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ABSTRACT 

High Throughput Screening (HTS) is a successful strategy for finding hits and leads that have 

the opportunity to be converted into drugs. In this paper we highlight novel computational 

methods used to select compounds to build a new screening file at Pfizer and the analytical 

methods we used to assess their quality. We also introduce the novel concept of molecular 

redundancy to help decide on the density of compounds required in any region of chemical 

space in order to be confident of running successful HTS campaigns. 

 

INTRODUCTION 

The pharmaceutical industry is struggling to improve or even maintain its productivity at 

levels which can sustain current investments in research and development.1,2,3 Indeed, by 

some measures, productivity has not changed in 60 years.4  High Throughput Screening 

(HTS)5,6,7,8,9 is a well established and successful method for hit and lead discovery in 

pharmaceutical and biotechnology companies and increasingly now in academia.10,11  In our 

experience and using the existing Pfizer compound file configured in an appropriate manner 

against selected targets, HTS has delivered hits in > 90% of screens, from which new hit to 

lead projects could be initiated in 50-70% of cases. Other successful methods for hit and lead 

discovery exist and may be used as alternatives or in parallel to HTS,12 depending upon the 
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nature of the target protein whose modulation is required and on the resources available to the 

researchers.  These methods include fragment screening13,14,15 and virtual screening16.  In our 

experience and that of others, these methods are complementary, can be synergistically used 

together and are not necessarily competitive with each other.17  Our experience of HTS is that 

it has successfully led to the drug launch of maraviroc,18 to the discovery of torcetrapib,19 and 

to the enrichment of a significant part of  Pfizer’s clinical portfolio, as is the experience in 

other companies.20 

We identify four key factors that are critical to success in HTS-enabled drug discovery. The 

first is choice of biological target and its mechanism of modulation (agonism, inhibition etc). 

Achieving this target modulation must lead to the desired clinical effect in the selected patient 

population without overt side-effects or toxicities.  Secondly, the target must be amenable to 

modulation by small molecules i.e. it must be druggable.21,22  Thirdly, the assay(s) chosen to 

discover hits against that target must be robust and relevant to the physiological environment 

in which that target functions. Fourth, the screening file used in the assay must be designed to 

be both effective in producing multiple, high quality hit series and achieve this with an 

efficient use of resources.  

Corporate screening files for HTS consist of collections of molecules from various sources 

that are built up over a number of years. The sources of these compounds are typically from 

in-house synthesis, external vendor purchases or strategic collaborations to enrich the file. 

Compound synthesis and purchase efforts are generally guided by molecular design 

principles which may include molecular properties, predicted physicochemical properties, 

predicted safety, predicted molecular stability, molecular diversity and sometimes molecular 

density considerations. In big pharma, screening files23,24 are typically made up of multiple, 

relatively concentrated sets of compounds synthesised for specific medicinal chemistry 

projects, enhanced by compound or library synthesis, either directed towards specific gene 

families or to increase chemical diversity. The Pfizer screening file has two distinct 

components: the library chemistry part of the file, made using library synthesis protocols 

(mostly as part of our file enrichment  efforts) and the legacy chemistry part of the file, made 

mostly one compound at a time. 

Several key concepts are embedded in the molecular design principles mentioned above. 

Firstly, the Similarity Property Principle states that molecules of similar structure are likely to 

have similar physical, chemical and biological properties.25,26  Secondly, whilst chemical 

space is recognised to be vast, there are regions of chemical space that are desirable because 

they encompass drug-like or lead-like space, but also regions that are undesirable because 

they comprise space occupied by potentially reactive, unstable or toxic molecules,27,28,29 or 

space occupied by molecules with poor absorption properties. A seminal paper in this latter 

regard is the work by Lipinski et al30 which established the now well-known  Rule of 5, by 

defining the ranges of molecular properties that drug-like compounds possessing oral 

absorption are likely to have. A useful review of methods for assessing drug-likeness or lead-

likeness of compounds has recently been published by Oprea et al.31 Thirdly, molecular 

diversity is also a key concept in the design of screening files, as it gives a measure of the 

range of chemical space covered by a particular file. Diversity-based screening files can be 
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designed using dissimilarity-based algorithms, cell-based approaches such as BCUTs32 

clustering methods or optimisation algorithms.33,34 Great care must be taken, however, when 

using dissimilarity-based approaches to select screening compounds, as it is easy to bias the 

selection towards molecular outliers on the edges of the chemical space of the collection, 

which may have structures that are unattractive or intractable as chemical leads for 

optimisation. 

The three concepts discussed above allow for the selection of a diverse array of compounds 

with drug-like or lead-like properties, but a key question still remains: how many compounds 

should be in a screening collection? Thus, fourthly and finally, we introduce here for the first 

time the concept of molecular redundancy in order to answer this question. Our work builds 

on activity probability methodology introduced by Nilakantan et al, 35 which was further 

developed by Harper et al36 and Lipkin et al37 as well as work relating chemical similarity to 

biological activity by Hajduk and Martin38 Our computational method enables us firstly to 

determine how many compounds in a given area of chemical space will be needed in order to 

generate at least one hit in HTS (see below) and secondly to select redundant compounds that 

are not required. 

The approaches described here were developed to shape the Pfizer screening file in response 

to the Wyeth acquisition, the merging of the two companies’ screening collections and its 

consequent growth to well in excess of four million compounds. However, the design 

principles outlined here are of general use and can be applied to the analysis of any existing 

screening file, or to the creation of a new one. They can also be applied to the design of 

individual chemical libraries. 

The aim of this work was to re-shape the Pfizer screening file so that it could best achieve its 

primary purpose of finding good quality representatives of each chemical hit series from an 

HTS in an efficient manner, but without having too many (redundant) representatives of each 

series present in the file. In other words, we deliberately chose to avoid the generation of 

dense SAR directly from HTS, with the goal of increased screening efficiency. A more 

detailed SAR generation on selected hit series would be generated in follow-up experiments, 

particularly by “exploding” around library hits. This was deemed to be the most efficient way 

to direct hit discovery activities. 

