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Abstract
Protein-based pharmacophore models derived from the protein binding site atoms without the
inclusion of any ligand information have become more popular in virtual screening studies.
However, the accuracy of protein-based pharmacophore models for reproducing the critical
protein-ligand interactions has never been explicitly assessed. In this study, we used known
protein-ligand contacts from a large set of experimentally determined protein-ligand complexes to
assess the quality of the protein-based pharmacophores in reproducing these critical contacts. We
demonstrate how these contacts can be used to optimize the pharmacophore generation procedure
to produce pharmacophore models that optimally cover the known protein-ligand interactions.
Finally, we explored the potential of the optimized protein-based pharmacophore models for pose
prediction and pose rankings. Our results demonstrate that there are significant variations in the
success of protein-based pharmacophore models to reproduce native contacts and consequently
native ligand poses dependent on the details of the pharmacophore-generation process. We show
that the generation of optimized protein-based pharmacophore models is a promising approach for
ligand pose prediction and pose rankings.
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Introduction
Pharmacophore models aim to reproduce the features of ligand-protein interactions that are
most crucial for binding and biological activity. These models are used for virtual screening
to identify potential new actives or for generating ligand alignments for subsequent QSAR
simulations. Pharmacophore models are typically derived from analyzing the similarity of
several known actives. A number of methods1–5 have been developed to deduce structural
features common to biologically active ligands that are hypothesized to be important for
biological activity. If experimental information about the three-dimensional structure of the
binding pocket is known, these data can guide the optimization of the pharmacophore
model. In the program LigandScout6, for example, interactions between protein and ligand
in an experimentally determined protein–ligand structure guide the pharmacophore selection
process.
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All previously described ligand-based pharmacophore models are dependent on the
chemical features present in the known actives. Physicochemical features that are absent in
the particular set of actives, but are important for the binding of structurally different
ligands, will likely be neglected in the pharmacophore model. Alternatively, the binding site
of the target protein can be used to generate a protein-based pharmacophore model without
the inclusion of ligand information. These protein-based pharmacophore models are
advantageous because a priori knowledge of active ligands is not required and the models
are not biased by the chemical space of previously identified actives. Several approaches7–9

have been developed to derive the protein-based pharmacophore models from ligand-free
proteins. Molecular Interaction Fields (MIFs) are usually used as the first step in deriving
pharmacophore models solely based on the protein structure10. To generate the MIFs, a 3D
grid is projected onto the binding site of interest and the interaction energies at each grid
point are computed between the protein and several molecular probes each with different
physicochemical properties. Finally, pharmacophores can be derived from the MIFs via a
variety of different methods. For example, the structure-based pharmacophore7 (SBP)
method implemented in Discovery Studio uses clustering methods to convert LUDI11

interaction fields into pharmacophore queries. It is possible that some critical protein-ligand
interactions will be lost during the conversion from the MIFs to the pharmacophore models.
However, the accuracy of protein-based pharmacophore models for reproducing the critical
protein-ligand interactions has never been explicitly assessed.

In this study, we use known protein-ligand interactions from a large set of experimentally
determined protein-ligand complex structures to assess the quality of the protein-based
pharmacophores in reproducing these critical contacts. The rationale is that the known
protein-ligand interactions need to be represented by the protein pharmacophore elements in
order to correctly model critical protein-ligand interactions in studies utilizing those
pharmacophore models. Consequently, a successful pharmacophore model should, ideally,
cover all known interactions between a protein and its ligands.

We will first present our methodology to generate protein-based pharmacophore models
based on interaction fields. We then will demonstrate how the pharmacophore generation
procedure can be optimized to produce pharmacophore models that optimally cover the
known protein-ligand interactions. Typically, the generated protein-based pharmacophore
models will be curated to form the workable queries for virtual screening. Little attention
has been paid to investigate the application of the protein-based pharmacophores for ligand
pose prediction and pose rankings. In this study, we will explore the potential of using
optimized protein-based pharmacophore models for pose prediction and pose rankings. We
will show that there are significant variations in the success of protein-based pharmacophore
models to reproduce native contacts and consequently native ligand poses dependent on the
details of the pharmacophore-generation process.

Material and Methods
The overall procedure to generate and test optimal protein pharmacophore models is
depicted in Figure 1. Different parameters are adjusted to optimally reproduce protein-ligand
interaction contacts observed in x-ray complex structures. In the pose generation phase, the
clique-detection and scoring function are subsequently optimized for the models selected in
the previous optimization step. The details of this optimization procedure are discussed in
the following sections.

Data Set
The “core set” of the PDBbind12–13 database (version 2007) was used for this study. The
PDBbind database provides a “refined set” which consists of 1,300 protein-ligand
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complexes that were compiled particularly for docking/scoring studies. From the “refined
set”, 210 protein-ligand complexes were non-redundantly sampled to form the so-called
“core set”12. It covers 70 different proteins, each of which contains three protein-ligand
complexes with different binding affinities. This “core set” provides an ideal divergent set
for our study. All the protein-ligand complexes in the PDBbind core set were pre-processed
with the hydrogen atoms added and were therefore used directly without additional
preparations. All the 210 protein-ligand complexes were used for the optimization of the
protein-based pharmacophore generation program. However, due to various reasons, 20
protein-ligand complexes are excluded from the pose prediction and ranking study. A
detailed reason for exclusion of those complexes can be found in the Supporting Information
S1.

