
long-time tails, for the demonstration problem).

The present OP velocity autocorrelation functions decay on the ps timescale. Thus, multiple
1ps NAMD trajectories are used to compute OP velocities, correlations within which are
ensemble averaged to construct the diffusion factors (Eq. (4)). Adapting this procedure is
computationally practical as the timescale of decay is orders of magnitude shorter than that
characterizing coherent OP dynamics. This procedure could be further optimized in two
ways to make autocorrelation functions decay even faster. (a) OP force autocorrelation
functions can be used to construct friction coefficients between OPs.35 This matrix of

friction factors can then be inverted to obtain the diffusion matrix . Since the OP force
autocorrelation functions decay faster than those for the OP velocities (Fig. S4), shorter MD
runs are required to obtain the statistics for computing these functions. Thus, one saves
computational time. (b) Since the OPs are constructed using orthonormalized polynomial
basis functions, they mix overall rotational with extension-compression modes. This
Coriolis-type coupling can be minimized to facilitate greater separation in scales between
the slow and fast degrees of freedom, thereby possibly allowing more rapid decay of the
autocorrelation functions. One way of achieving this separation is to cast the OPs in terms of
Eckart internal, rather than Cartesian, coordinates.47 Within this framework, there is no
coupling between vibrational and rotational degrees of freedom at equilibrium. Related
techniques involving a translating and rotating internal coordinate system are found to
resolve molecular vibrations using only normal modes; translation and rotation are treated as
vibrational motions with zero frequency.47–49 In a similar way, use of the Eckart frame
could result in correlation functions with shorter decay times, and therefore greater
computational efficiency. In a related ongoing work, the idea of constructing OPs to capture

deformations with respect to an evolving reference structure (not a fixed one  in Eq. (2)) is
exploited. This dynamical reference configuration makes the associated OPs slower, thereby
increasing the timescale separation with atomic fluctuations and reducing the decay time.

In any practical computation, the ensembles created are incomplete. Correlation of
information between these ensembles must be considered in evaluating the history method.
If the ensembles of all-atom configurations constructed at consecutive Langevin timesteps
are very similar then using both adds no additional information to the net history enhanced
(two-timestep) ensemble. Thus, for ensemble enhancement to be beneficial, the incomplete
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all-atom ensembles from consecutive timesteps should be uncorrelated. This is seen to be
the case for the present example (Fig. 3) where ensembles characterizing OPs at discrete
intervals of time are independent. Since ensembles involved in the MC integration are
uncorrelated, the convergence of the thermal average forces is expected to be ∝(NeNh)1/2. In
this way, a large slowly varying ensemble can be accounted for via multiple atomistically
uncorrelated smaller ones, each of which captures some of the instantaneous influence of the
evolving OP. Here, the correlation coefficient between all-atom ensembles at two different
Langevin timesteps is defined in terms of the covariance of the atomic forces obtained at
these time points divided by the product of their standard deviations.44

When sufficiently large Boltzmann ensembles are constructed at every Langevin timestep,
thermal average forces between consecutive Langevin timesteps should be correlated (Fig.
S5), i.e., these OP forces depend on OPs which change only slightly from one Langevin step
to another. However, finite sampling size introduces random ensemble error “noise” and
reduces the correlation between the OP forces (Fig. S6). This also underlies the shifting
distribution of OP force peaks as observed in Fig. 2(a). To address this ensemble noise we
integrate historical information as follows.

C. Ensemble Size and Langevin Timestepping: A History Enhanced Multiscale Simulation
Analysis

The history algorithm is implemented in DMS as per the workflow of Fig. 1. The first few
loops in this workflow is executed considering Nh = 0. During these steps, the use of small
but computationally practicable ensembles limit Δt to small values. As the number of loops
exceeds Nh, the Langevin equation is integrated using the history method (Eq. (13)). Thus,
the effective ensemble size and hence Δt is increased without loss of simulation accuracy.

Multiscale simulation results using different timesteps and sample sizes (Changing Nh for a
given Ne) are compared to those from the 5ns MD trajectory of the L1-pentamer expansion
as discussed above. Limits on these parameters as obtained from the MD analysis (Sect. III-
A) are Δt ~60ps and Ne > 800 when Nh=0 (Fig. 2(b)). DMS trajectories generated using
ensemble of size 200 (Ne=200, Nh =0) to 1600 (Ne =200, Nh =8) are successful in
reproducing NAMD results when Δt is 20ps (Fig. 4). This implies, statistical errors in
incomplete thermal average forces when applied over a sequence of small timesteps cancels
out, thereby reproducing results similar to those using more complete forces and larger
timesteps. The result is also consistent with the fact that using ensembles of 200 or more
configurations suffice to attain forces that imply Δt of 20ps (Fig. 2(b)). As the timestep
increases, only runs with larger history ensemble sizes reproduce the MD derived OP
trajectory. With smaller ensembles, statistical errors in the thermal forces and diffusion
factors misdirect the OP evolution when the Langevin timestep is large. This is reflected in
artificial overshoot and undershoot observed in the OP evolution (Fig. 4). Structurally, such
behavior of OPs creates an abrupt increase in the amplitude as well as frequency of large
scale motions, thereby evolving the system far away from its free-energy minimizing
pathway. The timestep of 60ps is achieved using an ensemble of 1600 configurations
(Ne=200 and Nh=8). This step-size is the maximum that can be used respecting the limit

