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ABSTRACT: The traditional biological assay is very time-
consuming, and thus the ability to quickly screen large
numbers of compounds against a specific biological target is
appealing. To speed up the biological evaluation of
compounds, high-throughput screening is widely used in the
fields of biomedical, biological information, and drug
discovery. The research presented in this study focuses on
the use of support vector machines, a machine learning
method, various classes of molecular descriptors, and different
sampling techniques to overcome overfitting to classify
compounds for cytotoxicity with respect to the Jurkat cell line. The cell cytotoxicity data set is imbalanced (a few active
compounds and very many inactive compounds), and the ability of the predictive modeling methods is adversely affected in these
situations. Commonly imbalanced data sets are overfit with respect to the dominant classified end point; in this study the models
routinely overfit toward inactive (noncytotoxic) compounds when the imbalance was substantial. Support vector machine (SVM)
models were used to probe the proficiency of different classes of molecular descriptors and oversampling ratios. The SVM
models were constructed from 4D-FPs, MOE (1D, 2D, and 21/2D), noNP+MOE, and CATS2D trial descriptors pools and
compared to the predictive abilities of CATS2D-based random forest models. Compared to previous results in the literature, the
SVM models built from oversampled data sets exhibited better predictive abilities for the training and external test sets.

■ INTRODUCTION

With more and more experimentally (experimentally refers to
wet or bench chemistry and biology) high-throughput screen-
ing (HTS) data becoming available, the need, ability, and desire
to use it to construct classification predictive models is
commonplace. Unfortunately, the HTS data are noisy and at
times incomplete, but the biggest drawback attributed to the
data is its inherent imbalanced nature. Typically, there are very
few active (also known as “positive”) compounds (sometimes
called samples), while there are a plethora of inactive
(“negative”) compounds; thus the data are considered
imbalanced. There are several methods and protocols available
to accommodate a disproportioned data set and one of the
more common methods is oversampling where the minority
class − the smaller number of samples − is replicated to result
in an equal number of samples in the two classes. This method
has an opposing methodology fittingly called undersampling

where only a portion of the majority class − the larger number
of samples − equal to the number of minority samples is
selected to construct the training set. The research discussed
herein examines the Jurkat cell cytotoxicity HTS data set,
different structural (molecular) descriptor sets, and the effects
of oversampling on classification predictive models. The
protocols and methods presented outline best practices for
approaching the construction and application of a classification
predictive model from an imbalanced data set.
It is common for chemical compounds − especially drugs −

used to treat various diseases to cause adverse effects and are at
times cytotoxic. Thus, toxicity testing during the drug
development process is necessary to ensure the safety of the
patient and for the success of the research project. Tradition-

Received: January 23, 2013
Published: March 6, 2013

Article

pubs.acs.org/jcim

© 2013 American Chemical Society 958 dx.doi.org/10.1021/ci4000536 | J. Chem. Inf. Model. 2013, 53, 958−971

pubs.acs.org/jcim


ally, animal models are used for the toxicity testing; however,
animal trials are time and cost consuming. New directions and
methodologies in toxicity testing for risk assessment have been
widely addressed,1−4 and computational toxicology method-
ologies have become feasible to reduce the overall costs and
need for animal toxicity testing. Using the large amount of HTS
data and machine learning algorithms to construct predictive
toxicity models aids in the early classification of compounds,1,5,6

and there are several examples of these computational
methodologies being developed for early stage toxicity
predictions and safety assessments.5,7 Successful examples of
in silico cytotoxicity predictions via quantitative structure−
activity relationship (QSAR) models include the prediction of
the following: (i) phenoxyl radical-based toxicity in a fast
growing murine leukemia cell line,8 (ii) toxicity of imidazolium-
derived ionic liquids in a human Caco-2 cell line,9 and (iii)
cellular toxicity in high throughput cell proliferation screening
data for 13 cell lines.10 The power and reliability of predictive
models relies on the fruitful interaction between the data set,
the physicochemical descriptors, and the machine learning
algorithm.11

Quantitative high-throughput screening (qHTS) performed
by the National Institutes of Health (NIH) Chemical
Genomics Center (NCGC) has been developed to measure
the cell responses of a large number of compounds in a short
time period.2,12 The quality of data (experimental end points)
from qHTS is more reliable than the data from traditional HTS.
This improved reliability in experimental end points is due to
the method used to obtain the data. By using concentration−
response curves (CRCs) instead of a single concentration to
determine whether or not a compound is active greatly reduces
the false positive ( fp) and false negative ( fn) rate.2 Although
qHTS can rapidly generate high quality analyses for numerous
compounds on cell viability, the screened compounds typically
exhibit an active/inactive imbalance that is commonly seen in
HTS results. The imbalance is due to the hypothesis that there
are far fewer active compounds for a specific biological system
than inactive compounds. While the reliability of biological
(experimental) data from qHTS studies (compared to HTS)
has been improved, the challenge remains the same: construct
high quality classification models from imbalanced data sets.13

Imbalanced data set processing is an active area of research
and has been explored and discussed in several studies,13−16 yet
there are several ways to account for and safeguard against the
obscuring of useful information contained in the data set.
Support vector machines (SVMs) combined with resampling
strategies redistribute the initially imbalanced data and
improves the classification ability of the predictive model.17,18

To keep all the information embedded within a data set,
oversampling methods are more suitable than undersampling
methods that suffer from information loss16,17 due to their basic
design. Oversampling brings the data set to a class equilibrium
by simply duplicating samples from the minority class.19 The
caveat to this seemingly simplistic method of increasing the
number of minority class entities until there is an equal number
of each class is that the best resampling ratio (active:inactive)
varies for different data domains,14 and selecting the optimal
sampling ratio can optimize and tune the classification model.
Several machine learning algorithms have been applied to

cytotoxicity predictions, such as neural network,20 random
forest,21 and decision tree,22 and the performance of these
toxicity classification models has been evaluated and
compared.23 Although SVM and artificial neural network

(ANN) algorithms perform well on toxicity prediction in the
comparative analysis,23 another comparison showed that SVM-
based mutagenicity predictions are more accurate than ANN-
based predictions.24 Additionally, the random forest
(RF)10,25,26 predictive modeling method has been used for
compound classification and toxicity prediction as well as the
SVM algorithm.27 The SVM-based cytotoxicity classification
models presented in this study are compared to the models
constructed with the RF algorithm by Guha and Schürer.10

Random forest-based cytotoxicity classification models of
screened compounds from NCGC have been curated and
constructed for 13 different cell lines by Guha and Schürer.10

The NCGC Jurkat model was used to predict the toxicity
classification of the Scripps Jurkat data set from Molecular
Library Screening Center Network (MLSCN). The cytotoxicity
classification accuracy of the Guha and Schürer10 CATS2D-
based RF model applied to their test set (the Scripps/MLSCN
data set that is similar to the test set used in this study) was
67.5%. This is a respectable ability for a classification model
applied to an external test set, but examining the sensitivity
(ability to predict known active compounds) and specif icity
(ability to predict known inactive compounds) indicates that
their model was skewed toward being able to better predict
known actives; 76.3% and 26.0%, respectively. As will be
shown, the performance of toxicity classification models can be
improved by using different machine learning algorithms,
descriptor classes, and sampling strategies.
Cell proliferation, viability assays, and qHTS methods

provide a large collection of bioassay data for constructing
cytotoxicity classification models and thus allowing the
prediction of chemical compounds. In this study, the influences
of different trial descriptor pools (4D-Fingerprint; 1D, 2D, and
21/2D MOE; and 4D-Fingerprint+MOE), data set composi-
tion (Jurkat-specific cell line biological end points or a
collection of compounds that are known to be cytotoxic),
oversampling strategies (various oversampling ratios), and
model construction methods (SVM and RF) for the
cytotoxicity prediction based on an imbalanced data set from
qHTS assays are explored and discussed. Cytotoxicity
classification models that can accommodate imbalanced data
can inform scientists (specifically biologists in this case)
whether particular compounds are cytotoxic (active) prior to
biological experimentation and thus aid in the prioritization of
compounds for further ADME/toxicology testing before being
advanced to in vivo assays.