Protein pharmacophore generation
In this paper, the term “protein-based pharmacophores” and “protein pharmacophores” were
used interchangeable. They both refer to the potential interaction sites for the ligand that
could interact with the protein atoms in the binding site. They can be viewed as the negative
or complimentary image of the protein binding site. There are four types of protein
pharmacophores: hydrogen-bond donor/acceptor, hydrophobic, aromatic and ionic
pharmacophores. In addition, the exclusive volume of the protein was also represented by
so-called forbidden pharmacophores, representing the portion of the protein that would
overlap with ligand atoms placed in this moiety.

To generate protein-based pharmacophore elements, a 3D grid with 0.4 Å spacing between
grid points was placed in the binding site for each protein structure. The interaction
potentials (hydrogen-bond donor/acceptor, hydrophobic, aromatic and ionic) between the
protein atoms and probes representing hypothetical ligand atom were computed on each grid
point. The interaction potentials for hydrogen-bonding and hydrophobic probes placed at the
grid points were computed using a continuous form of the ChemScore14–15 scoring function.
The aromatic and ionic interactions were calculated using a functional form similar to
ChemScore. The detailed equations are presented in the Supporting Information S2.

The pharmacophores were generated using the computed interaction energies with the
probes on the 3D grid points. The hydrophobic pharmacophores were computed by a k-
means clustering over all grid points with favorable hydrophobic scores. The hydrophobic
pharmacophore element was then defined as the energy-weighted geometric center over all
grid points of a particular cluster. The number of clusters, k, was adjusted until the minimum
distance between a cluster center i and any other cluster center was on average smaller than
a certain distance cutoff. Five cutoff values, 1.0 Å, 1.5 Å, 2.0 Å, 2.5 Å and 3.0 Å, were
used. The influence of cluster distance on pose-prediction quality was investigated and will
be discussed in the following sections.

Unlike hydrophobic pharmacophores, which represent the presence of several hydrophobic
atoms in a hydrophobic moiety, hydrogen-bond, aromatic and ionic interactions are typically
more specific interactions with an individual functional group of the protein. Therefore, k-
means clustering to generate hydrogen-bond, aromatic and ionic pharmacophores was
performed over the grid points associated with the same nearest functional group. For
example, in generating a hydrogen-bond donor pharmacophore, the program iterates through
all protein acceptors, and groups the grid points closest to the same acceptor into one patch.
K-means clustering was then performed within this patch. Analogous to the generation of
the hydrophobic pharmacophores, five different cutoff values were investigated throughout
clustering.
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In addition to k-means clustering, a scheme that simply defines one pharmacophore by the
energy-weighted geometric center of a patch was tested for hydrogen-bonding, aromatic and
ionic pharmacophores. In detail, the center of the pharmacophore was computed by

(1)

The sum was over all grid points i associated with the same functional group, i.e. the grid
points from the same patch. xi and ɛi were the coordinates and interaction potential of each
grid point, respectively.

In the pharmacophore generation process, the scoring function used to compute the
interactions between protein atoms and probes was empirically derived. The interaction
strength decreases with distance between protein atom and probe. The pharmacophore
elements were derived using clustering of the grid points, which can shift the center of a
cluster to larger distances compared to the optimal distance, i.e. maximum interaction
strength, between protein and ligand atoms (Figure 2a). Thus, we limited the distance range
of favorable interactions between protein and ligand probes for pharmacophore generation,
i.e. minimum and maximum cutoffs were introduced to the scoring function (Figure 2b). We
investigated how the identification of the pharmacophore elements was influenced by the
allowed interaction range, which was named “interaction range for pharmacophore
generation” (IRFPG) throughout the paper. The IRFPGs tested for different interaction types
are listed in Figure 3.

Throughout the posing phase, ligand configurations that overlapped with the protein would
be ranked lower or removed from the pool of potential poses. For this process, forbidden
pharmacophore elements were determined that represented the residues forming the binding
site. Those pharmacophores were generated by clustering over all grid points that are closer
than 2 Å to a heavy atom of a protein residue. A cluster radius of 1.5 Å was chosen.

Protein-ligand contacts analysis
A protein-ligand contact map represents the localized interactions between the ligand and
protein atoms such as hydrogen-bonding, aromatic interactions or hydrophobic contacts, but
neglects long-range interactions, e.g. electrostatics. In a contact map the “contacts” points
were positioned onto the ligand heavy atoms. Corresponding to the types of the
pharmacophores, there were four types of protein-ligand contacts: hydrogen bonding,
hydrophobic, aromatic, and ionic contacts. The identification of hydrogen bonding,
hydrophobic and ionic atoms as well as the center of the aromatic ring were identical to
those used to define the ligand pharmacophore elements described in the “ligand
conformation and pharmacophore generation” section (see below). The same scoring
function as described under “Protein pharmacophore generation” was used for calculating
the interaction strength between the protein and ligand heavy atoms in an x-ray structure. If
there was a favorable interaction, i.e. negative score, between a given ligand-protein atom
pair, a contact was defined between both atoms and a contact point would be positioned onto
the ligand heavy atom involved in that interaction. This procedure was performed on all x-
ray complex structures of our curated database.