RESULTS 

HTS Retrospective Analysis 

Our approach to redundancy analysis started with a retrospective, in silico analysis of the 

relationship between the similarity of compounds and the probability of biological activity, in 

a set of seven recent Pfizer HTS campaigns with a range of target types. In all cases, an 

identical diversity-based screening subset of 432,000 compounds was utilized. Similar work, 

using IC50 level data and with a focus on lead-hopping has been reported by Hajduk and co-

workers at Abbott.38 Based on primary HTS data we defined a compound as active at cut-offs 

of 50% inhibition in the screen (40% for one of the HTS targets). We chose to use primary 
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HTS data rather than IC50 level data in order to: 1) take a more conservative approach to the 

estimation of the probability of biological activity at a given Tanimoto similarity and 2) avoid 

the possibility of compounds being deselected as part of a triage process. A full similarity 

matrix of all active compounds against all tested compounds was calculated and compounds 

with Tanimoto values > 0.5 were selected. The compounds were binned according to their 

Tanimoto similarity values (in 0.05 units). We then derived the probability of activity, p, by 

determining the percentage of active compounds that had structural similarity to an active 

compound within a given Tanimoto range (Figure 1). For example, the probability of any 

compound, which shows a Tanimoto similarity of 0.7 to a known active, to be active itself 

ranges from approximately 10-18% for our set of HTS targets. We felt reassured that the 

behavior of the broad range of targets we examined was relatively uniform in the regions of 

Tanimoto similarity between 0.5 and 0.7: the key region for our analysis (see section on 

Tanimoto similarity below). 

 

 

Figure 1: The probability of finding biological activity based on primary HTS data against the Tanimoto 

similarity of compounds screened for a set of seven recent HTS targets using an identical diversity-based 

compound set of 432,000 singleton compounds. 

Belief Theory 

In the next step we used Belief Theory39 and the results from the HTS retrospective analysis 

to determine how many compounds at a given Tanimoto similarity need to be screened in 

order to achieve a threshold probability of finding active compounds from a certain area of 

chemical space. The chance of finding at least one active compound is given as 
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DC = 1 – (1 – p)N 

with: DC = degree of certainty to have at least one active compound; p = likelihood of 

activity at a given Tanimoto threshold; and N = number of compounds tested with a 

Tanimoto similarity above the given threshold. For instance, if we want to find at least one 

active compound in a cluster of 20 compounds above a certain Tanimoto similarity, and with 

a likelihood p = 10% of finding activity at that Tanimoto value, the degree of certainty of 

finding that active, DC, is given as follows: 

DC = 1 – (1 - 0.1)20 = 0.88 i.e. 88% 

In order to reach a degree of certainty of > 95%, at least 30 compounds above a certain 

Tanimoto similarity need to be considered, assuming the same probability of activity p = 10% 

(Figure 2). 
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Figure 2: Belief Theory predictions for the likelihood of finding at least one active compound when testing 

different numbers of similar compounds, calculated for a range of probabilities p of finding biological activity 

(see Figure 1). 

Tanimoto Similarity and Degree of Certainty Thresholds 

In the next step we decided on practicable thresholds for the Tanimoto similarity and the 

degree of certainty for hit finding to use in the design of the re-shaped screening file. Using 

ECFP4 fingerprints we decided on a Tanimoto similarity threshold of 0.60 as the optimal cut-

off. With thresholds below 0.60 we had too many compounds in each similarity sphere that 

appeared to be unrelated; with Tanimoto similarity thresholds greater than 0.60 we excluded 

too many compounds inside a similarity sphere of related compounds, according to expert 

medicinal chemists who extensively reviewed bins of compounds at different Tanimoto cut-

offs.  

The Degree of Certainty (DC) threshold was deemed to be a business decision. The key 

question we had to face was how critical it is not to misclassify a chemical series as 

completely inactive due to insufficient screening. It was crucial from a business perspective 
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to keep the risk of missing an active series due to redundancy reduction to a minimum. We 

therefore set the DC threshold as > 95% chance of finding at least one member of an active 

series in any given region of chemical space. According to our retrospective Pfizer HTS 

analysis, there is on average an approximately 8% chance that any compound with a 

Tanimoto similarity of > 0.60 to an active neighbour, will be active itself (see Figure 1). 

Screening a set of N = 36 such compounds would result in a DC of just over 95% (see Figure 

3). We note that this figure is in exact agreement with that from the related work of Lipkin et 

al37 who looked at the library size needed for gaining SAR directly from HTS in a small 

collection containing 85 scaffolds. We decided to go with the slightly more conservative 

approach of setting N= 40 similar compounds, which results in a DC = 96.4% and more 

confidence that we would not miss series. This DC value reassuringly also gives > 84% 

chance of finding at least two actives and > 63% chance of finding 3 actives, from that same 

cluster (Figure 3).  

 

Figure 3: Probability of finding at least 1, 2 or 3 active molecules according to Belief Theory, when screening 

different numbers of related compounds, with a Tanimoto similarity of > 0.6 to each other, and an average 8% 

probability of finding activity in any one compound. 

Redundancy 

The Tanimoto similarity and the probability of activity at a given Tanimoto similarity in 
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𝑁 =  
log (1 − 𝐷𝐶)

log (1 − 𝑝)
 

with, N = the number of compounds deemed sufficient in a given chemical space; DC = 

Degree of Certainty to find at least one representative of an active series from a cluster of 
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related compounds within a given Tanimoto threshold; and p = the likelihood of biological 

activity at a given Tanimoto threshold, as determined by the HTS retrospective analysis. With 

DC > 95% (actually we set DC = 96.4%, see above) and p = 8%, this results in N = 40 

compounds to be screened. 

Once N was determined we used it to define a new property called compound Redundancy, 

R, as the percentage of compounds with a similarity above the Tanimoto cut-off, that are in 

excess of the minimal number of compounds, N, required to find at least one representative 

of an active series with a given Degree of Certainty: 

 R = [1 – ([N-1] / NN)] x 100 

with NN = Number of Neighbouring compounds with a Tanimoto similarity above the 

Tanimoto threshold relative to another compound. This calculation was carried out for all 4.5 

million compounds in the screening file. Note that any compound with NN > 39 is in a 

redundant region of space as there will be more than 40 compounds in that region. See the 

Discussion for a greater exemplification. 

Selection of Redundant Compounds for Removal from the Screening File 

The Redundancy value of a compound, R, as described above can be used directly in any 

selection/de-selection process to eliminate redundancy in the overall screening file. In the 

simplest form that we implemented, and the form that we actually used, a random number 

between 0 and 100 is generated and compared to the percentage Redundancy value of the 

molecule, which also varies between 0 and 100 (in the limit of infinite similar neighbours: see 

also the Discussion below) in order to derive compound selection rules: 

Redundancy, R  < Random => keep compound 

Redundancy, R > Random => remove compound 

Thus the more redundant a compound is, as measured by its percentage redundancy, R, the 

more likely it is to be removed in this random selection process. However, the removal of 

redundancy is more complex than at first sight. Each compound in the screening file is treated 

as a separate object in the redundancy calculations and the removal of any one compound as 

redundant reduces the redundancy of all other compounds within its similarity zone. The 

magnitude of these effects will also vary according to the density of occupation and the shape 

of the chemical space in that particular region: edge effects can occur. We thus distinguished 

between Candidate Redundant Compounds (CRC) that at the start of the analysis had NN > 