 (Fig. 2(b)), and thereby reflects the characteristic
timescale of OP evolution as imposed by the thermal regime of motion. Overshoots and
undershoots in OP dynamics also appear as the Langevin timestep exceeds the characteristic
time of OP evolution. However, in such cases, further increase in ensemble size (even an
infinite ensemble) does not suffice to restore the OP dynamics since error from the
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numerical integration algorithm with  is unacceptably
large for the rectangular scheme used here (Eq. (13)).

There is a limit on the number of history timesteps, Nh, to be included in the Langevin
integration that arises from our OP construction procedure (Eqs. (1)–(2)). These OPs are
defined to describe the large scale dynamics as deformations of a fixed reference structure

. However, the reference structure occasionally must be changed to accurately capture a
structural transition. This is implied by the evolution of an appropriate reference structure on
a timescale much greater than that characteristic of the OPs (Fig. S7(a)). For example, while
the OPs change every Langevin timestep, typically the reference structure, and therefore the
polynomials U change every 30 timesteps or more (Figs. S7(b)). Every time the reference
structure changes, OPs are redefined in terms of the new reference. The history integration
should not include time points beyond this re-referencing limit, as the very definition of
OPs, OP forces and velocities are different across such reference structure transitions. Thus,
for the case studied here Nh<= 30.

In summary, to capture the expansion of a h4-truncated pentamer the ensemble size Ne
without the history enhancement must be greater than 800. It has been shown, using a
maximum of 8 history steps and minimum of 200 structures per Langevin timestep, result of
the equivalent non-history ensemble can be recovered. Consequently, in comparison with a
non-history (Nh = 0) calculation with small Ne (200) and short Δt (e.g., 20ps), the history
simulation with same Ne enables larger Δt (e.g., 60ps), and is therefore 3 times faster.
Alternatively, if Ne is increased to 800 or 1600 for improving Δt keeping Nh = 0, then again
the history formulation provides a speed-up of 4–8 over the non-history calculation as the
considerable computational time for constructing sufficiently large ensembles is reduced.
DMS without history enhancement is an order of magnitude faster than conventional MD.29

With history the speed is enhanced by 3–8 folds. However, DMS is more appropriately
comparable with ensemble MD as an ensemble of size, e.g., 1600 is constructed every
Langevin timestep. Furthermore, this efficiency is size dependent and has been shown to
increase as system size increases.28, 29

D. Dependence of Simulation Parameters on System Characteristics: Demonstration via
Stable and Unstable HPV Pentamer Constructs

The history enhanced Langevin scheme is used to simulate three HPV pentamer systems (1)
complete, (2) h4-truncated and (3) h2, h3, h4-truncated pentamers. While the first two
structures initially expand and then remain stable, the third has weak intra-pentameric
connections and thereby expands more extensively (Figs. 5(a)–(c) and S8). As a result for
the third system, the stress on selected monomers is reduced by ~50% (Fig. 5(d)). Variations
in large scale motion are reflected in the timescale of OP evolution characterizing the three
systems. For example, the complete and h4-truncated pentamers remain bound (both in
simulation and in experiments), and gradually approach an expanded equilibrium state. This
transition is simulated using a Langevin timestep of 60ps. In contrast, the h2, h3, h4-
truncated pentamer is unstable. It demonstrates significant large scale motions, however
does not immediately split into monomers as there are secondary hydrophobic interactions
that support a transient long-lived state. The diffusion coefficients for system 3 are greater
than those for 1 and 2 (Fig. 5(e)). This reflects the higher level of fluctuations is system 3.
Consequently, the Langevin timestep required for numerical stability is reduced to 40ps.
Furthermore, a larger number of OPs are required, reflecting the importance of shorter scale
fluctuations. The increased number of OPs decreases the number of residual degrees of
freedom and therefore the required ensemble size decreases also. Nonetheless, the
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computational efficiency is still improved via history ensemble enhancement, but the net
advantage is somewhat diminished.