Contact coverage by the protein pharmacophores
As described in the section “Protein pharmacophore generation”, the IRFPG and the cluster
distances are parameters that influence the location of the generated pharmacophore
elements. Ideally, the generated protein pharmacophores should co-localize with the known
ligand-protein contacts in the x-ray structure of the associated protein-ligand complex.
Therefore, the degree to which the generated protein pharmacophores covered the known
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protein-ligand contacts was a valuable criterion for identifying the best set of parameters in
the protein pharmacophores generation process (cf. Figure 1). In this study, the PDBbind
core set was used as the training set to achieve this purpose.

We first generated the protein-ligand contact map for each complex from the core set as
described in the section “Protein-ligand contacts analysis”. The protein-ligand contact maps
were then matched onto the protein pharmacophore models to identify how well the contacts
were reproduced by the pharmacophore elements. A contact was covered by the
pharmacophore model if at least one protein pharmacophore element with the same
interaction type was located within 1 Å of the contact. The pharmacophore element that
covered a contact was named a “covering pharmacophore”. For identifying the optimal set
of parameters, i.e. IRFPG values and cluster distances, during pharmacophore generation,
two values were calculated for each setting:

The first measure determined the percentage of contacts the pharmacophore model was able
to reproduce, whereas the second measured the enrichment of the covering pharmacophores
in the pharmacophore model.

Ligand conformation and pharmacophore generation
In our study for prediction of native ligand poses, both the native conformer and low-energy
conformers were used as inputs. The low-energy conformers were generated by Openeye
Omega16. For each ligand, a maximum of 1,000 conformations were generated with the
calculated internal energy no more than 15 kcal/mol above the energy of the ligand
conformation with the lowest internal energy. Duplicate conformers were removed using a
0.2 Å root-mean-square deviation (RMSD) cutoff for ligands with zero to three rotatable
bonds, a 0.3 Å cutoff for ligands with four to six rotatable bonds, and a 0.4 Å cutoff for all
ligands with more than six rotatable bonds.

The in-house program clusterconformer was then used to generate the pharmacophore
elements for each ligand conformation. Four types of pharmacophores were defined for each
ligand: hydrogen-bond donor/acceptor, hydrophobic, aromatic and ionic pharmacophores.
Hydrogen-bond pharmacophores are placed at the position of potential donor and acceptor
groups of the ligand: Hydrogen-bond donors are polar hydrogen atoms bonded to oxygen,
nitrogen and sulfur atoms, acceptors are oxygen, nitrogen and sulfur atoms with at least one
lone pair. Ligand atoms (excluding hydrogen atoms) were defined to be hydrophobic if they
were not hydrogen-bond donors or acceptors or directly bonded to a ligand’s donor or
acceptor atoms. The hydrophobic atoms from each ligand conformation were clustered using
hierarchical clustering with a minimum distance between cluster centers of 2.0 Å. Clustering
was performed to reduce the number of hydrophobic ligand pharmacophores. This
significantly reduced the cost of clique detection and consequently increased the efficiency
of pose prediction. Aromatic pharmacophores were defined as centers of aromatic rings.
Ionic groups included functional groups that were formally charged positive or negative, e.g.
protonated amines or deprotonated carboxylic acids, and were placed at the centroids of the
functional group.
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Prediction of ligand poses
Our in-house program, PharmPose, was used to sample ligand poses in the generated
pharmacophore model. The sampling process is based on a modified Bron-Kerbosch clique
detection algorithm17–18 that enumerates all possible multi-points (> = 3) matches of protein
and ligand pharmacophores. First, the length of the edge between each pair of ligand
pharmacophores was determined. The edge lengths were also determined for each protein
pharmacophore pair. All ligand pharmacophore edges that matched the protein
pharmacophore edges, based on the pharmacophore types (hydrogen bond donor/acceptor,
hydrophobic, aromatic and ionic interactions) of their vertices and edge lengths, were
identified. Throughout the matching process, a tolerance for the edge lengths was allowed,
and the optimal value of this edge tolerance was studied as will be described in subsequent
sections. The matching process can be represented by a graph in which each node represents
a matching ligand-protein pharmacophore pair. The clique detection algorithm then
identified all the completely connected subgraphs from this graph. The Kabsch algorithm19

was then used to spatially align the ligand pharmacophore elements to the matching protein
pharmacophore in each clique, thus placing the ligand into the protein binding site. To avoid
steric clashes between ligand and protein atoms, the number of heavy atoms of the ligand
that were located within 1.3 Å to any of the forbidden pharmacophores was counted for each
ligand pose. If more than 10% of the ligand’s heavy atoms overlapped with forbidden
pharmacophores, the pose was rejected.

Pharmacophore-based pose ranking
The ligand poses sampled by PharmPose were scored and ranked using a simple geometric
scoring function based on the matching pharmacophore pairs formed by each ligand
pharmacophore and its closest protein pharmacophore of the same type:

(1)

Where w was the weighting factor ranging from −1.0 to 0.0 and was optimized as described
in the following section.f(r) was a distance-dependent function that measures the spatial
separation of protein and ligand pharmacophores of a matching pharmacophore pair:

(2)

r was the distance between the ligand pharmacophore and its closest matching protein
pharmacophore of the same type. It is noteworthy that equation 1 calculated the score of a
pose based on all the ligand pharmacophores rather than only those involved in forming
cliques.

