
1

ChemCalc: a building block for tomorrow’s

chemical infrastructure

Luc Patiny*, Alain Borel

Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

* corresponding author luc.patiny@epfl.ch

This document is the Accepted Manuscript version of a Published Work that appeared in final form in the
Journal of Chemical Information and Modeling, copyright © American Chemical Society after peer review and
technical editing by the publisher. To access the final edited and published work see

http://pubs.acs.org/articlesonrequest/AOR-6TgP3CmkvyxuSNsYE9pk

2

ChemCalc: a building block for tomorrow’s

chemical infrastructure

Luc Patiny*, Alain Borel

Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

* corresponding author luc.patiny@epfl.ch

Keywords: web services; mass spectrometry; HTML5, JSON, molecular formula, monoisotopic

mass, cloud computing

Abstract: Web services, as an aspect of cloud computing, are becoming an important part of the

general IT infrastructure, and scientific computing is no exception to this trend. We propose a

simple approach to develop chemical web services, through which servers could expose the

essential data manipulation functionality that students and researchers need for chemical

calculations. These services return their results as JSON (JavaScript Object Notation) objects,

which facilitates their use for web applications. The ChemCalc project demonstrates this

approach: we present 3 web services related with mass spectrometry, namely isotopic

distribution simulation, peptide fragmentation simulation and molecular formula determination.

We also developed a complete web application based on these 3 web services, taking advantage

of modern HTML5 and JavaScript libraries (ChemDoodle and jQuery).

Introduction

3

The use of computers for solving chemical problems is almost as old as modern computing

itself, with practical examples in physical and analytical chemistry published before 1950.1–6

Digital and personal computers, followed by the Internet and the World Wide Web have

naturally strengthened this long-standing tradition. Today, it has become trivial to write that

computers are everywhere and that they can take up an ever-increasing part of a worker‘s daily

burden. This is of course valid in science as well, and many useful software utilities have been

developed along the years to solve the problems of researchers, teachers and students.

However, these tools do not necessarily match the needs of their prospective users: one often

hears complaints that the proposed solutions are inconvenient. This might mean that they are

difficult to use or simply that interoperability issues prevent their application in a given

workflow. Fortunately, the advent of the World Wide Web (especially after interactive web

pages became possible) has significantly improved the situation. Users can now take advantage

of a familiar interface (the web browser) for many different tasks, and numerous examples

demonstrate that the web browser has become a mature platform for general (Google Apps being

a typical example7,8) or chemical computing.9–11 Furthermore, this platform facilitates software

deployment, since any update (fixing security problems or introducing new features) can be

made immediately available to all users. Another non-negligible advantage of this approach is

that such software products are usually independent of the underlying operating system, and thus

easier to adopt in any existing environment. For example, the Chemical Abstracts Service used to

release upgrades of the local client version of Scifinder Scholar every year or so – with a

different schedule for the Macintosh and Windows platforms. Since the introduction of their web

version in 2008, the time lag between updates has been reduced to about 6 months, only

4

considering feature improvements. We can assume that security and minor performance

improvements are being silently pushed to the users even more frequently.

Programmers face another challenge, namely producing code suitable for maintenance and

future evolution. It is well-known that modular software design, where the program is divided

into a series of unit components, is in principle a good answer to this problem. It makes the

components easier to write and test, and it encourages the re-use of existing code, which in turn

accelerates development. The web offers attractive opportunities from this point of view, as it

becomes possible for a developer to take advantage of components hosted on distant servers.

Such remotely accessible applications are commonly known as web services10,11 and have

become part of the broader spectrum called cloud computing. Nowadays, several well-known

web sites of chemical interest, such as ChemSpider,12 Chemical Entities of Biological Interest

(ChEBI)13 and PubChem,14 propose web-service interfaces.