39 and Redundant Compounds (RC) that were actually selected for removal.  Note that in all 

cases CRC > RC. These concepts are illustrated in Figures 4 a to d. 
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Figure 4: a) a schematic representation of a set of 39 black and 39 red compounds in a molecular neighbourhood 

with a Tanimoto similarity of > 0.60 to the large central compound in blue: all molecules outside the blue circle 

have a Tanimoto similarity of < 0.60 and none are show here: the neighborhoods in a) and b) are assumed to be 

remote from other compounds for simplicity. According to our mathematics and definitions, all 79 compounds 

in a) (that is blue, red and black compounds) are candidate redundant compounds, the redundancy, R, of each 

molecule is 50% =  (1 - (39/78)) x 100% and the redundancy of the set as a whole is 50%. b) after redundancy 

reduction and removal of 39 redundant compounds shown in red in a), the remaining 39 black compounds 

within the neighborhood are non-redundant: c) and d) if this neighborhood is actually proximate to other 

compounds, such as the 10 compounds represented by black + signs, then edge effects will occur. For instance 

the compound highlighted by the square red box in the north-east quadrant of the neighborhood is now at the 

centre of a sphere of similarity or neighborhood (dashed red circle) that comprises all 39 of the black circle 

compounds, the central blue circle compound at the centre of the original neighborhood and the 10 additional 

black + compounds. All these compounds are now candidate redundant compounds and the compound in the 

square red box is 20% redundant (R = (1 – 39/49) x 100%). However, as is clear in d) the compound on the 

other side of the neighborhood, highlighted by the square  blue box, still has only 39 neighbors inside the dashed 

blue circle and is non-redundant (R = 0). 

Whilst the above redundancy minimisation procedure can be applied for a set of compounds 

that is well spread in chemical space, for a highly clustered set or one that is non-uniformly 
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distributed in chemical space, an iterative redundancy reduction process is preferred. An 

initial value for N that is significantly higher than the final target number is selected. This 

first step deselects only compounds from the most densely populated areas of chemical space. 

Deselected compounds are then removed from lists of neighbours for the remaining 

compounds.  The values for redundancy are recalculated and the value of N is lowered. This 

process is repeated until the final value for N is achieved and the unwanted redundancy in the 

screening file is eliminated. We repeated the redundancy reduction process iteratively with N 

set first at 100, then 80, then 60 and finally at the target value of 40: this worked well in our 

hands.  

In practice however, a further refinement is required before this redundancy reduction 

methodology can be applied to an existing screening file. Certain compounds which must not 

be removed e.g. active Research Project compounds, need to be excluded from the removal 

process by being artificially set as non-redundant and put on so-called Keep Lists. 

Keep Lists 

To allow preferred handling of important compounds we decided on multiple criteria which 

would be sufficient to exclude a compound from removal from the file. We called these the 

‘Keep Lists’ as they represented different sets of compounds that needed to be kept in the file 

irrespective of their redundancy. Our Keep Lists included the following: research project 

leads, development compounds, Pfizer drugs, members of various active screening subsets, 

compounds with activity above a certain threshold, new compounds that did not have any 

biological testing data yet, compounds produced in certain collaborations etc. For 

simplification, we also included all compounds with less than 39 neighbours on an additional 

Keep List as we wanted to preserve all non-redundant compounds (R < 0). 

The use of these Keep Lists had a significant effect, as they reduce the choice of Candidate 

Redundant Compounds that can be removed in order to reduce the redundancy of the file: see 

Table 2 in the section on Composition of the Pfizer Screening File below.  

Redundancy Reduction in Practice 

The overall effect of our iterative, random redundancy reduction process on the library 

chemistry portion of the screening file, which was the most redundant portion, is shown in 

Figures 5a to 5d below. 
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Figure 5: the library chemistry portion of the Pfizer Screening File, before (blue scatter lines) and after (red 

scatter lines) iterative rounds of random redundancy reduction with N (the redundancy threshold ), set 

successively at 100, 80, 60 and 40. Each plot shows the number of compounds (y-axis) that are present in 

regions of space with a given neighborhood size (NN + 1, x-axis)), defined with a Tanimoto similarity cut-off of 

0.60: a) shown for the entire library chemistry portion of the file with an expansion in c), and b) shown for only 

those compounds not on Keep Lists and with an expansion at low neighbour numbers in d). Note that because 

all non-redundant compounds were on a Keep List, there are no compounds in neighborhoods of less than 40 

compounds in Figures 5b and 5d, prior to the redundancy reduction. Note also that each neighborhood is defined 

by a central compound plus its nearest neighbors (NN + 1). 

 

Two key results will be noted from Figure 5: firstly, significant molecular redundancy existed 

in the library chemistry portion of the Pfizer screening file and secondly, this redundancy was 

considerably reduced but not eliminated by our methodology. A further perspective is given 

in Figure 6, which shows the distribution of compounds on the Keep Lists with respect to 

neighborhood size. This cohort of compounds is dominated by all compounds with < 39 

neighbours, as they are on a Keep List by default (R < 0). 
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Figure 6: the distribution of library chemistry compounds on Keep Lists against neighborhood size (NN + 1), 

both before (blue scatter line) and after (red scatter line) iterative, random redundancy reduction. This set 

includes all non-redundant compounds with NN < 39, which were automatically put on a Keep List, hence the 

discontinuity in the graph at that point. Each neighborhood is defined by a central compound and its nearest 

neighbours within the similarity boundary T  > 0.6.   
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HTS 

target 

Series 

with 

IC50 

actives 

Number of 

active 

series 

removed 

% of 

active 

series 

removed 

ALK 29 4 14% 

Alpha2a 238 4 2% 

D1 6 0 0% 

HCV 724 4 1% 

LEDGF 11 0 0% 

OTR 8 0 0% 

P2X3 183 7 4% 

P2X4 10 2 20% 

PDE1b 84 4 5% 

PI3Kd 158 8 5% 

PI3Kg 363 1 0% 

TrpV1 111 4 4% 

TrpV4 866 3 0% 

average 215 3 4% 

 

Table 1: total number of hit series (with all members of each series having confirmed IC50 activity) found by 

HTS for 13 recent and varied targets, and the number and percentage of series that would be missed after the 

redundancy removal from the screening file. Five of these HTSs were biochemical; eight were cell-based. 

It was reassuring that the number of hit series that would be missed by redundancy removal 

was generally very small, with the % of hit series removed generally between 0% and 5%, 

and with only two of the thirteen targets having more than 10% of hit series removed. The 

average of 4% of hit series removed is consistent with our mathematics which predicts that 

the redundancy removal would give ca 96% confidence of still finding a single hit in a cluster 

of compounds with a Tanimoto similarity of > 0.60.  