Optimization of pose prediction and pose ranking
To identify optimal protein pharmacophore models for pose prediction, three
pharmacophore models were chosen that were able to accurately reproduce native protein-
ligand contacts. In the next step of optimization, we used clique detection and the
pharmacophore-based scoring function to generate and rank poses, aiming to reproduce
native binding modes (cf. Figure 1). In the clique detection process, the distance tolerance in
the edge matching process is a critical parameter for both sampling accuracy and time
efficiency. A larger edge tolerance will result in a higher number of matching edges and
cliques. This search will generate a larger ensemble of sampled poses, which increases the
probability of recovering a native-like pose. However, the computational efficiency suffers
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from larger edge-length tolerances, as the number of matching cliques will linearly increase
with the number of the matching edges18.

In addition, variation in distance cutoffs throughout the k-means clustering was studied. The
number of protein pharmacophores would become very large when a small distance cutoff is
used. Consequently, a smaller edge tolerance is preferred to allow the completion of pose
sampling within a reasonable amount of time. Therefore, a benchmark study was performed,
using the native conformation of each ligand as the input, in order to achieve the best
tradeoff between the sampling accuracy and time efficiency. Throughout this phase of
pharmacophore optimization, the native ligand conformation was chosen to remove any
uncertainty introduced by ligand conformations that do not resemble the native form. In
detail, the ligand pharmacophores were generated for the native conformation of each ligand
in the PDBbind core set following the method described in “ligand pharmacophore
generation” section. This native ligand pharmacophore model was then matched onto
different protein pharmacophore models (variation in IRFPG and cluster distance) with
different edge tolerances. The poses sampled from each run were assessed for their RMSD
to the native binding pose of the ligand. The CPU time needed for the whole process was
also recorded for analyzing the efficiency of the process.

After determination of the optimal combination of pharmacophore model (IRFPG value and
cluster distance) and edge tolerance for the reproducibility of native-like poses and sampling
efficiency, the binding poses sampled from this model were scored by equation 1. All
weighting factors were initially set to one. The performance of this equally-weighted scoring
function was then evaluated on the top-100 ranked poses by its ability to reproduce the
native-like poses for each protein-ligand complex in the PDBbind core set. The best pose
RMSD, i.e. the minimal RMSD between the sampled poses to the native binding pose
denoted as RMSDmin, was calculated. The average RMSDmin over the studied protein-
ligand complexes was reported to assess the overall sampling performance. In addition, the
percentages of complexes that were successfully predicted with poses within 1 Å, 2 Å and 3
Å RMSD to the native conformation were also used to evaluate the overall performance of
pose generation and ranking.

The equally-weighted function assumed that each type of pharmacophore element
contributed equally to protein-ligand interactions. However, as seen in many empirical
scoring functions14, 20 used for docking, different types of interactions were weighted
differently to better reproduce protein-ligand interactions. Therefore, a training process was
performed to optimize the weights of the function in equation 1. To accelerate the
optimization process, the top-1000 poses of each protein-ligand complex ranked by the
equally-weighted function were used as the input data. A systematic optimization scheme
was adopted: First, each pre-factor w in equation 1 was systematically altered from −1.0 to
0.0 with an increment of 0.1. This leads to 114 different sets of pre-factors, each of which
corresponds to a differently weighted scoring function. The poses were then re-scored and
re-ranked by each of the scoring functions. The fitness of each function was assessed using
the Receiver Operating Characteristic (ROC) curve. In detail, for each protein-ligand
complex, the poses with a RMSD less than or equal to 2 Å to the native pose were labeled as
active and those with RMSD beyond 2 Å were labeled as decoys. A ROC curve displaying
the fraction of ranked actives at a given fraction of the ranked decoys was then plotted for
each protein-ligand complex. The area-under-the-curve (AUC) was calculated for each
curve. Finally, the average AUC over all the protein-ligand complexes was used to measure
the fitness of each set of pre-factors.
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Results and Discussion
Optimization of protein pharmacophore generation methodology

Protein pharmacophores derived from the protein binding site atoms without the inclusion of
any ligand information have been used in various virtual screening studies7, 21. The term
“protein pharmacophores” refers to the functional groups of hypothetical ligands that
potentially interact with the atoms of the protein binding site. In this perspective,
pharmacophores can be viewed as the negative or complementary image of the protein
binding site. In our approach, the elements of a protein pharmacophore were derived by
computing the interaction energy between molecular probes placed on a 3D grid in the
binding site with the protein residues, and subsequent clustering of proximate grid points
with similar properties (see Material and Methods section for details). As mentioned in the
Introduction, it has never been systematically investigated if the critical protein-ligand
interactions observed in experimental structures are well preserved during this
pharmacophore generation process. Therefore, in our study we assessed the quality of the
pharmacophore models in reproducing the key protein-ligand interactions observed in
protein-ligand complex structure of the PDBbind core set.