IV. Conclusion
The simulation of many-atom systems like supramolecular assemblies can be greatly
accelerated using multiscale techniques. However, these techniques require the construction
of ensembles of all-atom configurations in order to compute diffusions and thermal average
forces for advancing the coarse-grained variables (OPs in our case). As the approach yields
the co-evolution of the OPs with the quazi-equillibrium distribution of all-atom
configurations, it is effectively an ensemble MD method and thereby achieves statistically
significant results. However, constructing such ensembles increases the computational
burden, resulting in loss of efficiency. This difficulty stems from the use of ensembles which
do not represent the space of all-atom configurations adequately. As a result, the coarse-
grained state of the system will be somewhat misdirected in a given Langevin timestep,
limiting the timestep size required to maintain the accuracy. It was shown here that this
difficulty can be overcome using ensemble from previous timesteps. This requires that the
latter are integrated into the computation in a manner which respects the changing nature of
the ensembles over the past time period. Thus, ensemble from the evolution history cannot
simply be added into a larger ensemble attributed to only one time.

In the history method presented here, it was shown that an acceleration of multiscale
simulation of a factor of 3–8 over simulations which ignore history can be attained. The size
of the allowed timestep increases with the number of timepoints included in the integration
over history. The relation between Langevin timestep, ensemble size and re-referencing
needed to sustain numerical accuracy and efficiency was established. The above points were
demonstrated using three viral capsomers with different C-terminal truncations (thereby
structural stability). While efficiency of the computations has some limits that depend on
system detail, we expect the history enhanced approach appears to have broad applicability.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Workflow illustrating computational implementation of history enhanced DMS. Boxes
indicating computations with all-atom details are presented in deep blue, while those
involving OPs are shown in light blue.
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Fig. 2.
(a) Time evolution of thermal average forces (fk with k1=1, k2=0 and k3=0), constructed
every 20ps using all-atom ensembles of sizes 100 to 3200. Averaging over larger ensembles
yields more coherent thermal forces. (left) Line histograms showing distribution of
associated OP forces ( ) are shifted from their correct values when the ensemble size
decreases. Data for this plot is obtained from the all-atom ensemble at 2.5 ns. (b) Optimal

Langevin timestep Δt computed using  versus ensemble size Ne (Nh = 0), showing as

Ne grows Δt increases as O( ) Ne till the maximum timestep limit is reached. Using
history enhanced thermal average forces with Ne=400 and Nh= 8 similar step-size as for
Ne=3200 and Nh = 0 (Fig. 2(b) (green point)) is obtained. (c) History enhanced thermal
average forces versus time showing they are in agreement with those computed from
Ne=3200, Nh=0 ensembles for the entire 5ns trajectory.(left) Line histograms showing
distribution of OP forces for ensembles constructed using Nh=4, Ne=800. This distribution is
in agreement with those from large non-history ensembles (Nh=0, Ne=3200) and other
history enhanced ensembles (Fig. S2). Positively peaked distribution of these forces implies
overall expansion of the pentamer.
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Fig. 3.
Correlation between atomic forces (projected along the ray from the center of mass),
obtained every 20ps, from configurations of constant OP ensembles of size 1600. Near-zero
correlation between ensembles characterizing OPs at discrete intervals of time imply that
they are statistically independent.
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Fig. 4.
Benchmarking of DMS simulated OP (Φ100X) evolution against those from conventional
NAMD trajectories. DMS trajectories using ensemble sizes (200 (Ne =200, Nh =0) to 1600
(Ne =200, Nh =8)) are consistent with MD when Δt is 20ps. As Δt increases to 40 and 60ps
DMS trajectories generate only using larger ensembles succeed in reproducing MD results.
For the same Δt, DMS trajectories with smaller ensemble size suffer from statistical errors
in the thermal forces and diffusion factors that misdirect OP evolution. For Δt >60ps (e.g.,
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80ps) all DMS trajectories fail to reproduce MD results as under simulated conditions

.
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Fig. 5.
Snapshots of (a) complete (b) h4-truncated and (c) h2,h3,h4-truncated HPV pentamers after
30ns of DMS simulation showing the first two structures are fairly stable but the third one is
unstable and expands extensively. (d) Stress on L1-monomer during pentamer expansion
showing system 3 releases ~50% of initial stress while 2 releases a maximum of 10 %
relative to the most stable system 1. αβ component of stress tensor for monomer i with

volume Ω is , as computed using a continuum theory
formulation of virus capsids;50 here j = 1,5. The principal component of this stress tensor
with largest magnitude is normalized over the three systems and presented here. (e)
Diffusion coefficients computed from OP velocity autocorrelation functions (Eq. 4) versus
the 33 OPs used in DMS simulations. Diffusion coefficient for system 3>2>1 for most of the
OPs. Thus, the allowed Δt follows reverse order.
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Table 1

Input parameters for the NAMD and DMS simulations.

Parameter Values

Temperature 300K

Langevin damping 5

Timestep 1fs

fullElectFrequency 2fs

nonbondedFreq 1fs

Box size 160Å × 160Å × 160Å

Force-field parameter par_all27_prot_na.prm

1-4scaling 1.0

Switchdist 10.0 Å

Cutoff 12.0 Å

Pairlistdist 20.0 Å

Stepspercycle 2

Rigid bond Water
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