A number of standards have been developed over the years to facilitate the use of web

services, as summarized for example by Dong et al.10 These standards are usually based on the

Extensible Markup Language (XML), and provide among other things machine-readable

descriptions of web services. As such, they provide a sound foundation for many advanced

applications. However, they also make the development of web services and their use in light-

weight client applications rather complex.

In this paper, we propose a simpler scheme for web components applied to chemical

computing applications. The typical client we have in mind is a web application, which could be

a short script built into a web page or something more sophisticated. This client will prepare a set

of simple input data describing the chemical system of interest, and possibly the expected

computation or output format. The data will be sent to a server that hosts the web component, in

5

general as an HTTP POST request, which can be achieved easily thanks to the AJAX paradigm.15

After processing, the server component will output some data in JavaScript Object Notation

(JSON) format.16 This lightweight text-based data-interchange format is easy to read and write

for humans, as well as relatively compact compared to other solutions such as XML.

Last but not least, a JSON expression is trivially converted into a native object in a JavaScript

program, which makes it especially attractive for web applications thanks to the broad

availability of embedded interpreters in modern web browsers. Nevertheless, JSON is not limited

to JavaScript and libraries for JSON processing are readily available for many other

programming languages.17

We demonstrate our approach by applying it to several common problems in mass

spectrometry. Converting molecular formulas to molecular masses is of course a very basic

instrument in the chemist’s toolbox. Thus, we can take advantage of the familiarity of the

underlying chemical problem and focus on the computer implementation. In the following

sections, we show how our web component can be used easily in a number of different contexts,

as exemplified in ChemCalc, an application with several features of interest for mass

spectroscopists – available both through a user-friendly web interface and a developer-friendly

Ajax programming interface.. First, we present a simple web service to calculate isotopic

distributions for a given molecular formula. Secondly, ChemCalc provides a convenient interface

for the manipulation of peptide and protein sequences, dealing with their fragmentation. Finally,

we offer a useful function for the decomposition of a given monoisotopic mass into possible

molecular formulas.

Web service interface

6

The Application Programming Interface (API) of our web service is quite simple. In essence, it

expects a molecular formula string mf as its main input, together with an extra argument that

specifies the format (JCAMP18 or XY values) that will be encapsulated in the output JSON

object. The arguments are used in an Ajax POST request, as given in this short JavaScript

example (using the popular jQuery library for convenience):

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></script>

<script language="javascript">
 function chemcalc(mf) {
 jQuery.getJSON("http://www.chemcalc.org/chemcalc",

{mf: mf, isotopomers: "jcamp,xy"},
function(result) {

 console.log(result);
 }
)
 }
 chemcalc("C100H100");
</script>

In the above example, the Ajax request is sent to a /chemcalc URL on the

www.chemcalc.org server. By default, this will only work if the script is used in a page on that

specific server, which can be inconvenient. In order to take full advantage of the distributed

computing capability brought by a web service, it is much more interesting to host this service on

a different system, able to respond to various application servers.

However, for protection against the so-called cross-site scripting attacks (see for example

Holdener15 p. 919-920), Ajax requests to a server outside of the current domain are forbidden at

the browser level. For ChemCalc, we chose to address this problem using cross-origin resource

sharing (CORS), where the service provider (in this case www.chemcalc.org) includes the

specific Access-Control-Allow-Origin: * header in its HTTP responses to indicate

that the browser should allow the request to proceed despite the different domain. In the popular

7

Apache web server, this is achieved by using the mod_headers extension and including the

following line inside the <Directory>, <Location>, <Files> or <VirtualHost>

sections of httpd.conf, or within a .htaccess file:

Header set Access-Control-Allow-Origin "*"

Similar mechanisms exist for other HTTP servers.

For the sake of completeness, we mention another possible solution to this problem. One can

set up the web application server to act as a proxy, whereby all transactions with the service

provider will be conducted through the application server and thus meet the security

requirements. This is usually achieved by adding the following line to the httpd.conf

configuration file:

ProxyPass /chemcalc http://www.chemcalc.org/chemcalc

where http://www.chemcalc.org/chemcalc is the original URL of our web service.