First, a contact map representing the known protein-ligand interactions was generated for
each protein-ligand complex in the dataset. The protein pharmacophore models were then
superimposed with the contact map to assess how well the protein-ligand interactions were
reproduced by the pharmacophore models. As mentioned in the Materials and Methods
section, the IRFPG and the cluster distance strongly influenced the location of the
pharmacophore elements. Variation of these two parameters generated an ensemble of
pharmacophore models which were assessed for the potential to reproduce the known
contact maps. For hydrogen-bond and aromatic pharmacophore types, we tested four
different IRFPG and six different cluster distances, resulting in a total of 24 sets of
parameters for these two pharmacophore types (Figure 3). For hydrophobic and ionic
pharmacophores, the utilized potential functions have a wider range of interactions.
Therefore, ten and five different IRFPG values were tested for them, respectively. To
measure the quality of the parameter sets for reproducing native contacts, two fitness values
were calculated: the overall contact coverage rate, which measures how many of the known
ligand-protein interactions are reproduced by a given pharmacophore model; and the
percentage of the covering pharmacophores, which measures the enrichment of the covering
pharmacophore in the given pharmacophore model. A 100% contact coverage rate of a
pharmacophore model would indicate that the graph of known protein-ligand interactions is
a sub-graph of the given pharmacophore model, i.e. there exists a clique in the set of
pharmacophore elements that overlays with all native contacts within a certain distance
uncertainty. Consequently, in pose prediction studies an exhaustive search using clique
detection should be able to retrieve the native binding pose using such optimal
pharmacophore models as long as the native ligand conformation can be reproduced. On the
other hand, a high percentage of the “covering pharmacophore” would suggest a high
enrichment of pharmacophore elements representing the key protein-ligand interactions. The
predicted poses using such pharmacophore models would potentially have a higher true
positive rate than the poses predicted from a model with lower covering pharmacophore
rate. Therefore, an ideal pharmacophore model for pose prediction should have both a high
contact coverage rate and a high percentage of covering pharmacophores.

The contact coverage rates and the percentage of the covering pharmacophores for the four
pharmacophore types are shown in Figure 3. It is obvious from this heat map that variation
in IRFPG has a significant impact on the quality of the pharmacophore model. It also
demonstrates that the suggested optimal IRFPG value is very consistent across the different
cluster distances. For example, with regards to hydrogen-bond pharmacophores, the highest
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contact coverage rates were observed for IRFPG equal to the range 2.5–3.4 Å, no matter
which cluster distance was used. This is also true for ionic pharmacophores where the
IRFPG of 2.5–5.4 Å gives the best contact coverage rates. For aromatic and hydrophobic
pharmacophores, a slight variation of best IRFPG as a function of cluster distance was
observed. However, including the percentage of covering pharmacophores in our
consideration, the IRFPG of 3.5–5.4 Å and 3.5–6.1 Å are optimal for aromatic and 3.0–5.0
Å is the best choice for hydrophobic pharmacophores. Therefore, in the remainder of this
paper all pharmacophore models were generated using these optimal IRFPG ranges; IRFPG
of 3.5–6.1 Å was used for aromatic pharmacophores.

Figure 3 also shows that the contact coverage rate decreases with increasing cluster
distances. This is not surprising, as a larger cluster distance will result in a sparser
pharmacophore model. Such sparse models will less likely cover all known contacts. In
parallel, the percentage of the covering pharmacophore does not change significantly with
variation in cluster distance. This is a result of the compensatory effects of decreasing
number of covering pharmacophores and decreasing total number of pharmacophores
(Supporting Information S3).

It is noteworthy that, for hydrogen bond, aromatic and ionic pharmacophores, a method that
defines the pharmacophores based on the energy-weighted geometric center (GC) of the grid
points was also tested. This method resulted in the sparsest pharmacophore models and
showed a significant drop in performance compared to models resulting from k-means
clustering. Recently Tintori et al.9 reported the pharmacophore generation approach based
on the MIFs calculated by the popular GRID22 program. They used several criterions to
select the points of minimum energies on MIFs as the pharmacophore elements. Although
our energy-weighted geometric center does not directly coincide with the minimum energy
position, our results nevertheless suggest that using the minimum energy positions might be
inadequate to cover the critical protein-ligand interactions.

In summary, considering both the contact coverage rate and the enrichment of the covering
pharmacophores, it seems that a 1Å cluster distance is the best option for reproducing the
native contacts, and consequently might be the optimal choice for subsequent pose
prediction using protein-pharmacophore models. However, taking the absolute number of
pharmacophores into consideration (Table 1), the 1Å cutoff might not be the optimal choice
for clique detection as the computation efficiency decreases exponentially as the number of
pharmacophores increases. For example, the number of hydrogen-bond pharmacophores
generated using 1Å radius (554) is more than twice the number of pharmacophores
generated using a 2Å radius (225). As will be shown in the next section, to achieve the same
performance in pose prediction, the high density pharmacophore map generated using 1Å
cutoff requires a much smaller edge tolerance and is more resource demanding than a
sparser pharmacophore model.

Pharmacophore-based poses prediction and ranking using native conformation
Protein-based pharmacophore models are traditionally used for virtual screening
purposes7–9. Because the size of the pharmacophore model is typically quite large, a
selection of pharmacophore points that are most critical for binding known ligands is usually
needed to generate workable queries for virtual screening. On the other hand, protein-based
pharmacophore models are, by definition, enriched with the information of potential
interactions between other ligands with novel scaffold and the protein target. Consequently,
another application of the protein-based pharmacophore models is to use them for ligand
pose prediction and pose ranking. The use of the protein pharmacophores as “site points” for
pose sampling in some pioneer docking programs11, 23–25 can be viewed as such application
examples.
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To explore the potentials and limits of our protein-based pharmacophore models for pose
prediction and pose ranking, we investigated their ability in reproducing the native-like
binding poses using the in-house program PharmPose. As described in the Materials and
Methods section, PharmPose is based on a clique-detection algorithm17–18. It enumerates all
the possible multiple-points matches between ligand pharmacophores and protein
pharmacophores. In this process, an edge tolerance that defines the uncertainty allowed for
matching the distances of the pharmacophore edges significantly influences the accuracy
and efficacy of pose prediction. For a model with a large number of pharmacophore
elements, a small edge tolerance value may be necessary to reduce the possible number of
matches between ligand and protein pharmacophores and lower the computational time for
pose sampling. However, this reduction in sampling space might potentially cause a reduced
probability to generate the native binding pose. Therefore, we screened different
combinations of edge tolerance and cluster distance to identify the best combination for pose
prediction.