■ MATERIAL AND METHODS
Experiment Measurement of Cell Viability Data.

Evaluating a compound’s cytotoxicity is critical when
developing potential human therapeutics for obvious reasons;
most notably therapeutic induced death. To aid in the
investigation of the physicochemical properties that make
compounds cytotoxic a qHTS campaign was designed by the
NIH’s Chemical Genomics Center. The qHTS study measured
the metabolic activity of a suspended cell line after 40 h of
incubation at 37 °C with the compound of interest. The qHTS
used the human T-cell line Jurkat Clone E6-1, and each
compound was evaluated at a final concentration of 4 μM
(μM). To determine if the cells occupying the well were viable
(alive) a luciferase-based cell proliferation/viability assay was
employed to measure the amount of ATP present in the
microtiter plate well via luminescence; the concentration of
ATP corresponds to the amount of luminescence. Wells that do
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not luminescence − due to the lack of ATP − indicate that the
catalytic conversion of luciferin into oxyluciferin has not
occurred and the absence of ATP is correlated with cell death.
Data Sets. The training set for this cytotoxicity study is a

subset of the PubChem BioAssay database AID: 426 − as
indicted below − that has two components: (i) the raw data set
that contains all the compounds and their designation as
cytotoxic (active) or not (inactive) for the 13 cell lines and (ii)
the compounds that have been tested for specific cytotoxicity
on the Jurkat cell line. The test set is a combination of
PubChem BioAssay databases AIDs 364 and 464 that focuses
on cytotoxicity of the Jurkat cell line. The experimentally
determined qHTS end points of the training set are considered
superior to the HTS end points of the test set.
Training Set. The training data set is based on the

PubChem BioAssay database AID: 426, a qHTS assay for cell
viability of the Jurkat cell line curated by the NIH Chemical
Genomics Center. The data set, at the time of access, contained
1335 compounds with IC50 experimental values for all the
compounds. In order to compare our results with those in the
literature,10 a cutoff value of 4.68 on the pIC50 (−log10 IC50)
scale was selected. Compounds with a pIC50 value greater than
4.68 were classified as active (cytotoxic), and the remainder of
the compounds were considered inactive. This method of
classifying compounds as active or inactive is the same as the
one described by Guha and Schürer10 where compounds were
divided based on a cutoff value that is “two standard deviations
above the mean pIC50” for the Jurkat cell line. Thirty-five
compounds were removed from the training set because
descriptors could not be calculated for them, resulting in a
training set of 1300 compounds with 57 active and 1243
inactive compounds (Figure 1a).
Test Set. The test set is a fusion of two Jurkat cell PubChem

BioAssay databases; AID 364 and AID 464. Fifty of database
AID 364’s 3311 compounds possessed experimental IC50
values, while all of database AID 464’s 706 compounds have
experimental IC50 values. After combining these two data sets
and removing 16 compounds that were unable to have the
required molecular descriptors calculated, the test set contained
740 compounds (50 compounds from AID 364 plus 706
compounds from AID 464 minus 16 compounds) with 631

active and 109 inactive compounds (Figure 1b) after applying
the pIC50 cutoff value of 4.68. The data sets for the test set was
originally provided by The Scripps Research Institute
Molecular Screening Center to PubChem, and the end points−
cytotoxic or not − were determined using traditional HTS.

Molecular Descriptors. Because the chemical structure of
a compound determines the physicochemical properties,28

commonly referred to as molecular features and descriptors,
focusing on a specific substructure − toxicophores − within a
series of compounds is a common method of constructing
toxicity classification models.29,30 The selection of suitable
molecular descriptors has a direct impact on the performance of
predictive models and thus the quality of the classification
models.31,32 The Jurkat cell cytotoxicity study by Guha and
Schürer10 used the BCI fingerprints and CATS2D descriptors33

to construct toxicity classification models. In our previous
toxicity studies,34,35 successful classification models were
constructed by employing 4D-Fingerprints36 and Molecular
Operating Environment (MOE)37 molecular descriptors. The
CATS2D molecular descriptors are only discussed with respect
to the portion of this study concerned with the comparison of
model construction methods − SVM compared to random
forest. Comparing the performance of models developed using
different descriptor sets is necessary to identify the descriptor
class that best captures the key physicochemical properties for
cytotoxicity and thus constructing a robust model.

Universal 4D-Fingerprints. The detailed formalism to
compute the 4D-Fingerprints (4D-FPs) has been published in a
previous research article,36 and the methodology is only
summarized herein. The 4D-FP method generates a set of
molecular fingerprints that is divided into pharmacophore
elements designed to capture the 3D size, shape, and
conformational flexibility of a molecule while embedding
conformational averaged molecular information.
The first step in constructing the 4D-FPs is the generation of

the conformation ensemble profile (CEP) of each molecule via
molecular dynamic simulation (MDS). For each compound 36
molecular similarity main distance-dependent matrix (MDDM)
are constructed, from the same term or a cross-term, based on
the interaction pharmacophore element (IPE) pair type from
eight IPEs; they are as follows: all atoms, nonpolar atoms, polar

Figure 1. A) Training data set of PubChem BioAssay AID 426 that used a cutoff value of 4.68 pIC50 to classify the active and inactive compounds. B)
Testing data set of PubChem BioAssay AID 364 and 464 that used a cutoff value of 4.68 pIC50 to classify the active and inactive compounds.
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positive atoms, polar negative atoms, hydrogen bond acceptor
atoms, hydrogen bond donor atoms, aromatic atoms, and non-
hydrogen (or heavy) atoms. The eigenvector and correspond-
ing eigenvalues are derived from the diagonalization of the
MDDM. When the IPE types are the same, the MDDM is an
upper/lower triangular matrix and can be directly diagonalized.
The resulting eigenvalues are then normalized and sorted in
numerically descending order. When the IPE types are
different, the MDDM will likely be rectangular because the
number of IPE elements is probably different. These MDDM
matrices of different sizes are made square − like the MDDM
matrices of same IPE type − by multiplying one of the two IPE
matrices by the transpose of the other MDDM. All of the
eigenvalues for all of the MDDMs for all IPE pairs are utilized
as the universal 4D-Fingerprints for one molecule. For each test
set molecule, the number of eigenvalues of each specific IPE
type is set to the maximum size of the training set. If the
number of eigenvalues for a test set compound is greater than
those for the training set, then the excessive eigenvalues are
disregarded. The test set descriptor matrix is also normalized
using the same protocol used for the training set.
MOE Descriptors. A set of 306 1D, 2D, and 21/2D (3D

molecular properties mapped to a single numerical value)
descriptors from MOE 2010.1038 was calculated for inclusion in
the descriptor pool. The 1D molecular descriptors include the
number of specific atoms, atom types (hydrogen bond
acceptors and donors), and number of single, double, and
triple bonds. The 2D molecular descriptors are numerical
features derived from the connection table representing a
molecule and include physical properties, subdivided surface
areas, atom counts, bond counts, Kier and Hall connectivity
and Kappa Shape indices, adjacency and distance matrix
descriptors containing BCUT and GCUT descriptors,
pharmacophore feature descriptors, and partial charge
descriptors. The 21/2D molecular descriptors are dependent
on the conformation of a molecule and include the following:
potential energy, surface area, volume, shape, and charge
descriptors. A description of MOE molecular descriptors can be
found on the Chemical Computing Group, Inc. Web site.39