Structural  Filters 

In addition to compounds that we deemed necessary to retain (see Keep Lists above) there are 

conversely compounds that should be preferentially removed due to unfavourable structural 

features. Hence, a file exclusion filter set was implemented comprising of around 540 

separate structural filters and these were applied to eliminate compounds with structural flaws 

ahead of the redundancy reduction. A full description of these filters is well beyond the scope 

of this present publication. However, these included established proprietary filter sets from 

the legacy Pfizer and Wyeth organizations, similar to those that have been published by 

others,40,41,42 together with published structural queries to remove structures shown to be 

problematic and give rise to false positive screening hits,43, 44 or contain reactive features. 45,46 

Additionally, some new filters were added which, for example, removed compounds 

containing multiple unattractive features/ toxicophores, 47 in a similar fashion to those applied 

by others.48 The process used is described in the Experimental section. The outcome is given 

in Table 2 below. 
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Composition of the Pfizer Screening File 

The initial composition of the Pfizer screening file and the number of compounds that were 

deemed redundant or that failed the structural filters are summarised in Table 2. 

 

origin number number of 
redundant 

compounds 

% 
redundant 

number of 
filter fail 

compounds 

% filter 
fail 

Pfizer legacy  1,102,179 87,760 8.0% 108,990 9.9% 

Pfizer library chemistry 
(file enrichment / 
parallel medicinal 

chemistry) 

2,679,867 932,573 34.8% 8072 0.3% 

Pharmacia 452,314 18,570 4.1% 56,778 12.6% 

Wyeth 536,000 N/A N/A N/A N/A 

Totals 4,770,360 1,038,903 21.8% 173,840 3.6% 

Table 2: Size and origin of the initial dataset of screenable compounds, including the number of compounds in 

each segment, plus the number of compounds that failed either the redundancy filters or the file entry filters 

(unwanted structures). Note that the filters were developed and applied prior to the incorporation of the Wyeth 

compounds so that no further pruning of that segment of the file was needed: hence all entries are N/A = not 

applicable.  

 

The implementation of the Keep lists (see above) caused an issue for the removal of the 

redundant compounds. Table 1 indicates that 8.0% of the Pfizer legacy and 34.8% of the 

Pfizer library chemistry portions of the file were redundant. However, the scope of the Keep 

Lists was so extensive i.e. so many compounds were protected from removal, that for the 

Pfizer legacy, Pfizer library chemistry and Pharmacia portions of the file, we needed to 

remove very high percentages of the candidate redundant compounds (CRC) with more than 

39 neighbors. For instance, in the Pfizer library chemistry portion of the file (2,679,867 

compounds), 34.8% or 932,573 compounds were redundant. In fact, of the 1,673,611 

candidate redundant compounds (more than 39 neighbors) over a quarter of a million were on 

Keep Lists and protected from removal. We therefore needed to remove 932,573 compounds 

from the remaining 1.4 MM available: see Table 3 below. 

 

origin number 

number of candidate 
redundant compounds 

(CRC) with > 39 
neighbors and available 

for selection  

% of 
candidate 
redundant 

compounds 
requiring 
selection 

Pfizer legacy  1,102,179 158,695 55.3% 
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Pfizer library chemistry 
(file enrichment / 
parallel medicinal 

chemistry) 2,679,867 1,404,196 66.4% 

Pharmacia 452,314 31,339 59.3% 

Wyeth 536,000 N/A N/A 

Totals 4,770,360 1,594,230 65.2% 
Table 3: Size and origin of the initial dataset of screenable compounds, together with the number of candidate 

redundant compounds (CRC) with NN > 39, available for redundancy reduction after application of the Keep 

Lists. Note that the filters were developed and applied prior to the incorporation of the Wyeth compounds, so no 

reduction of compounds was required from that portion of the file: N/A = not applicable. 

 

Attractiveness and Tiering of the File 

An efficient screening file for HTS should deliver novel and attractive compounds as starting 

material. Early on in this work we developed an algorithm called Medicinal Chemistry 

Attractiveness (MCA)49 that assesses whether a compound is sufficiently attractive for 

medicinal chemistry follow-up, without the involvement of any medicinal chemists. In tests 

against expert medicinal chemists it performed as well as the best human experts inside 

Pfizer. The method has similarities to the subsequent QED method published by Hopkins et 

al.50 

Analysis of the screening file with the MCA algorithm, after the elimination of both the 

redundant and the potentially reactive and toxic molecules, revealed a small but significant 

fraction of the file as unattractive and less likely to be followed up as hits for oral therapeutic 

targets. Closer inspection of this section of the file revealed that such compounds fall into a 

number of areas of chemical space, including compounds with known activity against 

specific targets. For example, steroid-like structures with a tendency to interact with nuclear 

hormone receptors are likely to be of less interest to projects seeking leads for targets in other 

gene families. 

Including such compound classes in a general screening file for HTS will dilute an efficient 

screening campaign and potentially unnecessarily deplete those compounds for no reason. 

We therefore generated a two-tiered file. The Tier 1 set includes all compounds that were 

deemed as attractive by the MCA algorithm and suitable for standard targets where oral drugs 

are sought. The Tier 2 set contains compounds tranched  in special classes such as 

macrocyclic compounds, steroids, polypeptides, high-end physicochemical property fails 

(e.g. Ro6 fails with molecular weight > 600, AlogP > 6.0 etc), generally less attractive 

compounds e.g. > 6 rings, highly rigid compounds,  highly flexible compounds, fragment-like 

compounds, and complex natural product-like compounds. 
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Screening File Sample Quality Analysis 

We used the large number of analytical quality control (QC) results gathered as part of our 

on-going HTS activities to assess the physical quality of different sectors of the screening 

file, as a key adjunct to our redundancy reduction and file filtering activities.  All compounds 

synthesised in Pfizer have their identity and purity confirmed at the point of synthesis. in 

addition, all compounds undergoing IC50 measurement as part of HTS follow-up in Pfizer 

have analytical QC measurements made on them (see below) to re-check their quality. While 

samples from both the Pfizer legacy and the more recent Pfizer library chemistry (internal 

and outsourced) sectors of the file typically have a modest ~20% failure rate (either wrong 

compound, impure or very low sample quantity), compounds from certain external sources 

acquired prior to the application of our QC criteria had a > 50% failure rate.  Consequently, 

all compounds from these sources were removed from the screening file, as their follow-up 

was known to be wasting resources.  