To study the relationship between size of protein-based pharmacophore models and the edge
tolerance, we performed a native pose-prediction study using the native ligand conformation
as input. This approach removes any additional uncertainty in the pose prediction due to
difficulties in pre-generating native-like ligand conformations. We first generated the
pharmacophore features for each native ligand conformation in the PDBbind core set. The
in-house program PharmPose was then used to sample all possible matches between the
ligand pharmacophores and the corresponding protein-based pharmacophore models. To
accelerate the pose sampling process, only hydrogen bonding and hydrophobic
pharmacophores were used in the clique detection process. This can be substantiated by
examining the average number of ligand-protein contacts found in the PDBbind core set
(Table 1); on average only one aromatic interaction and less than one ionic interaction per
protein-ligand complex is observed in the known protein-ligand complexes. Therefore,
considering only hydrogen-bond and hydrophobic pharmacophores in the clique detection
should be sufficient to generate native-like poses. The investigated settings for
pharmacophore–model generation and edge tolerance are listed in Table 2. The average
RMSDmin values, which measure the minimal RMSD between the sampled poses to the
native binding pose, and the percentages of the protein-ligand complexes having native-like
poses with an accuracy of 1Å, 2Å and 3Å RMSD, are also reported in Table 2. In general,
for the same pharmacophore model, prediction accuracy increases as the edge tolerance
increases. A larger edge tolerance results in a larger pool of predicted poses and therefore a
higher probability for finding native-like poses. However, this increase in accuracy is
accompanied by a reduction in the sampling efficiency measured by the average CPU time
of pose generation per complex. For instance, for a pharmacophore model with a 1Å cluster
distance for both hydrogen bond and hydrophobic pharmacophore generation, the required
CPU time per complex increased five folds if the edge tolerance was increased from 0.05 Å
to 0.10 Å. For a pharmacophore model with a larger cluster distance a larger edge
uncertainty can be tolerated to achieve similar accuracy without losing efficiency. Overall,
the pharmacophore models using a 2.0 Å cluster distance for hydrogen-bond and 1.5 Å for
hydrophobic pharmacophore elements combined with an 0.30 Å edge tolerance seems to
provide a good compromise between sampling accuracy and efficiency. For this setting, the
models are able to find a pose within 3 Å RMSD of the native pose for all protein-ligand
complexes and a pose within 2 Å RMSD to the native pose for 98% of the complexes. The
average required CPU time is only 13 seconds. As a consequence, this setting will be used
for the following studies.

Given that our protein-based pharmacophore models are able to generate at least one pose
within 2 Å RMSD to the native binding pose for 98% of the protein-ligand complexes, we
asked the question whether the protein-based pharmacophore model can also provide
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sufficient information for ranking the native-like poses before nonnative-like poses. To
address this question, we used a simple geometric scoring function (equation 1 in Materials
and Methods section) to score and rank the predicted poses. Because the scoring process
does not demand as many computational resources as the pose sampling process, the most
detailed pharmacophore model generated with a 1 Å cluster distance for all pharmacophore
types was used for scoring. The rationale is that the densest pharmacophore model provides
the best description of the binding site contacts as demonstrated in the previous section (cf.
Figure 3), and consequently should provide the largest amount of information for scoring.

As a preliminary test, we first ranked all poses with an equally-weighted scoring function in
which all the pre-factors in equation 1 were set to one. We investigated the enrichment of
native-like poses among the top-100 ranked configurations. Table 3 displays the ranking
results measured by the RMSDmin and the percentage of complexes having native-like poses
among the top-100 ranked poses. To demonstrate that the pharmacophore model does
provide extra information throughout scoring, we also randomly selected 100 poses from the
full ensemble of poses for each protein-ligand complex to serve as a negative control. As
shown in Table 3, the equally-weighted scoring scheme clearly outperforms the randomly
selected scheme in terms of RMSDmin, average rank of RMSDmin and the percentages of
systems with generated poses within 1 Å and 2 Å RMSD to the native pose. This suggests
that the simple pharmacophore-based scoring scheme does provide valuable information for
pose ranking.

To further explore the potential of the simple pharmacophore-matching scoring function, we
optimized the weights of this function to investigate whether such optimization can further
improve the pose ranking quality. Starting from the top-1000 ranked poses for each system
based on the equally-weighted scoring function, 114 different sets of pre-factors in equation
1 were assessed for their ability to distinguish native-like poses (RMSD ≤ 2 Å) from non-
native-like poses (RMSD > 2 Å) (see Materials and Methods section for detail). The fitness
of each set of pre-factors was measured by the average AUC over all the protein-ligand
complexes. The best average AUC value was obtained for the set of pre-factors with values
whbond = −0.7, whphob = −0.4, warom = −0.6 and wionic = −0.6. It should be mentioned that
on average there are more hydrophobic ligand-protein contacts than any of the other three
types (Table 1). The lower pre-factor of the hydrophobic pharmacophore compared to the
pre-factors of the other three pharmacophore types potentially balances the contribution of
different interaction types to the final score. The performance of the optimized weights is
reported in Table 3 for the top-100 ranked poses. The RMSDmin was lowered by about 0.1
Å and the percentage of the complexes with poses within 1 Å and 2 Å RMSD of the native
configuration were both increased by 3% compared to the results from the equally weighted
scoring function.