CATS2D Descriptors. The Chemically Advanced Template
Search (CATS) molecular descriptors40 are based on the
distance (number of bonds) between pairs of topological
pharmacophore elements within the compound. The five-
pharmacophore elements are as follows: anion, cation,
hydrogen bond acceptor, hydrogen bond donor, and hydro-
phobic (lipophilic) atoms. The number of occurrences for a
pharmacophore-pair is binned based on the number of atomic
bonds between the two atoms. The number of bonds
considered for inclusion spanned from 0 to 9 and when the
number of bonds between two atoms was greater than 9, those
distances were added to the 9 bonds bin. The 0 bond
separation bin counts the number of each pharmacophore
element in the compound. The 15-pharmacophore element
interaction pairs along with the 10 bins for number of
separating bonds (though, nonsimilar pharmacophore pairs
with zero bonds separating the two atoms should not exist)
results in 150 CATS2D molecular descriptors. Originally, these
descriptors were created for virtual screening and thus their
ability to aid in the construction of robust and applicable
classification models is explored.
Rebalancing the Data Set. The cell cytotoxicity data set is

imbalanced, and this situation is often experienced with HTS
data sets. To counteract the imbalanced nature of the cell

cytotoxicity data set, oversampling was employed to increase
the number of minority class members (cytotoxic compounds;
active) and resulted in an evenly distributed data set.
Oversampling increases the number of minority class members
in the training set to a population size equal to − or a defined
ratio of − the majority class. The advantage of oversampling is
that no information from the original training set is lost since all
members from the minority and majority classes are retained.
Retaining all of the members − through the duplication of
members in the smaller subsets − results in oversampling’s
main drawback, the effective size of the training set is greatly
increased and, thus, so are the required computational
resources.
The research presented herein took advantage of the

oversampling methodology and created oversampled data sets
with active-to-inactive ratios of 1:1, 1:2, and 2:3 to find the
optimal condition for each descriptor set. It has been reported
by Gazzah and Amara16 that the best active-to-inactive ratio for
oversampling is dependent on the data set of interest. The
method of overcoming the imbalanced data set in this study is
significantly different than the method implemented by Guha
and Schürer.10 The training and “validation” test sets of Guha
and Schürer were constructed by randomly selecting a subset of
compounds from the data set for the test set and using the
remaining compounds for the training set. Specifically, the test
set was constructed by selecting 20% of the known cytotoxic
(actives) compounds followed by randomly selecting inactive
compounds to replicate the active:inactive ratio of the complete
data set. The leftover active compounds were combined with
the same number of randomly selected inactive compounds to
form the training set resulting in a 1:1 ratio of active-to-inactive
compounds.

Model Creation Methods. Two types of predictive models
were constructed from the imbalanced data set to explore the
impact of oversampling. To provide an equivalent comparison
to the Guha and Schürer10 study, random forest21 models were
also constructed, while support vector machine41,42 models
were constructed to compare the ability of the trial descriptor
pools.

Random Forest (RF). The random forest21 methodology
randomly selects a subset of samples (compounds) from a data
set along with a random selection of molecular descriptors
(independent variable) to construct a predisposed number of
predictive models (ensemble) whose results are combined into
a single model. Random forest models are appealing because
the need for descriptor selection is not required, and they are
equally adept at creating robust models for continuous and/or
binary end points (biological measures of activity). Models
were constructed and validated using the randomForest
package v4.6−743 in R v2.15.2.44 Two user definable tuning
arguments are available for the randomForest function, ntree
and mtry, and were used to construct optimal RF models. The
ntree argument defines the number of ‘trees’ to create within the
forest and was set from 500 to 1000 using an interval of 100
(i.e. 500, 600, 700, 800, 900, and 1000), while the mtry
parameter that specifies the number of randomly selected
independent variables to include in each model. The mtry value
was set to a value between 1 and 16.

Support Vector Machine (SVM). A support vector
machine41,42 is a supervised machine-learning technique that
applies (creates) a hyperplane within the descriptor space in an
attempt to separate (classify) the samples. The end points for
each compound (sample) of the Jurkat-specific cell line data set
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are binary − the compounds are classified as active (1s) or
inactive (0s). Models were constructed and validated using the
LIBSVM v2.9145 application.
Model Evaluation. To assess the predictive performance of

the constructed binary classification models several evaluation
methods were employed. The common classification evaluation
methods of accuracy, sensitivity, and specif icity − eqs 1, 2, and 3,
respectively − were calculated along with the more advanced
methods of geometric means (G-means; eq 4) and Cohen’s
kappa (κ; eq 5) that are not affected by imbalanced data sets.
Accuracy represents the proportion of correctly predicted
classifications for the entire data set, sensitivity is the fraction
of active samples that were successfully classified, and specif icity
is the fraction of inactive samples that were properly classified.
The equations to calculate these model evaluation methods are

=
+

+ + +
=

+
accuracy

tp tn
tp fn tn fp

tp tn
Total number of samples

(1)

=
+

=sensitivity
tp

tp fn
tp

Number of active samples (2)

=
+

=specificity
tn

tn fp
tn

Number of inactive samples (3)

The variables in eqs 1−3 are as follows: tp is the number of true
positives (active compounds that are correctly predicted to be
active); fn is the number of false negatives (active compounds
that are incorrectly predicted to be nonactive); tn is the number
of true negative (nonactive compounds that are correctly
predicted to be nonactive); and fp is the number of false
positive (nonactive compounds that are incorrectly predicted to
be active). Because accuracy can be swayed by a data set that is
heavily composed of active or inactive samples, solely
evaluating a model based on the accuracy value is not advisable.
For example, if a major portion of a data set is considered
“active” (80% of the samples), then a model that classifies most
of the samples as active regardless of their true category will
have an accuracy value that is considered “good”. Instead, if the
model is evaluated on its ability to correctly predict active
samples and inactive samples using sensitivity and specif icity,
then a better understanding of the model’s ability is displayed.
Combining sensitivity and specif icity into a single value via the
geometric mean (G-means) allows for a simple way to evaluate

the model’s ability to correctly classify active and inactive
samples using the formula

‐ = ×G means sensitivity specificity (4)

In addition to the above model evaluation methods, Cohen’s
kappa (κ) can be used to measure the agreement between
classification models or predicted and known classifications.46 It
is defined as

κ′ = −
−

a e
e

Cohen s
Pr( ) Pr( )

1 Pr( ) (5)

where Pr(a) is the relative observed agreement between the
predicted classification of the model and the known
classification, and Pr(e) is the hypothetical probability of
chance agreement. The Pr(a) and Pr(e) values are calculated
from a confusion matrix. Cohen’s kappa analysis returns values
between −1 (no agreement) and 1 (complete agreement).
Predictive models, when compared to the known classification
of the data set, with Cohen’s kappa values between −1.0 and
0.4 indicate that the model is a poor predictor, values between
0.4 and 0.6 indicate that the model is average, values between
0.6 and 0.8 imply that the model is acceptable, and values
between 0.8 and 1.0 denote that the model is highly predictive.
While G-means is the primary model evaluation method for this
study, this quintet of classification model evaluation measures is
included to provide a complete view of the classification
models’ predictive abilities.
To further validate the ability of the predictive models, Y-

scrambling47 was applied to the training set. Y-scrambling is the
well-known method of scrambling the known end points,
refitting the previously constructed model, and evaluating the
“new” model. Typically, and in this study, the known end
points are scrambled 1000 times, and the predictive ability of
the model is severely compromised (data not shown).