However, the CORS solution is more attractive for application developers in our opinion, as it

doesn’t require any specific configuration of their web server to take advantage of our web

service. Thus one can use the web service in very simple web pages, without any administrative

rights over the web server as a whole.

Available applications
ChemCalc19 was originally developed as a standard web application using the Tomcat servlet

technology.20 We rewrote it to take advantage of our web service interface. As previously noted,

the user interface also uses the jQuery library,21 which is arguably the current industry standard

8

for the development of JavaScript applications. The data visualization code is based on the

ChemDoodle Web Components,9 which provide a rich framework for the display and

manipulation of chemical 2D and 3D graphical data using modern HTML5 technologies.

Isotopic distribution simulation
There is of course a large inventory of existing software for this purpose, both on the web22 and

in the literature,23,24 with several examples of web-based tools.25 We chose a simple but relatively

fast implementation of the isotopic distribution problem and embedded it into our web

component architecture, taking advantage of the previously mentioned JSON format to achieve

high interoperability and ease of use for developers.

We calculate the intensities of specific isotopomers using the equations of Yamamoto and

McCloskey,26 taking into account the mass of the electron (5.4857990946e-4 Da).27 Indeed, the

electron mass has to be taken into account when defining ions, which will cause a slight shift in

the m/z ratio for charged molecules. As a first validation, we simulated the mass spectrum of a

reasonably large system for which the isotopic distribution can be calculated analytically. In the

absence of other instrumental factors, the peak intensities for a molecule of N atoms of a single

element with just two isotopes must be a binomial distribution of the isotope populations.28 We

simulated a C999 molecule and compared the simulated intensities with the intensities calculated

from the theoretical formula, implemented in a Mathematica29 script. For the top 30 intensities,

namely the ones containing 970 to 999 12C atoms, the simulated intensities, normalized for a

maximum intensity of 100, were identical to the binomial predictions to an average relative error

of 3*10-6 (maximal error of 3*10-5 for the weakest peak in the series).

One of the challenges in the calculation of isotopic distributions lies in the rapidly increasing

number of peak positions and intensities that must be stored as the molecule becomes more

9

complex, either simply due to the number of atoms or to elements with many isotopes

(ruthenium being a fine example with 7 stable isotopes). In order to reduce the computational

cost, we need to reduce the number of stored values as the calculation progresses. We follow a

simple heuristics that simulates the finite resolution that would be observed in an experimental

mass spectrum. For each newly calculated peak, we look for an already calculated neighbor at a

distance shorter than the simulated resolution. If we find one, we replace the new peak and its

neighbor by one single peak at the position of the higher peak, with a height equal to the sum of

both heights. On each step of the calculation, we limit the number of peaks to 2 times the

maximum number of returned peaks n (by default, n = 5000). If we exceed this number, only the

n more intense pics are retained.

We assume that the deletion of the weaker peaks method might cause some spectral distortions

when the distribution becomes very complex, but the actual extent of these distortions is difficult

to predict. Nevertheless, we can provide some empirical guidance for the user. We note that as

long as the final output contains less than 5000 peaks, one can be sure that no peaks have been

dropped during the calculation. As a test case, we repeated the bovine insulin example of Snider

(C254H377N65O75S6, 51 amino acids) using his isoDalton code and our web application. Even

at the maximum resolution offered by our web interface (0.00001 Da) we only obtain 1533

peaks, which essentially reproduce the 1000 most intense peak predicted by Snider’s program.

One further test with bovine serum albumin (C2932H4614N780O898S39, 607 amino acids30)

remains below the 5000 threshold with 4958 peaks.