Pharmacophore-based poses prediction and ranking using multiple low-energy
conformations

Using the native ligand conformation as input, we identified suitable sets of parameters for
pose sampling and pose ranking. Typically, the native ligand conformation is not known as a
prior to the pose prediction process. Thus, software is usually used to generate an ensemble
of low-energy ligand conformations prior to pose sampling. Therefore, we repeated our pose
prediction and ranking experiment using the low-energy ligand conformations generated
with the software Openeye Omega16 as input.

We first performed an exhaustive search to generate all possible poses without scoring
(Table 3). Comparing the results with those generated by using the native ligand
conformation as input allows us to assess the influence of the input conformation on the
quality of sampling native-like poses. Not surprisingly, the use of low-energy conformations
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introduced another source of inaccuracy into the pose-generation process and this
significantly reduces the sampling accuracy comparing to the exhaustive search using native
conformation: the RMSDmin decreased on average by 0.4 Å and the success rate of
generating ligand pose within 1 Å, 2 Å and 3 Å RMSD to the native pose reduced by 27%,
8% and 3%, respectively. To better quantify the reason for this observed reduction in
sampling accuracy, we assessed the relationship between best pose RMSD (RMSDmin) and
Omega-generated conformations with lowest RMSD (Omega RMSDbest) to the native
conformation for each protein-ligand complex (Figure 4, left). In general, a correlation
between RMSDmin and the Omega RMSDbest was observed. As all pre-generated
conformations are docked rigidly into the binding site using PharmPose, the lowest
RMSDmin of each complex can only be greater than or equal to Omega RMSDbest. In other
words, in the ideal situation where no additional inaccuracy is introduced throughout the
posing process, all data points in Figure 4 left will lay on the y = x line and the average
RMSDmin value will equal the value of the average Omega RMSDbest (0.73 Å). However, in
such an ideal case, the average RMSDmin value using the native conformations as input
would be zero; the observed average RMSDmin value using the native conformation as the
input, however, was on average 0.83 Å. Adding this additional uncertainty value to the ideal
y = x curve (resulting in the y = x + 0.83 Å line in Figure 4 left), demonstrates that the
native pose for the majority of complexes can be reproduced with such an additional
inaccuracy compared to the Omega RMSDbest value. The 23 compounds that are located
outside of this region all have an Omega RMSDbest value below 1 Å (red points in Figure 4,
left). For these outliers a good correlation between the RMSDmin using the Omega-
generated conformation and the RMSDmin using the native conformations was observed
(Figure 4, right). These observations mean that ligands whose native pose is difficult to
reproduce using the Omega-generated conformations as input are also difficult to reproduce
when the native conformation was provided as input. In conclusion, the average RMSDmin
value when using the Omega-generated conformations can be largely explained as the sum
of inaccuracies introduced through the pre-generation of ligand conformations and the pose-
sampling process.

Finally, we assessed the quality of the optimized pharmacophore-based scoring function for
ranking the poses generated using the Omega-generated conformations. The results for the
top-100 ranked poses are reported in Table 3. Both the RMSDmin and the percentage of
systems with native-like poses dropped significantly compared to the results obtained using
the native conformation as input. These results are not surprising for two reasons: First,
using Omega-generated conformations introduces additional uncertainty in the pose-
generation process as discussed previously. Second, many more poses need to be ranked to
identify native-like poses which presents a much harder problem for the pose-ranking
process using Omega-generated conformations compared to the same process using only the
native conformation. In the case that the native conformer was used, there are on average
only 2837 poses per protein-ligand complex that need to be ranked. This number increased
to over 800,000 per complex if multiple low-energy conformations were provided. To make
the situation worse, the ensembles of poses using the Omega-generated conformations were
more highly populated by non-native-like poses (> 3 Å) than native-like poses (data not
shown). Given the difficulty of this ranking problem, the increased performance of the
simple pharmacophore-based scoring scheme compared to the performance of the random
selection of conformations suggests the usefulness of the protein-based pharmacophore
models for pose ranking.

Comparison with molecular docking programs
Despite tremendous efforts, the identification of native-like binding poses as top-ranked
configurations in a reasonable amount of computation time is still an unsolved issue26–27.
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On the other hand, it has been shown that current docking programs are more mature in
sampling native-like poses27–28. Using the sampled docking poses, various approaches29–30