Molecular Similarity. Cytotoxicity may be caused by many
reasons, one of which is the structural characteristics of
different toxic compounds. Therefore, the similarity of active
and inactive compounds between the training set and test set
and the similarity between active compounds in the training set
and inactive compounds in the test set were calculated. The
molecular similarity between compounds was calculated using
the provided PubChem 2D descriptors and resulted in a
Tanimoto Coefficient value. The molecular similarity within the

Figure 2. Similarity of active compounds (training data set) and inactive compounds (testing data set).
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training and test sets and between the two sets of compounds is
summarized in Figure 2.

■ RESULTS AND DISCUSSION

The models presented and discussed below were constructed
from either (i) the entire PubChem data set (AID 426) or (ii) a
subset of this data set that specifically had Jurkat cell viability
end point values. The test set is constructed from PubChem
AIDs 364 and 464 and was evaluated with the classification
models constructed from the full and Jurkat subset of AID 426
to determine the abilities of the models. External test sets are
considered an excellent method to evaluate the predictive
ability of models. Since the provided end points for the
combined test set were determined via HTS and not
quantitative HTS, the reduced quality of the experimental end
points for the test set provides a real world example of “less
than ideal” data. There is a striking contrast for the test set of
Cohen’s kappa values − and to a lesser extent for the G-means
values − compared to those for the training set. Based on
molecular similarity analysis, the active training set compounds
are not similar to the active test set compounds indicating that
the test set might be beyond the “domain” of the predictive
models. There are cases where compounds in the training set
have similar molecular structure − based on molecular
similarity analysis − to compounds in the test set yet are
respectively considered active and inactive or vice versa.
Prediction Models of Cell Viability. Three descriptor

pools were used to explore the important structural features
relating to Jurkat cell cytotoxicity, specifically the following: 4D-
Fingerprints, MOE (1D+2D+21/2D), and noNP+MOE (4D-
Fingerprints (excluding NP) + MOE (1D+2D+21/2D)). The
inclusion of these three trial descriptor pools along with the
CATS2D descriptors used in the Guha and Schürer10 study
provides the ability to compare the model creation method and
the molecular descriptors while also exploring the ability of
oversampling. The noNP+MOE descriptor pool consisted of
MOE 1D, 2D, and 21/2D molecular descriptors and 4D-FPs
except for those that included nonpolar (NP) interactions.
Based on the results of the 4D-FPs only model, the
independent variables containing information regarding non-
polar IPEs in the 4D-FPs descriptor pool were removed from
the combined 4D-FP + MOE descriptor pool. The classification
models constructed from the noNP+MOE descriptor pool have
better predictive ability for the test set based on the significantly
better sensitivity (65.0%) compared to that of 4D-FP (37.7%)
and MOE (28.4%) models. This trend was also seen for SVM

models constructed from the Jurkat subset of AID 426. It was
therefore concluded that removing the NP descriptors of the
4D-FP descriptor pool and including the MOE descriptors
provided a robust and mixed descriptor pool that will be better
able to capture important physicochemical properties related to
cytotoxicity. To alleviate the Jurkat cell cytotoxicity data set’s
imbalanced nature, oversampling was used to address the
inherent problems with constructing predictive models from
skewed data sets. The contributions of molecular descriptors,
sampling, filtering, and model creation methods were explored
to better understand the impact of these components on an
imbalanced data set.

SVM Model Constructed from the Complete AID 426
Data Set. Without applying any filters or sampling methods to
AID 426, the training set contained 1300 compounds, the self-
prediction specif icity (inactive compounds) for the training set
for each of the three descriptor sets 4D-Fingerprints, MOE, and
noNP+MOE is 88.9%, 84.2%, and 90.8% while the sensitivity
was 93.0%, 73.7%, and 57.9%, respectively (Table 1). Applying
these models to the test set returned a different trend for the
specif icity (68.8%, 77.1%, 38.5%) and sensitivity (37.7%, 28.4%,
65.0%) values. Based on these values it can be stated that the
three descriptor sets are overfitting with respect to the inactive
compounds for the complete training set and the test set. This
is most likely the result of inactive-state bias exhibited in the
training set. Based on G-means and kappa values, it can be seen
that the 4D-FPs provides slightly better results for models
constructed from the entire AID 426 data set.

SVM Model Constructed from the Jurkat Cell Specific
Data. Because the goal of this modeling effort is to better
understand how molecular descriptor classes and curated data
sets affect the predictive ability of the models, only compounds
from AID 426 specifically indicated with end point values for
the Jurkat cell line were retained for the next set of classification
models. This resulted in a training set with 13 active
compounds (toxic) and 37 inactive compounds. The 50
compounds were used to construct models using the 4D-
Fingerprints, MOE, and noNP+MOE descriptor sets. Overall
the specif icity (94.6%, 48.7%, and 35.1%; inactive compounds)
for the Jurkat cell line training set severely decreased, but the
sensitivity (84.6%, 100%, and 100%; active compounds) was
greatly improved. Upon further inspection, the sensitivity of the
models constructed with only the MOE descriptors exhibited a
marked improvement from 73.7% to 100%, and the noNP
+MOE model’s sensitivity increased from 57.9% to 100% (see
Table 1). These changes are directly attributed to the

Table 1. Performance of the SVM Model for 4D-Fingerprints, MOE, and noNP+MOE Descriptor Sets with Raw Data and
Jurkat Cell Specific Data

Acc (%) Sen (%) Spe (%) G-means kappa

complete AID 426 data set 4D-FPs training set 89.08 (1158/1300) 92.98 (53/57) 88.90 (1105/1243) 0.909 0.386
test set 42.30 (313/740) 37.72 (238/631) 68.81 (75/109) 0.509 0.028

MOE training set 83.69 (1088/1300) 73.68 (42/57) 84.15 (1046/1243) 0.787 0.229
test set 35.54 (263/740) 28.37 (179/631) 77.06 (84/109) 0.468 0.021

noNP+MOE training set 89.38 (1162/1300) 57.89 (33/57) 90.83 (1129/1243) 0.725 0.278
test set 61.08 (452/740) 64.98 (410/631) 38.53 (42/109) 0.500 0.022

Jurkat subset of AID 426 4D-FPs training set 92.00 (46/50) 84.62 (11/13) 94.59 (35/37) 0.895 0.792
test set 55.14 (408/740) 56.26 (355/631) 48.62 (53/109) 0.523 0.027