In a separate exercise, a data set containing 130,500 sample QC results, collected from June 

2005 to October 2011 of 109,000 Pfizer library chemistry compounds, were analysed to 

determine if we could confidently remove individual compound/batches based on QC fails, as 

opposed to whole sets of compounds as described above.  We found 3,767 compound/batches 

that had N ≥ 3 QC results and another 12,536 with N = 2 QC results.  These two subsets of 

data were closely examined for consistency of QC results to assess our degree of confidence 

in removing these compound/batches from the file. However, disappointingly, issues with the 

accumulated QC data prevented us from confidently removing suspect library chemistry 

compound/batches based on past QC data.  These issues included:  inconsistent definitions of 

QC ‘pass’, ‘fail’, and ‘suspect’ between different Pfizer groups and experimenters running 

the QC, as well as lack of repeatability of QC result data when the same compound/batch was 

tested.  Based on this analysis, no individual Pfizer compound/batches were removed from 

the file based on past QC results. However, due to these issues, process changes were made 

to ensure that analytical QC could be effectively used in the future: see Discussion and 

Experimental sections below. 

 

DISCUSSION 

Our mission was to reshape the Pfizer screening file so that it was both effective in finding 

attractive hit series that would be likely to be taken up by therapeutic area project teams, and 

also efficient in its use of resources. In particular, we made the critical decision that we did 

not want to generate SAR within hit series as part of the HTS process: that can be more 

efficiently done as part of the hit follow-up process post-HTS, once the priority hit series are 

selected, especially via ‘explosion’ of the chemical space around parallel chemistry hits, 

using the known synthetic protocols. We did however, want to make sure that we found the 

vast majority of attractive hit series that would be present in the file in any given HTS. 

 Four key approaches were taken in this work: 1) reducing redundancy in the screening file 

i.e. identifying and removing compounds that are so similar to one another that they add little 
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or no value to hit series identification and if found would just contribute to SAR 

understanding; 2) reducing the number of  compounds in the file that are unlikely to be 

selected for follow-up in a medicinal chemistry project, typically due to expected reactivity or 

toxicity, by the implementation of a battery of molecular filters; 3) partitioning the file into 

two distinct Tiers: Tier 1 compounds for standard oral delivery projects and Tier 2 

compounds for hit identification against non-standard targets such as protein-protein 

interactions, or targets where non-oral delivery is required and therefore different molecular 

characteristics will be required; 4) the removal of sectors of the file with particularly high QC 

failure rates. We will discuss each of these in turn. 

 

Molecular Redundancy 

An intensive File Enrichment program51 in Pfizer in the late 1990s and early 2000s resulted 

in some large libraries of similar compounds being made by combinatorial or non-

combinatorial parallel chemistry i.e. the libraries exhibit various degrees of molecular 

redundancy. Molecular redundancy was also seen in the Pfizer collection in regions where 

medicinal chemistry teams have worked within a similar series for some time, leading to 

many close-in analogues entering the corporate screening file. These issues arose because 

there were no good methods for determining how many compounds are needed in any given 

region of chemical space and no clear definition of molecular redundancy. The aim of this 

present work was to generate the methodology to derive a minimally redundant screening 

file. 

We developed the concept of Redundancy using activity probabilities and Belief Theory, 

building on the concepts of Nilakantan et al,35 Harper et al,36 Lipkin et al37 and Hajduk and 

Martin et al,38 to encompass an analysis of our entire screening file and determine how many 

compounds with a given similarity we need in the chemical space region of an active 

compound in order to provide a > 95% confidence level of finding at least one of those 

compounds by HTS.   

An analysis of seven recent singleton HTS against a variety of targets using a subset of the 

Pfizer screening collection called the Plate-Based Diversity Screening subset (PBDS)52,53,54 of 

432,000 compounds gave us the probability of finding biological activity in a group of 

compounds with a given Tanimoto similarity coefficient, if a hit was already present. The 

PBDS is a diverse subset of the screening file, selected according to the chemical diversity 

and properties of the compounds on a screening plate, rather than an individual compound 

basis. It is a workhorse screening set of the Pfizer HTS group, is now in its third generation 

and it will be the subject of a future publication. To establish a Tanimoto threshold that best 

incorporated the understanding of a chemical series, two expert medicinal chemists visually 

inspected various Tanimoto bins of multiple compounds series. After extensive medicinal 

chemistry and computational chemistry analysis, a Tanimoto similarity threshold of 0.60 was 

chosen as the lowest cut-off below which the concept of a chemical series was lost. The 

optimal Tanimoto similarity cut-off of 0.60 thus reflected best our in-house medicinal 
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chemistry judgment; a decision that was ratified by the Pfizer medicinal chemistry leadership 

and broader community. This collective buy-in was critical since medicinal chemists are 

generally the prime customers for triaging and assessing hits from HTS campaigns. 

With this similarity level, and an average probability of 8% of finding biological activity 

from the HTS PBDS data, Belief Theory showed us that a neighborhood of 40 similar 

compounds would give a > 95% chance of finding at least one active molecule in that 

neighborhood (Figures 1, 2). We used this 40 molecule neighborhood size as the guide to re-

shaping the screening file with minimisation of molecular redundancy. Reassuringly, this 

neighborhood size also gave a > 80% chance of finding 2 hits and a > 60% chance of finding 

three hits (see Figure 3 above). Note that these neighborhoods are not at all like clusters, as 

each compound in the file is treated as being at the centre of its own unique neighborhood 

and thus neighborhoods can massively overlap. A cluster of X compounds isolated in 

chemical space within a certain similarity, represents, in the context of this work, X 

neighborhoods, where each of the X compounds has X-1 nearest neighbors. This is an 

important concept and distinction to make, as if clusters are treated as isolated objects, and no 

consideration given to their overlapping in chemical space, the results may be quite 

different37.Note that in contrast to others37 we deliberately chose not to make the 

neighborhood size big enough to generate SAR directly from the HTS, as we felt that this 

was not the most efficient way to operate. We also note that our selection of an equal number 

of molecules in each neighborhood is consistent with the conclusions of Harper et al.36 

So, Redundancy as we defined above is a compound specific property. The original starting 

file of 4.77 million compounds was treated as having 4.77 million distinct chemical 

neighborhoods, each centred on a different compound. For example, given our value of N = 

40 to have a DC > 95%, a compound with 78 neighbors within the set Tanimoto similarity of 

> 0.60, would have a redundancy R = 50% i.e. half of its neighbors (39) could be removed 

without decreasing the probability of finding an active by HTS in that cluster below 95% (see 

Figure 4). Note that all 79 compounds are Candidate Redundant Compounds (CRC). A 

compound with 39 similar neighbors has R = 0 and is on the threshold between redundancy 

and non-redundancy. A negative value of R indicates that further compounds can be added 

into an area of chemical space without generating redundancy. For the purpose of this work 

we put all compounds with zero and negative redundancy onto a Keep List as we wanted to 

protect all these compounds from removal by redundancy reduction. 