Formula input
The input formula is a character string built from the following basic elements, followed by

integer numbers:

10

● any element symbol
● any chemical group available in the ChemCalc database: more than 100 amino acid

radicals, organic substituants and ligands for coordination compounds{“List Groups,”
2011}

For added flexibility, the basic pattern can be extended using several modifiers. First of all, ()

parentheses can be used to combine atoms and/or groups. Such a combination can of course be

followed by an integer number. Furthermore, atoms or groups within a combination can be

repeated or subtracted using a positive or a negative integer number. Subtracting atoms provides

a convenient syntax to express side-chain modifications of amino acids. For example, HAla(H-

1Ph)OH is equivalent to phenylalanine.

Charges can be entered in the molecular formula either at the end or anywhere in the molecular

formula. They may be introduced either between parentheses, i.e. (+2) (-2) (3+) (---), or without

parentheses but then one needs to be careful about coefficients that would be interpreted as an

atom or group coefficients instead of charge multiplicators:

● H+ obviously means a proton
● H2+ means a dihydrogen cation H2

+
● H(2+), or H++ would be a (non-physical) doubly charged proton H+2
● H2++, or H2(2+), or H2(+2) would be a bound system of two protons, without any

electrons, H2
+2

Negative charges and coefficients follow a slightly different convention:

● H-, or H1-, means a hydride anion H-
● H-1 means that a hydrogen atom is subtracted from the previous formula
● H2- means a dihydrogen anion H2

-
● H2--, or H2(2-), or H2(-2) means a dihydrogen dianion H2

-2

When charges are specified the experimental monoisotopic mass will be calculated by taking

into account the charge and the mass of the electron i.e. m/z will be displayed.

The user can define mixtures of species:

11

● distinct species in a mixture can be separated using periods (example: NH3.BF3).
● each specie formula can be followed by a comment prefixed by a dollar sign $. The

comment will be included in the JCAMP output.
● Furthermore, molar ratios can be expressed by prefixing the species with numbers, which

can be integer, floating-point or rational (for example, CuSO4.5H2O or CaSO4.1/2H2O).
● { } braces are another possible syntax to specify equimolar mixtures, which can be useful

for combinatorial chemistry.
Finally, the user can use non-natural isotopic populations:

● [] square brackets are used to specify isotopes with 100% enrichment, e.g. [13C] for one
carbon atom in the molecular formula means that this carbon is 100% 13C instead of the
natural isotope abundances.

● { } braces following an atom can be used to indicate specific isotopic ratios. For example
C{60,40}3H6 specifies propane enriched to 40% 13C.

Peptide and protein mass fragmentation
The fragmentation of peptides and proteins in mass spectrometry can be used for the

determination of their sequence.31 As it turns out, generating all possible fragments of a given

peptide sequence formula can be achieved very easily using an ad hoc regular expression.32

Regular expressions are a very powerful text pattern matching tool, and a complete description

of their capabilities is far beyond the scope of this paper. Therefore, we will focus only on the

pattern we actually use in the ChemCalc web application.

The regular expression is used by in the very first step of the fragmentation simulation:

var mfparts=mf.replace(/([a-z\)])([A-Z])/g,"$1 $2").split(" ");

where mf is a string containing a sequence of 3-letter amino acid codes. The replace()

function identifies peptide bonds by matching case changes in the sequence string (i.e. AlaGly)

and inserts a separator space between each amino acid. Furthermore, this short regular

expression also supports peptide side chain modifications (given between parentheses) and takes

into account the loss of charges. The resulting string is then processed by the split() function

12

that transforms the space-separated sequence into an ordered array of individual amino acid

strings.

We note that a more compact instruction can be written if the programming language supports

look-ahead and look-behind assertions, i.e. pattern matching based on characters surrounding the

current location in a character string. The JavaScript interpreters built into our browsers did not

support this feature, but it is readily available, for example in Java:

String mf="GlyAlaPro(OH)Ser";

String[] parts=mf.split("(?<=[a-z\\)])(?=[A-Z])");

for (String part : parts) {

 System.out.println(part);

}

One can see that the chain-splitting function directly works with a regular expression

argument, instead of requiring a prior character substitution.