MOE training set 62.00 (31/50) 100.00 (13/13) 48.65 (18/37) 0.697 0.330
test set 66.08 (489/740) 70.52 (445/631) 40.37 (44/109) 0.534 0.075

noNP+MOE training set 52.00 (26/50) 100.00 (13/13) 35.14 (13/37) 0.593 0.220
test set 72.43 (536/740) 80.51 (508/631) 25.69 (28/109) 0.455 0.053

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci4000536 | J. Chem. Inf. Model. 2013, 53, 958−971963



composition of the training set. The complete 4D-FP training
set experienced slight changes to the specif icity and sensitivity
values, while the sensitivity of MOE and noNP+MOE models
were both improved at the cost of reduced specif icity.
Regardless of the varied changes in the predictive ability of
the models, the MOE and noNP+MOE descriptor sets still
exhibited overfitting. The results indicated that the predictive
ability of the Jurkat-only models were better able to indicate
active compounds (sensitivity: 56.3%, 70.5%, and 80.5%) within
the test set compared to the SVM models constructed from all
1300 compounds of the AID 426 data set (sensitivity: 37.7%,
28.4%, and 65.0%). The moderate overall improvement seen in
the prediction of active compounds from the test set does not
indicate that any specific model is superior. The removal of
compounds that were not tested specifically for cytotoxicity
within the Jurkat cell line allows the model to emphasize
important molecular features for Jurkat cell cytotoxicity but
unfortunately the models exhibited. By focusing the data set −
based on end point − the models have shifted the overfitting of
the training set from the inactive compounds (complete AID
426 data set) to the active compounds (Jurkat subset of AID
426) with the exception of the models constructed from the
4D-FPs that remained statistically similar.
While the performance of the Jurkat cell line only models

was similar to the complete AID 426 data set, the overfitting
should not be considered due to “noise” in the data set (full
AID 426 data set versus the Jurkat cell line specific compounds
from the AID 426 data set) but instead it is most likely due to
the imbalanced data set. Oversampling to adjust the ratio of
active to inactive compounds is explored to see if overfitting is
due to an imbalanced training set and if this imbalance can be
reduced.
Oversampling the Imbalanced Data Sets. Three

oversampling active to inactive ratios were explored to gauge
the impact of balancing the training set. The initial ratio of
active-to-inactive compounds for the complete AID 426 data
set was 1:22, while the Jurkat specific data set had an
active:inactive ratio of 1:3. It could be argued that the Jurkat
cell line specific data set is not imbalanced due to its low
number of compounds compared to the AID 426 data set, 50
compounds compared to 1300, and the relatively low ratio of
active-to-inactive compounds, 1:3 compared to 1:22. But when
taking into consideration the overfitting experience within its
SVM models toward active compounds, the potential

contributions from an imbalanced data set should be addressed.
The first oversampling ratio explored was 1:1 and increased the
number of active compounds in the training set to 1254 from
57 (for the complete AID 426 data set) and 39 from 13 (for the
Jurkat subset) by replicating all of the active compounds. To
retain the complete collection of compounds from the minority
class, the minority class compounds were duplicated an integer
number of times. For example, to create as close as possible an
active:inactive ratio of 1:1 the 57 active compounds of the full
AID 426 data set were replicated 22 times resulting in 1254
active compounds. While this provided slightly more −11
compounds − active compounds than inactive compounds, the
data set should be considered balanced. The other over-
sampling ratios for the full training set were 1:2 and 2:3
increasing the number of active compounds to 627 and 855
active compounds, respectively, while retaining 1243 inactive
compounds. The Jurkat cell line training set is constrained to
the active:inactive ratios of 1:1 and 2:3 due to the initial
active:inactive ratio of 1:3, thus to satisfy the 1:2 ratio
increasing both the number of active and inactive compounds
is required. The number of active compounds for the Jurkat
training set becomes 39 and 26 for the 1:1 and 2:3
active:inactive ratios with the number of inactive compounds
held at 37. The oversampling of the full AID 426 data set had
an immediate improvement on the ability of the models as seen
in Tables 2−4. Overall the oversampling ratios exhibited
increases in the sensitivity values and a reduction in specif icity
values compared to the original full AID 426. Remember, the
accuracy value is based on all the predictions (active and
inactive), and an imbalanced data set can influence the accuracy
values. The accuracy values presented in Tables 2−4 are now
more realistic because the number of active and inactive
compounds is closer to equivalent. Additionally, the G-means
and Cohen’s kappa values signal that the models have had a
significant improvement for the prediction of the training sets.

Descriptors, Sampling, Modeling, and Filtering Con-
tribution in a Classification Model. The 4D-FP models
constructed from the entire AID 426 data set had a G-means
value of 0.909 that reduced to 0.895 for the Jurkat subset
(Table 1). Oversampling improved the G-means values for 1:2
and 2:3 ratios (actives:inactives) when using the entire AID 426
data set and 4D-FP descriptors with an average value of 0.92
(Table 2). A similar increase for the Jurkat subset is also seen
with G-means values of approximately 0.89 (Table 2). While the

Table 2. Performance of the SVM Model for the 4D-Fingerprints Descriptor Set with the Oversampling Ratios
(Active:Inactive): 1:1, 1:2, and 2:3

Acc (%) Sen (%) Spe (%) G-means kappa

complete AID 426 data set original training set 89.08 (1158/1300) 92.98 (53/57) 88.90 (1105/1243) 0.909 0.386
test set 42.30 (313/740) 37.72 (238/631) 68.81 (75/109) 0.509 0.028

1:1 training set 91.19 (2277/2497) 100.00 (1254/1254) 82.30 (1023/1243) 0.907 0.824
test set 45.41 (336/740) 42.00 (265/631) 65.14 (71/109) 0.523 0.032

1:2 training set 90.05 (1684/1870) 98.25 (616/627) 85.92 (1068/1243) 0.919 0.790
test set 45.27 (335/740) 41.84 (264/631) 65.14 (71/109) 0.522 0.031

2:3 training set 92.14 (1933/2098) 98.25 (840/855) 87.93 (1093/1243) 0.929 0.841
test set 44.73 (331/740) 40.73 (257/631) 67.89 (74/109) 0.526 0.038

Jurkat subset of AID 426 original training set 92.00 (46/50) 84.62 (11/13) 94.59 (35/37) 0.895 0.792
test set 55.14 (408/740) 56.26 (355/631) 48.62 (53/109) 0.523 0.027

1:1 training set 90.79 (69/76) 100.00 (39/39) 81.08 (30/37) 0.900 0.815
test set 44.05 (326/740) 40.41 (255/631) 65.14 (71/109) 0.513 0.024

2:3 training set 88.89 (56/63) 84.62 (22/26) 91.89 (34/37) 0.882 0.769
test set 56.89 (421/740) 58.48 (369/631) 47.71 (52/109) 0.528 0.035
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increase in G-means values for the 4D-FP models (Jurkat
subset) is not as substantial of an increase for the full data set,
the difference in model ability is most likely due to focusing the
data set to compounds with end points for the Jurkat subset.
The predictive models created with MOE and noNP+MOE

descriptor pools experienced similar improvements in their G-
means values for the complete AID 426 and the Jurkat cell line
data sets, Tables 3 and 4. It is impressive how well the

oversampled models performed based on their ability to classify
active and inactive compounds, but evaluating the models’
abilities based on their G-means values illustrates how the
model performs on the whole data set. Regardless of the
descriptors and oversampling ratios being employed, the overall
G-means performance of the oversampling models outperforms
the models constructed from the original complete AID 426
and Jurkat cell line data sets.