Redundancy values of compounds can be turned into a Redundancy value for the whole 

screening file (or subsets thereof) by calculating the average Redundancy of all compounds in 

a given set. This number represents the percentage of compounds in the screening file which 

do not contribute positively to finding compounds representative of hit series (as opposed to 

all members of a hit series within a file) in an efficient way. 

The random redundancy de-selection process that we used treats every single compound 

equally. This works very well for a set of novel compounds – like a virtual combinatorial 

library. The Pfizer screening file on the other hand has a long history and additional 

information is known for many compounds. For example, a potent lead compound in an 
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active program should be treated differently from a compound inside the similarity threshold 

for which no activity information is available and the lead compound must be protected from 

removal for redundancy elimination. We therefore implemented the concept of Keep Lists to 

protect compounds in certain categories from being selected as redundant and removed (see 

Results section above). The protection of a significant numbers of redundant compounds in 

Keep Lists caused issues for our redundancy reduction campaign. For example, in the legacy 

Pfizer portion of the screening file, 8.0% of the 1,102,179 compounds (87,760) needed to be 

removed to eliminate redundancy, based on our calculations. However, of the total number of 

254,094 compounds formally classified as candidate redundant compounds in this portion of 

the file, only 158,695 were available for removal, after the application of the Keep Lists. That 

meant that a large percentage (55.3%) of the candidate redundant compounds required actual 

removal and this caused issues. For example, the removal of a compound X, from a given 

region of chemical space in the file will reduce the redundancy or eliminate it for the 

remaining compounds within a given similarity value of compound X (see Figure 4). If 

compound X has NN = 60, each of those 60 close neighbors will have their redundancy 

reduced in this single step. The removal of compound X may even have the effect of reducing 

the number of neighbors for a related compound Y, to less than the redundancy threshold. 

This secondary effect is difficult or impossible to control with a random redundancy 

reduction approach. That this effect does occur to a minor extent can be clearly seen for the 

Pfizer library chemistry portion of the file in Figure 7 below, where there are a minority of 

compounds which were in neighborhoods of > 40 compounds before, but in neighborhoods 

of less than 40 compounds after redundancy reduction. 

 

Figure 7: the distribution of compounds in neighborhoods of 1 to 40, 41 to 100, 101 to 500, and > 500 

compounds within a Tanimoto similarity of 0.60, both before (blue bars) and after (red bars) the iterative, 

random, redundancy reduction process in the library chemistry portion of the Pfizer screening file.  

Due to this secondary effect of random redundancy reduction, we investigated alternative, 

non-random algorithms to deselect compounds, such as choosing only those compounds 

whose removal would not cause other compounds to have less than 39 neighbours. Some of 
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these showed a better overall profile of redundancy elimination in the final selected file i.e. 

the process resulted in a smaller percentage of the file having its neighborhood size reduced 

to fewer than 40 compounds. However, after the application of the Keep Lists, the number of 

compounds with greater than 39 neighbours whose removal would not cause other 

compounds to have less than 39 neighbours was lower than our targets for removal. The 

criterion was that a compound would only be selected for removal if it had more than 39 

neighbours, and also if it was only present on neighbour lists that were in redundant space.  

So, even if a compound had > 100 neighbours, if it was the neighbour of a compound with 

only 20 other neighbours, it would not be removed. We therefore discarded all non-random 

approaches and used only a random approach. 

A final consequence of the utilisation of Keep Lists is that the redundancy in a screening file 

cannot be eliminated: it can only be minimised. For the Pfizer library chemistry portion of the 

file, the redundancy was approximately 35% prior to redundancy reduction and 

approximately 11 % after redundancy reduction i.e. redundancy was reduced by two-thirds, 

but not eliminated. Of this residual redundancy, over two-thirds was itself due to the retention 

of redundant compounds with NN > 39 on the Keep Lists.   

The overall effectiveness of the redundancy reduction can be assessed in Figure 7 which 

shows the large decrease in the number of compounds in either large (41 to 100) or very large 

(101 to 500) neighborhoods. Note that the compounds shown as having a neighbourhood size 

of > 40 after redundancy reduction in Figure 7 are a mixture of candidate redundant 

compounds (more than 39 neighbours and NOT on a Keep List) and compounds on Keep 

Lists which cannot be removed. The number of these compounds exceeds the stated 

redundancy because of the fact that each candidate redundant compound with NN > 39, will 

be causing redundancy to some extent in many other compounds. 

 We verified that the random redundancy removal methodology shown above was effective 

by a retrospective in silico analysis that showed that only a small percentage of hit series 

would have been missed as a result of the removal of the redundant compounds in 13 recent 

HTS campaigns across a variety of target types (Table 1). We deemed this minimal loss of hit 

series as insignificant relative to the benefits and efficiencies gained by redundancy removal 

and proceeded on this basis. It is also worth noting that the average HTS in this set generated 

215 novel hit series, each comprising of many compounds confirmed at the IC50 level. On 

average, only 3 of these series would be lost due to redundancy reduction. 

Our analysis showed that the library chemistry portion of the Pfizer screening file was 

approximately 35% redundant, the legacy Pfizer portion of the file was around 8% redundant 

and the legacy Pharmacia portion ca 4% redundant. The excessive redundancy in the library 

chemistry (file enrichment/parallel medicinal chemistry) portion of the screening file is a 

lesson to all teams involved in parallel/combinatorial chemistry and file enrichment. It is all 

too easy to synthesise large libraries of redundant compounds, most of which will make no 

contribution to hit series discovery. In total, over 1 million compounds in the file were 

declared redundant. These compounds have now been removed from the screening file as far 

as possible.  
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The type of analysis that we illustrate above can be ‘turned on its head’ to highlight areas of 

screening files which are scantily populated and can therefore be targeted for future file 

enhancement activities. The analysis can also be used to build new, non-redundant screening 

files effectively from scratch.  

Finally, our new methodology is already incorporated into the molecular design tools used by 

all Pfizer chemists, so that library chemistry resources are optimally used and chemists are 

alerted if their design will result in molecular redundancy. The chemist designing the library 

still has the option of synthesising a redundant library but this is now a positive choice rather 

than something being done unawares. 

Structural Attractiveness Filter 

‘Ugly’ compounds are those with molecular features that make them unattractive to 

medicinal chemists when they come to select compounds to follow up from HTS hit lists. 