The last step is simply a loop over all generated amino acid strings that appends the required

suffix (see Table 1) to generate the proper fragment products, using the same syntax as for a

side-chain modification. Thus, selecting which fragmentation should occur or not is

straightforward. A sequence number for the fragment is finally appended as a comment $bn,

where n is an integer ranging from 1 to the total number of fragments.

Table 1. Fragmentation product suffixes

Fragment Suffix

A C-1O-1(+1)

13

B (+1)

C NH3(+1)

X CO(+1)

Y H2(+1)

Z N-1H-1(+1)

For example, with the HAlaAlaAlaOH formula as an input, and specifying fragmentation

products B and Y will generate the following string that will be processed as any other molecular

formula:

HAla(+1)$b1.HAlaAla(+1)$b2.HAlaAlaAla(+1)$b3.H2(+1)AlaOH$y1.H2(+1)AlaAlaOH$y2.H

2(+1)HAlaAlaAlaOH$y3

Molecular formula finder
Another embedded feature is a formula finder, which allows a user to find raw molecular

formulae that best match a given mass, either exactly or within a determined range.

We determine the possible formulae involving a given set of atoms or groups using the

following recursive algorithm:

With F a formula including elements E1, E2, ...En, with
respective masses M1 to Mn and stoechiometric coefficients
greater than or equal to Nmin1,... Nminn and lower than or equal
to Nmax1,...Nmaxn

we use the convention M1 > M2 > … > Mn, which feels natural
without loss of generality

With Mtot a target mass with a tolerance of + or - epsilon

Define function Decompose_residue(E1,E2,..En;Mtot):
 Nmax1_corrected = min(Nmax1,floor((Mtot+epsilon)/M1)
 for N1 in [Nmin1,Nmax1_corrected]:

14

 Decompose_residue(E2,E3...En;Mtot-N1*M1)
 .
 .
 Nmaxn_corrected = min(Nmaxn,floor((Mtot+epsilon-N1*M1-N2*M2...-N(n-1)*M(n-
1))/Mn)
 Nminn_corrected = max(Nminn,floor((Mtot-epsilon-N1*M1-N2*M2...-N(n-1)*M(n-
1))/Mn)
 for Nn in [Nminn_corrected,Nmaxn_corrected]:
 return formula with coeffs. N1...Nn as one solution

One can somewhat simplify the function by assuming that the minimum stoechiometric

coefficient of all elements is always zero. The user could then still define lower boundaries and

avoid the useless coefficient combinations, since one observes that the mass of the formula

where all elements have their minimum coefficient is a constant contribution Mmin to the total

mass regardless of the specific coefficients. Thus, it can be precalculated once and for all and

added to the results of a formula search with target mass Mtot - Mmin.

Our method appears to be essentially similar to the FIND-ALL algorithm proposed by Böcker

et al.33 to solve the Money-Changing Problem, although we do not take advantage of their pre-

calculated Extended Residue Table (ERT). Thus FIND-ALL is in principle more efficient.

Nevertheless, we note that the ERT is used in FIND-ALL to determine a lower boundary to the

numbers that can be decomposed exactly, considering the smallest element used for the

decomposition (i.e. the lightest fragment in the mass decomposition problem). We are more

interested in possible decompositions in a given range (typically limited by some experimental

accuracy), and the chemical nature of the problem will probably constrain the possible

coefficients more than the ERT could. Therefore, it is not clear whether the FIND-ALL

algorithm should be faster for systems of practical interest.

In order to compare our program’s results with the FIND-ALL prediction, we determined the

possible composition in the 20 proteogenic amino acids for a peptide with a monoisotopic mass

of 1000+/-0.2, with a range from 0 to 20 occurrences of each amino acid. The same test was

15

performed using the DECOMP web application developed by Böcker and co-workers,34 using the

monoisotopic masses from ChemCalc. Both tools found the same possible decompositions as

shown in Table 2, which reasonably confirms the validity of our implementation.