Table 3. Performance of the SVM Model for the MOE Descriptor Set with the Oversampling Ratios (Active:Inactive): 1:1, 1:2,
and 2:3

Acc (%) Sen (%) Spe (%) G-means kappa

complete AID 426 data set original training set 83.69 (1088/1300) 73.68 (42/57) 84.15 (1046/1243) 0.787 0.229
test set 35.54 (263/740) 28.37 (179/631) 77.06 (84/109) 0.468 0.021

1:1 training set 84.74 (2116/2497) 100.00 (1254/1254) 69.35 (862/1243) 0.833 0.694
test set 37.30 (276/740) 30.43 (192/631) 77.06 (84/109) 0.484 0.029

1:2 training set 79.63 (1489/1870) 100.00 (627/627) 69.35 (862/1243) 0.833 0.603
test set 37.30 (276/740) 30.43 (192/631) 77.06 (84/109) 0.484 0.029

2:3 training set 81.41 (1708/2098) 94.74 (810/855) 72.24 (898/1243) 0.827 0.635
test set 32.84 (243/740) 24.25 (153/631) 82.57 (90/109) 0.447 0.025

Jurkat subset of AID 426 original training set 62.00 (31/50) 100.00 (13/13) 48.65 (18/37) 0.697 0.330
test set 66.08 (489/740) 70.52 (445/631) 40.37 (44/109) 0.534 0.075

1:1 training set 78.95 (60/76) 100.00 (39/39) 56.76 (21/37) 0.753 0.574
test set 56.89 (421/740) 57.37 (362/631) 54.13 (59/109) 0.557 0.063

2:3 training set 69.84 (44/63) 100.00 (26/26) 48.65 (18/37) 0.697 0.439
test set 66.08 (489/740) 70.52 (445/631) 40.37 (44/109) 0.534 0.075

Table 4. Performance of the SVM Model for the noNP+MOE Descriptor Set with the Oversampling Ratios (Active:Inactive):
1:1, 1:2, and 2:3

Acc (%) Sen (%) Spe (%) G-means kappa

complete AID 426 data set original training set 89.38 (1162/1300) 57.89 (33/57) 90.83 (1129/1243) 0.725 0.278
test set 61.08 (452/740) 64.98 (410/631) 38.53 (42/109) 0.500 0.022

1:1 training set 88.67 (2214/2497) 100.00 (1254/1254) 77.23 (960/1243) 0.879 0.773
test set 45.54 (337/740) 42.95 (271/631) 60.55 (66/109) 0.510 0.016

1:2 training set 84.87 (1587/1870) 100.00 (627/627) 77.23 (960/1243) 0.879 0.695
test set 45.54 (337/740) 42.95 (271/631) 60.55 (66/109) 0.510 0.016

2:3 training set 78.65 (1650/2098) 87.72 (750/855) 72.41 (900/1243) 0.797 0.576
test set 60.14 (445/740) 63.71 (402/631) 39.45 (43/109) 0.501 0.020

Jurkat Subset of AID 426 original training set 52.00 (26/50) 100.00 (13/13) 35.14 (13/37) 0.593 0.220
test set 72.43 (536/740) 80.51 (508/631) 25.69 (28/109) 0.455 0.053

1:1 training set 72.37 (55/76) 100.00 (39/39) 43.24 (16/37) 0.658 0.439
test set 66.76 (494/740) 73.06 (461/631) 30.28 (33/109) 0.470 0.025

2:3 training set 61.90 (39/63) 100.00 (26/26) 35.14 (13/37) 0.593 0.309
test set 72.43 (536/740) 80.51 (508/631) 25.69 (28/109) 0.455 0.053

Table 5. Best Models for Each of the Three Types of 4D-Fingerprints, MOE, and noNP+MOE Descriptor Sets with the
Complete AID 426 Data Set and Jurkat-Specific Subset of AID 426

Acc (%) Sen (%) Spe (%)
G-

means kappa

complete AID 426 data set 4D-FPs (2:3, SVM) training set 92.14 (1933/2098) 98.25 (840/855) 87.93 (1093/1243) 0.929 0.841
test set 44.73 (331/740) 40.73 (257/631) 67.89 (74/109) 0.526 0.038

MOE (1:1, SVM) training set 84.74 (2116/2497) 100.00 (1254/1254) 69.35 (862/1243) 0.833 0.694
test set 37.30 (276/740) 30.43 (192/631) 77.06 (84/109) 0.484 0.029

noNP+MOE (1:1, SVM) training set 88.67 (2214/2497) 100.00 (1254/1254) 77.23 (960/1243) 0.879 0.773
test set 45.54 (337/740) 42.95 (271/631) 60.55 (66/109) 0.510 0.016

Jurkat subset of AID 426 4D-FPs (2:3, SVM) training set 88.89 (56/63) 84.62 (22/26) 91.89 (34/37) 0.882 0.769
test set 56.89 (421/740) 58.48 (369/631) 47.71 (52/109) 0.528 0.035

MOE (1:1, SVM) training set 78.95 (60/76) 100.00 (39/39) 56.76 (21/37) 0.753 0.574
test set 56.89 (421/740) 57.37 (362/631) 54.13 (59/109) 0.557 0.063

noNP+MOE (1:1, SVM) training set 72.37 (55/76) 100.00 (39/39) 43.24 (16/37) 0.658 0.439
test set 66.76 (494/740) 73.06 (461/631) 30.28 (33/109) 0.470 0.025
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A common result among all of the oversampling models is
their similar and improved ability to classify test set
compounds. The best test set prediction for cytotoxic
compounds (active compound predictive ability is measured
with sensitivity) based on models created from the complete
AID 426 data set was 65.0% (noNP+MOE descriptors), while
the MOE descriptor pool SVM model was the least capable
with a sensitivity value of 28.4% (see Tables 2−4). Classification
models constructed from 4D-FPs using the oversampled data
sets for the training sets constructed of Jurkat specific
compounds and end points were able to indicate if a compound
was not cytotoxic at a high degree, while the models
constructed from the other descriptor pools performed poorly.
The best specif icity results for the Jurkat subset SVM models
were obtained from the model created with the 4D-FPs
descriptor pool and an oversampling ratio of 2:3 that was able
to correctly identify 91.9% of the inactive compounds. The
Jurkat specific training set SVM model constructed from MOE
descriptors with an oversampling ratio of 1:1 returned a
specif icity of 56.8% compared to 48.7% for the original Jurkat
specific MOE-SVM models, while the noNP+MOE SVM
model with a 1:1 oversampling had a specif icity of 43.2%
compared to 35.1% for the original Jurkat specific noNP
+MOE-SVM models. All of these improvements with respect to
the ability of the models to reproduce the training set did not
translate into equal success for the test set with specif icity values
ranging from 30.3% to 77.1% (Table 5) with all but one, the
complete AID 426 data set SVM model constructed from the
MOE descriptor pool, specif icity value for the test set being less
than 70%.
When using oversampling, the models perform quite well in

self-prediction, while the test set results are not ideal; therefore,
combinations of different descriptor sets are applied hoping to
determine the corresponding reasons. The six best overfitted
models constructed from the three descriptor pools and various
active:inactive ratios are provided in Table 5 along with their
ability to classify the test set. While all the models can be
classified as ‘Acceptable’ or better based on Cohen’s kappa, the
models’ ability to reproduce the classification of the test set
compounds is considered ‘poor’. This is likely due to clashes of
molecular similarity − discussed below − between the active
compounds in the training set and the inactive compounds in
the test set.
To provide an equivalent comparison to the Guha and