These compounds may possess unwanted elements, reactive features, potential toxicophores 

or have undesirable molecular properties such as too high molecular weight or too lipophilic 

etc. The issue of less desirable compounds in the screening file arose in spite of concerted 

efforts to eliminate these unwanted compounds over more than a decade in Pfizer. Prior to the 

start of our work, over 170 computational filters were in place to stop reactive or overtly 

toxic compounds entering the file. In addition, the file had also been purged of unattractive 

compounds twice since the mid-1990s in exercises called the ‘good, bad and ugly’ and the 

‘beautiful’ file splits. The fact that significant numbers of ugly compounds managed to 

remain, or enter the screening file anew, reflects the great difficulty of creating universal and 

comprehensive structural filters that do not simultaneously remove desirable compounds.  

Wyeth had a similar set of filters in place to protect their file. Applying both filters showed a 

surprising number of compounds picked up by only a single set of the filters. The merging of 

the Pfizer and Wyeth screening file gave us the opportunity to revisit the existing filter sets, 

to combine the experiences from both companies, and incorporate also new findings of 

structural filters from the literature,40-48  in addition to the creation of a small number of new 

proprietary filters to remove for example, compounds with very low feature content (no 

heteroatoms and low structural complexity) and compounds with multiple unattractive 

features, such as several nitro groups.48  This knowledge integration resulted in the generation 

of a combined set of around 540 molecular filters,55 which were applied to eliminate 

compounds with structural flaws ahead of the redundancy reduction.  

As we did for the redundancy reduction methodology, the filter set was systematically 

reviewed by medicinal chemists and computational chemists in all Pfizer sites worldwide, 

including groups working on animal health and human health, in order to make sure filters 

were functioning correctly and to gain cultural acceptance for their implementation. 

Application of the combined bank of structural filters resulted in just 0.3% of the Pfizer 

library chemistry compounds failing but approximately 10% and 13% of the legacy Pfizer 

and Pharmacia compounds failing (see Table 2). These file filter fail compounds have also 

now been removed from our screening file as far as possible. The high level of file filter 
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passes (99.7%)  for our library chemistry compounds is a testament to the huge design efforts 

that went into these libraries over the course of a decade, in which every chemist in Pfizer 

Discovery was involved. This is especially remarkable because this filter pass rate was 

achieved with hundreds of new filters put in place well after the compounds were designed 

and synthesised. 

File Tiering 

We have used additional filter criteria to partition the screening file into two Tiers: Tier 1 is 

the main screening file for standard, oral drug projects and Tier 2 contains specialized 

compounds in separate tranches: macrocyclic compounds, natural products, peptides, 

steroids, fragments, high-end physicochemical property fails, generally unattractive 

compounds (> 6 rings, highly rigid compounds, highly flexible compounds (> 5 contiguous 

rotatable bonds), compounds in no other category but low overall structural attractiveness 

expressed by the MCA score, low featured compounds (one functional group) etc. These Tier 

2 compounds may be selected, tranche-by-tranche, as required, for hit identification against 

non-standard or less druggable targets such as protein-protein interactions, or targets where 

non-oral delivery is required. However, going forward, Tier 2 compounds will not be selected 

for general-use screening sets including diversity-based subsets such as the global diverse 

representative subset (GDRS)56 or targeted subsets such as the kinase targeted library 

subsets.57  

Screening File Sample QC Improvements 

The lack of analytical reproducibility found in our retrospective analysis of QC data triggered 

a campaign to standardise our sample QC workflow and capitalize on this aligned QC data to 

further improve the overall quality of the file.  Firstly, globally consistent definitions of 

compounds that were ‘Pass’, ‘Fail’, and ‘Suspect’ in analytical QC were proposed and vetted 

with medicinal and analytical chemists.  Analytical methods across different groups were also 

aligned, right down to the column types, instrument settings, injection parameters, and data 

analysis algorithms (see Experimental).  These aligned methods have since made it easier for 

us to operate consistently internally and to be able to transfer and enable external partners 

with equivalent sample QC workflows.  Secondly, we defined a QC Discard criterion: this is 

when a compound has three consecutive QC Fail results.  When a compound/batch meets the 

QC Discard criteria, it triggers the removal of all samples of said compound/batch from 

existing liquid stocks, thereby preventing the follow-up of the compound/batch post primary 

screening.  A newly synthesized compound/batch meeting the QC Discard criteria is also 

prevented from entering the screening collection.  To date, close to 10,000 compound/batches 

have met the QC Discard criteria and have been eliminated from the file. Finally, it is worth 

noting that the strategy of first developing and then using automated purification58 that 

operated at a capacity of hundreds of thousands of compounds per year, as part of our very 

large, outsourced, file enrichment process, has led to those compounds having a quality at 

least equivalent to that of standard medicinal chemistry singletons. This is a remarkable 

achievement and critically important for those compounds to be accepted by medicinal 

chemists as desirable substrate for HTS follow-up activities. 
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EXPERIMENTAL 

Dataset 

Determining the final dataset for an analysis as described above is a non-trivial task. The 

screenable file, or those compounds available for screening in any particular HTS, is not 

easily defined, since new compounds are registered on a daily basis, and at the same time, a 

small number of other compounds get depleted. For this reason we defined a set cut-off date 

(October 25th 2009) at which a snapshot of the file was taken for this analysis. 

Further complications arose due to file discrepancies and inconsistencies caused by the 

existence of multiple versions of the screening file, including compounds stored in 

compressed format (screening plates with multiple compounds mixed in a single well),59 in 

singleton format (screening plates with only a single compound in each well), in deep freeze 

storage (compound master plates), or as solid material.  This, coupled with the large numbers 

of compounds involved, and with geographical considerations (the Pfizer file was stored and 

replicated in two main locations) further exacerbated the complexities of the task. 

The dataset was generated by starting with the complete Pfizer file of all registered 

compounds. From this collection a subset was generated that comprised all 4,770,360 

screenable compounds. Screenable compounds have a defined chemical structure, with 

sufficient physical material available for screening and are available from the corporate 

material management centres. This set included multiple compound sources: Legacy Pfizer 

(including Warner Lambert), Pfizer library chemistry (File Enrichment, external, 

combinatorial compounds), Pfizer parallel medicinal chemistry (PMC, internal, combinatorial 

and non-combinatorial), legacy Pharmacia and Wyeth. Compounds with the same parent 

(non-salt form) structure were selected only once i.e. a complete de-duplication and de-

replication of the file was effected, removing a total of 236,937 compounds: itself a 

remarkable figure. Note that duplicates are different forms of the same parent compound e.g. 

a sodium salt as well as a potassium salt, whereas replicates are multiple instances of the 

same form of the compound i.e. multiple batches of the sodium salt of a compound. This 

process resulted in a total dataset of approximately 4.53 million non-replicated and non-

duplicated compounds. All calculations and % values in Table 2 above are against the 

original file containing both duplicates and replicates.  