Unfortunately it was not possible to compare the speed performances of both tools as we could

only use DECOMP on a remote server of unknown configuration. Furthermore, the DECOMP

web application is designed more as a batch system where calculations are submitted and

performed perhaps later. Its output only becomes available to the user after reloading the web

page, which happens automatically after a period of several seconds. Nevertheless, despite our

simpler algorithm we found that our calculation time was quite reasonable, lasting less than 2

seconds on an Intel Core 2 Duo 2.4 GHz computer system. We determined that our algorithm

solved the problem after performing a total of 25681348 additions of the various amino acid

masses, whereas systematically testing all possible combinations in a brute force approach would

have required 1927317275541504000 mass calculations, i.e. an improvement of a factor 7.5 *

1010.

Table 2: possible amino acid compositions for a monoisotopic mass of 1000+/-0.2 as predicted

by ChemCalc and DECOMP.

Composition Mass

H2OCys8SerAla 1000.15318

H2OCys8ThrGly 1000.15318

H2OCys7Ser3 1000.17094

H2OPheCys7Gly2 1000.186195

16

H2OPheAsnCys7 1000.186195

In order to use the molecular formula finder, one simply needs to store the proposed fragments

(atoms or groups) in an input string that will be passed as a parameter to an AJAX request. In the

following example code, we could also specify a lower and upper limit for the number of

unsaturations in the resulting formula. For this we would set useUnsaturation to True and

provide non-zero values for the minUnsaturation or maxUnsaturation parameter.

jQuery.getJSON("http://www.chemcalc.org/chemcalc",
 {
 mfRange: "C0-100H0-200O0-20N0-20",
 monoisotopicMass: 1000,
 massRange: 0.002,
 action: "em2mf",
 maxUnsaturation: 0,
 minUnsaturation: 0,
 integerUnsaturation: false,
 useUnsaturation: false
 },
 function(output) {
 console.log(output);
 }
)

At the end of the code, if no error has been detected, the output variable contains the

number of found formulas output.numberResults, the number of performed iterations

output.realIteration, the projected number of iterations using the brute-force method

output.bruteForceIteration and the results themselves as an array

output.results containing the molecular formula and calculated monoisotopic mass.

Finally, we point out that the molecular formula finder takes full advantage of the previously

described syntax, as demonstrated by the examples in Table 3. Thus, our tool can be used for a

broad choice of applications.

Table 3 : molecular formula finder examples for target mass = 1000

17

Formula Mass
tolerance

Number
of results

Number of
iterations
(real/brute force)

Application notes

C0-1000H0-
10000[13C]0-
100

+/- 0.2 1244 14703/6422724 Hydrocarbon with unknown
length and saturation, with an
undetermined isotopic
enrichment for carbon

{OC2H4}0-
10Ala0-10Gly0-
10

+/- 10 30 324/1331 Copolymer of alanine, glycine
and ethyleneglycol (using a
custom fragment for
ethyleneglycol)

Conclusion
In this paper, we present a scheme that can be used to provide useful web-based applications

for chemists. Web services can be exposed to application developers using a very simple

interface, in our example JSON objects retrieved through AJAX remote procedure calls. Using

these web services as building blocks, the creation and maintenance of sophisticated web

applications are significantly facilitated. One can imagine that in the near future, chemists will be

offered a rich ecosystem of such building blocks, addressing the various data manipulation

problems they have to solve on a daily basis. Thanks to the underlying web architecture,

researchers will be able to take advantage of these services on any platform, from tablets and

lightweight terminals to multicore, multiprocessor calculators. In order to demonstrate our

approach, we have developed a web service that provides 3 functions of interest for mass

spectrometry, namely isotopic distribution simulation, peptide and protein mass fragmentation,

and a molecular formula for a given mass. These 3 functions are used in the public web

18

application ChemCalc (together with several third-party components such as ChemDoodle and

the popular jQuery library) and can be re-used by any interested developer.