Schürer study,10 RF and SVM models were constructed using
the 1300 compounds of the AID 426 data set (the complete
data set) with an oversampling ratio of 1:1 to compare the best

descriptor set in this study, the complete 4D-FPs pool, to
models constructed from CATS2D descriptors. The 4D-FPs
SVM model significantly outperformed the 4D-FP RF model
based on training set G-mean and Cohen’s kappa values; 0.907
and 0.824 for the SVM model compared to 0.700 and 0.488 for
the RF model, respectively. The ability to predict the class for
the test set was also markedly better for the SVM model
compared to the RF model with a G-mean score of 0.523
compared to 0.353 and a kappa value of 0.032 compared to
−0.003. The SVM model for the training set can be considered
‘highly predictive’ based on the Cohen’s kappa criteria, while
the RF model is considered ‘average.’ The test set abilities of
these models is not as impressive, and once again the SVM
model is considered superior to the RF model but should not
be considered outstanding based on the test set evaluation.
Using the same model creation methodologies, SVM and RF
and the CATS2D molecular descriptors models for the
complete training set were constructed. In this scenario the
RF model outperformed the SVM model based on G-means
(0.782 versus 0.739) and Cohen’s kappa (0.600 versus 0.504)
evaluation methods but not by the same performance gap seen
for the SVM and RF models constructed from 4D-FPs. This
indicates the 4D-FPs contains more detailed molecular
information, and the SVM method of model creation is better
able to extract and apply that information. It can also be viewed
that − in this example − the RF method is better able to extract
pertinent information from a less information dense set of
molecular descriptors than the SVM method.
Comparing these results to the Guha and Schürer10 study is

not straightforward due to the manner that their training set
was constructed. As discussed above, the Guha and Schürer
training set, with a 1:1 active:inactive ratio, was constructed by
randomly selecting 20% of the active compounds for the test
set and using the remaining 80% of the actives and an equal
number of inactives compounds for the training set.
Unfortunately they did not indicate which compounds were
assigned to the training or test set making it difficult to perform
a true one-to-one comparison. The Guha and Schürer10

CATS2D-RF model based on the Jurkat subset of the NCGC
AID 426 data set (this study’s Jurkat subset of AID 426 training
set) when tested against The Scripps Jurkat data set (the
combined AID 364 and 464 data set) was not as robust as
either of the SVM or RF models created for this study. Their
model exhibited overfitting for the active compounds (similar
to what was experienced here before oversampling) but did not
perform as well as the models presented here with G-means and
kappa values of 0.445 and 0.019, respectively. A summary of the

Table 6. Comparative Models between SVM and RF for 4D-Fingerprints (the Best in This Study) and CATS2D Descriptor Sets
(Guha and Schu ̈rer10) with the Same Oversampling Ratio (Active:Inactive = 1:1) of the Complete AID 426 Data Set

Acc (%) Sen (%) Spe (%)
G-

means kappa

complete AID 426 data set 4D-FPs (1:1, SVM)a training set 91.19 (2277/2497) 100.00 (1254/1254) 82.30 (1023/1243) 0.907 0.824
test set 45.41 (336/740) 42.00 (265/631) 65.14 (71/109) 0.523 0.032

4D-FPs (1:1, RF)a training set 74.33 (1856/2497) 49.12 (616/1254) 99.76 (1240/1243) 0.700 0.488
test set 25.00 (185/740) 14.74 (93/631) 84.40 (92/109) 0.353 −0.003

CATS2D (1:1, SVM)a training set 75.17 (1877/2497) 61.40 (770/1254) 89.06 (1107/1243) 0.739 0.504
test set 68.24 (505/740) 75.28 (475/631) 27.52 (30/109) 0.455 0.022

CATS2D (1:1, RF)a training set 79.98 (1997/2497) 63.16 (792/1254) 96.94 (1205/1243) 0.782 0.600
test set 36.22 (268/740) 28.53 (180/631) 80.73 (88/109) 0.480 0.035

CATS2Db (1:1, RF)b NCGC (test set) 67.48 (523/775) 76.25 (488/640) 25.93 (35/135) 0.445 0.019
aResults from this study. bResults from Guha and Schürer.10
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model evaluation methods for the 1:1 SVM and RF models
constructed from the 4D-FPs and CATS2D descriptor pools
are provided in Table 6.
Similarity of Training Data Set and Testing Data Set.

Often the ability of the model is impacted by the molecular
similarity between the active and inactive compounds that
compose the training set and the molecular similarity between
the training set and the test set. In a data set of this size, it is
expected that active compounds would be moderately to highly
similar to each other, while this same trend would be seen for
the inactive compounds regardless if they are part of the
training or test set. When comparing the active compounds to
the inactive compounds it is expected that there would be little
molecular similarity between the two sets of compounds, and
this would be the ideal situation for the construction of a
classification model. Unfortunately, the real world of predictive
modeling is far from ideal, and the experimental data that are
provided is typically somewhat muddled; the compounds that
are molecularly similar to each other yet possess opposing
classifications cause problems for predictive models.
A combination of events − specifically the ability of the

models − indicated that model performance may be limited by
the data, which means that the features within the data may not
have a good explanation for Jurkat cell viability. It is known that
several different structural features may cause cytotoxicity, and
thus molecular similarity analysis of active and inactive
compounds was conducted. To explore the molecular similarity
between active and inactive compounds within the training and
test sets and between the training and test sets the PubChem
fingerprints48 were calculated and the molecular pairwise
similarity was calculated resulting in Tanimoto coefficients.
Figure 2 displays the scaled pairwise molecular similarity
between the compounds in the training and test sets,
specifically the similarity between the inactive compounds in
the training and test sets (noncytotoxic; blue line) and the
active compounds in the training and test sets (cytotoxic; red
line). It is expected that the active compounds in the training
and test sets would be similar to each other, while the inactive

compounds in the training and test sets would be similar to
each other. Based on the scaled frequency of pairwise Tanimoto
coefficients, both sets of compounds are weakly related to each
other based on the PubChem fingerprints. A majority of active
and inactive compounds in the training and test sets do not
have a large number of molecularly similar compounds. It is
expected that for each class of compounds (active and inactive)
the majority of Tanimoto coefficient pairs would be greater
than 0.60 not less than 0.40. The molecular comparison
between active training set compounds and inactive test set
compounds results in the expected molecular similarity (green
line in Figure 2) where − albeit the same level of molecular
similarity seen for active and inactive compounds between the
training and test sets − there is little molecular similarity. The
low amount of molecular similarity within the active and
inactive compounds could be one of the reasons why the
classification models are not able to definitively classify
compounds within the test set.
Using the pairwise molecular similarity results to compare

compounds, active and inactive compounds that are signifi-
cantly similar, a Tanimoto coefficient greater than 0.40 was
investigated. In Figure 3, CID 28780 and CID 25429 are active
compounds in the training set, and CID 780272 is an inactive
compound of the test set. The Tanimoto coefficient between
the two active training set compounds is 0.90, the Tanimoto
coefficient between CID 28780 (active compound in the
training set) and CID 780272 (inactive compound from the
test set) is 0.82, and the Tanimoto coefficient between CID
25429 (active compound in the training set) and CID 780272
is 0.78. The core of these three compounds is a benzimidazole,
and the associated substituent groups are very similar. The
structural similarity between these three compounds would
most likely result in the inactive compound of the test set being
predicted as ‘active’ due to its high molecular similarity to the
two active compounds of the training set.
Another example of high molecular similarity is depicted in