Similarity calculations 

Computational work on the dataset was carried out using Pipeline Pilot from Accelrys.60 

ECFP4 fingerprints61 were used for all similarity calculations of compounds.  The Tanimoto 

coefficient62 was used as the measure of similarity between compounds. In an initial step a 

complete similarity matrix for two random subsets of 50,000 compounds (one from legacy 

Pfizer, one from Pfizer library chemistry compounds) against a 3.8 million compound set 

(full set without the Wyeth compounds) was calculated. All compounds with a Tanimoto 

similarity of > 0.5 to each member of the 50,000 compound subset were selected. For the 

final analysis a complete similarity matrix of 4.53 million by 4.53 million non-duplicated and 
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non-replicated compounds was generated. The calculations were executed by calculating a 

series of 50,000 by 4.53 million compound matrices in parallel using all available Pipeline 

Pilot servers from Sandwich and Groton, with several jobs on each server and then 

combining the results.  This overall computation took several days. 

File Filters 

Structural filters to remove molecules with undesirable functional groups were implemented 

as a file exclusion workflow using Pipeline Pilot from Accelrys.60 This workflow allowed the 

convenient processing of any given compound through several sets of structure filters from 

different sources and in various formats (MDL mol format,63 Daylight SMARTS queries64). 

Pre-existing legacy Pfizer filters consisted of 170 substructure queries (MDL mol). These 

were originally developed to prevent compounds with undesirable reactivity entering the 

HTS screening file. An additional set of 230 substructure queries (MDL mol) were added that 

were derived from the legacy Wyeth structure filter set. The combined set of Pfizer and 

Wyeth filters were further refined based on the analysis of a diverse set of 200,000 

compounds from the legacy Pfizer and Wyeth portion of the file. A random subset of 

compounds that either passed or failed the filters were visually inspected by expert medicinal 

chemists. Compounds that failed the filters but were deemed to be desirable by the chemists 

were tagged, and the according substructure query was modified to pass the molecule. 

Conversely, any undesirable compounds still passing the filters were captured and new 

substructure queries were defined (Daylight SMARTS) and added to the set of already 

existing filters. In parallel, surveying the recent literature describing structural filters allowed 

us to include additional substructure filters.40-48 Overall, around 140 filters were newly 

created and combined with the existing filter set, resulting in 540 unique substructure queries. 

Sample QC Fails 

A number of analytical methods have been used at Pfizer over many years to both confirm 

the identity and measure the concentration of compounds in the Pfizer file, usually as part of 

normal compound synthesis or screening activity, or as a protocol for HTS, which in Pfizer 

employs an automated and integrated analytical quality control (QC) check of compounds 

that are selected for IC50 measurements. The standard analytical methodology for the QC of 

IC50 compounds includes automated LC-MS with UV and evaporative light scattering 

detection (ELSD) so that molecular identity (molecular weight via positive and negative ion 

electrospray ionisation (ESI) MS), purity (via UV profile) and concentration (ELSD) are all 

determined from a single sample injection.   

A Waters Acquity UPLC instrument was interfaced with a Waters PDA detector and Waters 

ZQ mass spectrometer.  UV was scanned from 210 to 400 nm and extracted at 215 nm.  The 

ESI data was acquired in positive and negative ion mode by scanning the mass range of m/z 

150-1000 every 0.18 sec with a scan delay of 0.1 sec.  Other mass spectrometer parameters 

included an applied capillary voltage of +3.5 kV, a sample cone potential at 25 V,  and source 

and desolvation temperatures of 120 and 400 ºC, respectively. The ELS Detector nebulizer 
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temperature was set at 30ºC while the evaporator was at 55 ºC, with gas flow at 1.6 L/min.  

Data rate was fixed at 10 Hz. 

Samples in 96- or 384-well plates at 1 mM in DMSO were injected onto a 2.1 x 50 mm CSH 

C18 1.7 μm column (Waters) at a flow rate of 1.0 mL/min.  The mobile phase solvents were:  

A = 0.1% Formic Acid in Water, B = 0.1% Formic Acid in Acetonitrile.  Elution was 

achieved via the delivery of a 1.2 min 5-100% B gradient followed by a 1.5 min hold at 100% 

B prior to re-equilibration.   

Sample QC Result Definitions: the identity PASS criteria are when: a protonated molecular 

ion, adduct, or simple fragment are found e.g., M-H, M+H, M+Na, M+DMSO, M+H+ACN, 

M-H + formic acid, multiple charges such as (M+2H)/2, (M+3H)/3, (M+4H)/4, dimers such 

as 2M+H, 2M + Na, 2M-H, or simple fragments M+H-H20, M+H-NH3. The purity PASS 

criteria are when: (i) the signal from the ultraviolet detector at 215 nm wavelength is greater 

than or equal to 80% of the expected signal (UV215 ≥ 80%) with no ELSD signal, or (ii) 

ESLD ≥ 80% with no UV215, or (iii) UV215 ≥ 80% and ELSD ≥ 80%.  The identity FAIL 

criteria are when the expected mass ions are not found by positive or negative ionization 

mode using ESI or APCI methods.  The purity FAIL criteria are when: (i) UV215 < 80% 

with no ELSD, or (ii) ELSD < 80% with no UV215, or (iii) UV215 < 80% and ELSD < 80%.  

A sample must meet both identity and purity PASS criteria in order to get a QC Result of 

PASS.  If results are ambiguous; for example, due to a method failure or the absence of the 

required ionization method, then the sample gets a QC Result of SUSPECT. This is a 

conservative approach. 

 

Conclusions 

We developed novel methodologies and used a novel combination of existing methods to 

remove compounds from the Pfizer screening file on the basis of molecular redundancy in 

addition to molecular attractiveness. These methods will also be of use to those who wish to 

build a screening file, avoiding redundancy in the collection and will also find application in 

compound and library design initiatives for on-going projects, where the density of chemical 

space coverage is varied according to stage of lead optimization e.g. avoiding overly dense 

sampling of chemical space in the more exploratory phase of lead development. 

Overall this work resulted in the reduction of the Pfizer screening collection by 

approximately 1,449,680 compounds, including redundant, replicated, duplicated and filter 

fail compounds, thus allowing for significant efficiencies in material handling and storage 

with, we believe, minimal impact on our ability to identify attractive and viable lead series 

from HTS screens. 

Recent work has demonstrated that whilst corporate screening files have undoubtedly 

improved in quality over the past 10 years, significant differences in the approaches taken to 

optimise HTS hits in different companies can lead to widely diverging properties in the leads 

and drugs derived from those hits.65 Thus, the work described here can help provide a good 
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starting point for HTS-based lead discovery file design but it is important to ensure that good 

drug design principles and practices are adopted in the hit-to-lead-to-drug phases that follow 

the initial hit identification by HTS. 
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