Bibliography
(1) Berry, C. E.; Wilcox, D. E.; Rock, S. M.; Washburn, H. W. Computer for solving linear

simultaneous equations. J. Appl. Phys. 1946, 17, 262–272.
(2) Pepinsky, R. Electronic computer for x-ray crystal-structure analyses. J. Appl. Phys. 1947,

18, 601–604.
(3) Booth, A. D. Two calculating machines for x-ray crystal-structure analysis. J. Appl. Phys.

1947, 18, 664–666.
(4) Frost, A. A.; Tamres, M. A potentiometric secular equation computer. J. Chem. Phys. 1947,

15, 383–90.
(5) Muskat, M.; McDowell, J. M. An electrical computer for solving phase equilibrium

problems. Am. Inst. Mining Met. Engrs., Tech. Pub. 1949, No. 2733, 291–298.
(6) Batson, D. M.; Hogan, J. T. Computer for rapid conversion of pH values to terms of

hydrogen-ion concentration. Chemist-Analyst 1949, 38, 33–38.
(7) Wildstrom, S. H. The way to a Google office. Business Week 2005, 10.
(8) Garfinkel, S. L. A less personal computer. Technology Review 2010, 113, 86–87.
(9) ChemDoodle; iChemLabs, 2008.
(10) Dong, X.; Gilbert, K. E.; Guha, R.; Heiland, R.; Kim, J.; Pierce, M. E.; Fox, G. C.; Wild, D.

J. Web Service Infrastructure for Chemoinformatics. J. Chem. Inf. Model. 2007, 47, 1303–
1307.

(11) Paolini, C. P.; Bhattacharjee, S. A Web Service Infrastructure for Thermochemical Data. J.
Chem. Inf. Model. 2008, 48, 1511–1523.

(12) ChemSpider | About Services http://www.chemspider.com/AboutServices.aspx? (accessed
Oct 29, 2012).

(13) Web Services at EMBL-EBI http://www.ebi.ac.uk/Tools/webservices/ (accessed Oct 29,
2012).

(14) PubChem PUG SOAP http://pubchem.ncbi.nlm.nih.gov/pug_soap/pug_soap_help.html
(accessed Oct 29, 2012).

(15) Holdener, A. T. Ajax  : the definitive guide; O’Reilly: Sebastopol, CA, 2008.
(16) Crockford, D. RFC 4627 - The application/json Media Type for JavaScript Object Notation

(JSON) http://tools.ietf.org/html/rfc4627 (accessed Dec 7, 2011).
(17) Introducing JSON http://www.json.org (accessed Jan 20, 2013).
(18) Lampen, P.; Hillig, H.; Davies, A. N.; Linscheid, M. JCAMP-DX for Mass Spectrometry.

Appl. Spectrosc. 1994, 48, 1545–1552.
(19) Patiny, L. ChemCalc: Isotopic distribution calculation - Mass spectra simulation

http://www.chemcalc.org/ (accessed Jul 27, 2012).
(20) Krompiec, M.; Patiny, L. Easy calculation of molecular formula, molecular weight and

isotopic distribution of peptides. In Fifth International Electronic Conference on Synthetic
Organic Chemistry (ECSOC-5); MDPI; Kappe, Oliver, 2001; p. c0016.

(21) Chaffer, J.; Swedberg, K. Learning jQuery Create Better Interaction, Design and Web
Development with Simple JavaScript Techniques; 3rd ed.; Packt: Birmingham, 2011.

19

(22) IonSource LLC Shareware / Freeware Mass Spectrometry Programs on the Internet
http://ionsource.com/links/programs.htm (accessed Jan 20, 2013).

(23) Balogh, M. P. Spectral interpretation, Part II: tools of the trade. LCGC North Am. 2006, 24,
762, 764, 766, 768–769.