Figure 4 where three active training set compounds (CID
22586, CID 5930, and CID 5288209) are compared to two

Figure 3. The active compounds of the training set (CID 28780, 25429) and the inactive compound of the test set (CID 780272).
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inactive test set compounds (CID 833970 and CID 5338656).
The pairwise Tanimoto coefficients for these five compounds
are provided in Table 7; shaded values indicate pairwise
Tanimoto coefficients for compounds within the same group
(training or test set). The molecular similarity between the
active and inactive compounds ranges from 0.81 to 0.86
indicating a very high level of similarity based on the PubChem
fingerprints. All five compounds share a 4-aminophenol
functional group, and hydrophobic molecular features are
connected to the amine group for all the compounds. In this

situation, the three active compounds of the training set have a
very similar molecular composition to the two inactive
compounds in the test set making it difficult for the
classification model(s) to correctly predict these test set
compound as inactive. This is an example of a problem
common in many classification models; molecularly similar
compounds are part of opposite classes.
These close molecular similarities between active and inactive

compounds cause problems for classification models, because it

Figure 4. The active compounds of the training set (CID 22586, 5930, 5288209) and the inactive compound of the test set (CID 833970, 5338656).
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becomes difficult for the underlying classification methods to
discern the gross molecular features between the two classes.
Significant Molecular Features of the Optimal

Cytotoxic Predictive Model. To extract the important
molecular features from the optimal predictive model, we
applied the linear SVM method to the data set. Unlike the
radial-distribution function (RDF) SVM that was used, linear
SVM can deduce the significant molecular descriptors by using
weighting and linear combinations of the descriptors during the
classification process. The top 20 significant molecular
descriptors were identified from the best-fit model by using
training the complete data set with an oversampling ratio of 2:3
(see Table S1). By once again using all data combinations −
descriptor pools, oversampling ratios, and the original and
subset data sets − an optimal linear SVM model emerged and
was composed of 4D-FP descriptors. The accuracy, sensitivity,
specif icity, G-means, and kappa for this model applied to the 2:3
oversampled training set are 88.0%, 90.3%, 86.4%, 0.883 and
0.755, respectively, and 71.2%, 78.6%, 28.4%, 0.473, and 0.058,
respectively, for the test set. The top 20 most important
descriptors contained a variety of different pairwise pharmaco-
phore interactions (see Table S1) with a mix of through-space
distances separating the atoms. Half of the atomic distances are
greater than 8 Å between the two atoms within the molecule.
This indicates that the important molecular features, for
cytotoxicity models derived from 4D-FP descriptor pools, are
a combination of short- and long-range interactions, 3−8 Å and
greater than 8 Å interactions, respectively.
The significant molecular descriptors have been classified

according to their weighted contributions − based on the
influence that the descriptor has in the classification of
molecules with respect to cytotoxicity − to the linear SVM
model. A positive weight (coefficient) for a molecular
descriptor increases its contribution to the classification
model and thus increases a compound’s predicted cytotoxicity,
while a negative weight decreases the descriptor’s overall
contribution to the classification model and correspondingly
decreases a compound’s predicted cytotoxicity. While the
ε4(PP, HBD), ε8(NP, NP), ε9(NP, HS), ε10(NP, HS),
ε11(NP, HS), and ε4(All, All) 4D-FPs are constructive
descriptors, increasing the predicted end point, the other 14
descriptors reduce the predicted cytotoxicity.
To demonstrate the interpretation of a 4D-FP as a molecular

descriptor, ε2(All, HBD), a significant descriptor with a
negative weight, is illustrated for a cytotoxic and inactive
compound, compounds with this molecular feature. The
compound CID_33528, shown in Figure S1 in its 2D depiction
and low energy 3D conformation, is a potent cytotoxic
compound. Notice there are no hydrogen bond donors and
thus no ε2(All, HBD) interactions within the compound. The
opposite is seen in CID_8640, an inactive compound for
cytotoxicity, and is displayed in Figure S2. It has several atomic

pairwise interactions between its hydrogen bond donor and the
other atoms that satisfy the ε2(All, HBD) term. The dashed
yellow lines represented the interaction between the atomic
pairs. The other significant 4D-FP descriptors can be used in
the same way, as guidelines, to design and refine potential drug
candidates with respect to their cytotoxic activity.

■ CONCLUSION

In this study, SVM models constructed from a complete set of
4D-Fingerprints constructed a better classification model than
the MOE (1D, 2D, and 21/2D) and the combined 4D-FP
(sans nonpolar IPEs) and MOE descriptors when working with
the complete and imbalanced AID 426 data set and the
imbalanced Jurkat subset based on G-means and Cohen’s kappa
evaluation methods for the training set. These evaluation
methods focus on the ability of the predictive models to
correctly classify known active (cytotoxic) and inactive
compounds. The ability for the 4D-FPs SVM models to
correctly classify the divergent molecular similarity test set was
also tops for the complete training set (AID 426) and ranked
second only to the MOE SVM model, for the Jurkat subset,
applied to the test set. The molecular information contained
within the 4D-FPs when combined with a SVM provides
enough key data to construct a classification model from an
imbalanced data set that is comparable to oversampled SVM
models.
Focusing the training set to contain only compounds with

Jurkat cell specific data increases the performance of 4D-FPs
and MOE SVM predictive models when applied to the test set.
The advantage of the oversampling method is that it reduced
the overfitting of the inactive compounds as demonstrated
through the specif icity evaluation values and increased the
performance of self-prediction. The optimal ratio of over-
sampling is data set dependent, and a definitive active-to-
inactive ratio could not be concluded from the presented study
for cell cytotoxicity. With respect to the predictive modeling
method and based on the training set, the SVM-trained models
performed better than the random forest models,16 and
compared to the results of the random forest study, the SVM
method was able to decrease overfitting of inactive compounds.
It is possible that the predictive ability of the SVM and RF

models is limited by the data set. Specifically, the compounds
and end points contained within the data set may not provide a
good explanation of the molecular features required for Jurkat
cell viability. Cytotoxicity may be the result of the compounds
of interest initiating several factors such as apoptosis,49 damage
to the cell membrane,50 and DNA cleavage and enzyme
inhibition.51 Additionally, different structural features account
for different toxicities, and the molecular similarity of the
compounds within the training and test sets have an impact on
the predictive ability of the models when applied to a test set as
shown in Figure 2. The protocols, methodologies, and results
presented herein can be used as an outline for future
imbalanced classification predictive models.
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Table 7. Pairwise Tanimoto Coefficients for Active Training
Set Compounds and Inactive Test Set Compounds

CID
5338656a CID 833970a CID 5288209 CID 5930

CID 22586 0.86 0.85 0.80 0.82
CID 5930 0.86 0.85 0.78
CID 5288209 0.81 0.83
CID 833970a 0.81
aInactive test set compound.
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