(24) Mueller, L. N.; Brusniak, M.-Y.; Mani, D. R.; Aebersold, R. An Assessment of Software
Solutions for the Analysis of Mass Spectrometry Based Quantitative Proteomics Data. J.
Proteome Res. 2008, 7, 51–61.

(25) Manura, J. J.; Manura, D. J. Isotope Distribution Calculator and Mass Spec Plotter;
Scientific Instrument Services: Ringoes, NJ, 2009.

(26) Yamamoto, H.; McCloskey, J. A. Calculations of isotopic distribution in molecules
extensively labeled with heavy isotopes. Anal. Chem. 1977, 49, 281–283.

(27) National Institute of Standards and Technology CODATA Value: electron mass in u
http://physics.nist.gov/cgi-bin/cuu/Value?meu|search_for=electron+mass (accessed Oct
25, 2012).

(28) Gross, J. H. In Mass Spectrometry a Textbook; Springer: Heidelberg, 2011; pp. 74–77.
(29) Mathematica; Wolfram Research: Champaign, IL, 2011.
(30) IonSource LLC Bovine Serum Albumin

http://www.ionsource.com/Card/protein/BovineSerumAlbumin.htm (accessed Jun 28,
2012).

(31) Roepstorff, P.; Fohlman, J. Proposal for a common nomenclature for sequence ions in mass
spectra of peptides. Biomed. Mass Spectrom. 1984, 11, 601.

(32) Friedl, J. E. F. Mastering regular expressions; O’Reilly: Berkeley, 2006.
(33) Böcker, S.; Lipták, Z. A Fast and Simple Algorithm for the Money Changing Problem.

Algorithmica 2007, 48, 413–432.
(34) Böcker, S.; Lipták, Z.; Martin, M.; Pervukhin, A.; Sudek, H. Decomp—from interpreting

Mass Spectrometry peaks to solving the Money Changing Problem. Bioinformatics 2008,
24, 591.

20

Supporting information
DECOMP output for the peptide amino-acid decomposition test
imsdecomp 1.3
Copyright 2007,2008 Informatics for Mass Spectrometry group
at Bielefeld University

http://BiBiServ.TechFak.Uni-Bielefeld.DE/decomp/

precision: 0.00072
allowed error: 0.2 Da
mass mode: mono
modifiers: none
fixed modifications: none
variable modifications: none
alphabet (character, mass, integer mass):
Wat 18.010565 25015
Gly 57.021464 79196
Ala 71.037114 98663
Ser 87.032029 120878
Pro 97.052764 134796
Val 99.068414 137595
Thr 101.04768 140344
Cys 103.00918 143068
Leu 113.08406 157061
Ile 113.08406 157061
Asn 114.04293 158393
Asp 115.02694 159760
Gln 128.05858 177859
Lys 128.09496 177910
Glu 129.04259 179226
Met 131.04048 182001
His 137.05891 190360
Phe 147.06841 204262
Arg 156.10111 216807
Tyr 163.06333 226477
Trp 186.07931 258443
constraints (character, min, max):
Wat 1 1
Gly none 20
Ala none 20
Ser none 20
Pro none 20
Val none 20
Thr none 20
Cys none 20
Leu none 20
Ile none 20
Asn none 20
Asp none 20
Gln none 20
Lys none 20
Glu none 20
Met none 20
His none 20
Phe none 20
Arg none 20
Tyr none 20
Trp none 20
chemical plausibility check: off

21

Shown in parentheses after each decomposition:
- actual mass
- deviation from actual mass

mass 1000 has 5 decompositions:
Wat1 Gly1 Thr1 Cys8 (1000.1532; +0.15318)
Wat1 Ala1 Ser1 Cys8 (1000.1532; +0.15318)
Wat1 Ser3 Cys7 (1000.1709; +0.17094)
Wat1 Gly2 Cys7 Phe1 (1000.1862; +0.186195)
Wat1 Cys7 Asn1 Phe1 (1000.1862; +0.186195)

done