can be applied to score those poses. In this study, we have assessed the potential of the
protein-based pharmacophore models for pose prediction and ranking. Although a direct
comparison with the current state-of-the-art docking programs is not an aim of this study, it
is of interest to understand the potentials and limits of the protein-based pharmacophore
models for pose generation and ranking compared with existing docking programs. Table 4
displays the results recently reported by Plewczynski et al. evaluating seven widely used
docking programs on the PDBbind refined set28. They used both the native conformer and
ten omega-generated low-energy conformers as inputs in their evaluation. For each input
ligand conformation, ten poses were generated from each docking program. To compare
their results with ours, we recalculated the RMSDmin and the success rate of generating a
ligand pose within 2 Å RMSD to the native configuration for the top-10 ranked poses
sampled using the native conformation. It is encouraging to observe that our simple
pharmacophore-based approach outperformed most of the tested docking programs. Using
the Omega-generated conformations demonstrated that our approach also performs
significantly better than three of the tested docking programs. Only three of the evaluated
docking programs generated a success rate over 71% for docking the ligand within 2 Å
RMSD to its native pose. Considering that only a simple pharmacophore-based scoring
function was used in our study, a 71% success rate in posing the ligand within 2 Å to its
native conformation is very encouraging. We recognized that the datasets used in our study
are not exactly the same as used by Plewczynski et al.. However the “core set” we used is a
subset non-redundantly sampled from the “refined set” used in Plewczynski et al.’s study.
Furthermore, the average RMSDmin values generated by our pharmacophore models are also
quite comparable to the results of four docking programs (Glide, GOLD, LigandFit and
Surflex) evaluated by Li et al. on the PDBbind core set27.

Conclusions
Starting from the optimization of an empirically-based pharmacophore generation program,
we have studied the potential of protein-based pharmacophore models for ligand pose
prediction and ranking. After optimization of the pharmacophore generation process, the
protein-based pharmacophore models were able to cover more than 95% of the
experimentally known protein-ligand contacts. Using these optimized pharmacophore
models, we first studied the quality of pose prediction with the native conformations of each
ligand as input. For 98% of all protein-ligand complexes, a native-like binding pose could be
generated, and using an optimized pharmacophore-based scoring function the native-like
poses could be ranked within the top-100 for 94% of all systems. Using multiple low-energy
conformations as input for pose prediction and ranking, a 71% success rate was achieved for
predicting native-like binding pose within the top-100 ranked poses. Our studies
demonstrate that significant variations in reproducing native contacts and as a consequence
native ligand poses exist dependent on the details of generating protein pharmacophores.
Thus, it is essential to tune the parameters of the underlying pharmacophore-generation
process to obtain optimal performance in native-pose identification.

Our method’s results for pose generation and ranking are comparable in quality to widely
used docking programs that are typically significantly more time-consuming than our
method. Noticing that a fair comparison between different docking programs is quite
difficult31, due to many influencing factors, we do not intend to draw any firm conclusions
from such a comparison. However, this comparison inspires us to further explore the
usefulness of protein-based pharmacophore models in pose predictions. We also want to
emphasize that it is not the aim of our method to compete with existing docking methods per
se as our simple pharmacophore-based scoring scheme is not comparable to more
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sophisticated scoring functions used in standard docking. We view our approach as a fast
method to generate native-like poses and enrich those poses within the top-100 ranked
poses. As a consequence, no attempts have been made to apply the method to virtual
screening as important free-energy contributions such as ligand desolvation or entropy are
not or only rudimentarily accommodated in the simple pharmacophore-scoring scheme. The
future direction is to combine our protein-pharmacophore method with more sophisticated
pose-optimization methods: For example, starting from the top-100 ranked poses, an
optimization method combined with a more sophisticated scoring function might be able to
further optimize the predicted poses and their ranking. This combination of fast pose
generation, optimization and more time-consuming scoring could then also been applied to
virtual screening applications as ultimate goal.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Overall procedure for pharmacophore model optimization and testing.

Hu and Lill Page 16

J Chem Inf Model. Author manuscript; available in PMC 2014 May 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Example for influence of “interaction range for pharmacophore generation” (IRFPG)
parameter on generation of hydrophobic pharmacophores. The hydrophobic grid points are
shown as circles and color coded according to cluster membership. The cluster center is
depicted as large circle and represents the pharmacophore. In a. the minimum and maximum
range of hydrophobic interactions are following the values of the scoring function. In b. the
maximum range of interaction is reduced compared to the maximum range of the scoring
function.
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Figure 3.
Heat map of the overall contact coverage rate and percentage of the covering
pharmacophore for hydrogen-bonding, aromatic, ionic and hydrophobic pharmacophores.
For each pharmacophore type, the upper panel shows the overall contact coverage rate and
the lower panel shows the percentage of the covering pharmacophores. The results in each
column are from the same IRFPG whereas the results in each row are from the same
distance cutoffs for clustering. GC: energy-weighted geometric center.
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Figure 4.
Analysis of the pose-sampling results using Omega-generated conformations as input. Left:
Correlation between the RMSDs of best pose (RMSDmin) and the best omega-generated
conformation (Omega RMSDbest) with respect to native pose and native conformation,
respectively. In the ideal situation in which no additional inaccuracy will be introduced
during the pose-sampling process, all points should locate on the ideal line of y = x.
Estimated from the RMSDmin for using native conformations as input, the majority of
complexes (blue crosses) fall into the region between the associated line of uncertainty (y =
x + 0.83 Å) and the ideal line (y = x). Right: Correlation between the RMSDmin values of
using native and Omega-generated conformations for the outliers that are located outside of
the region defined by y = x + 0.83 Å and y = x (red crosses on left figure).
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Table 1

The number of protein pharmacophores and number of contacts averaged over all protein-ligand complexes
for each interaction type. Only the pharmacophore models generated using the optimal IRFPG (hydrogen-
bond: 2.5–3.4 Å; hydrophobic: 3.0–5.0 Å; aromatic: 3.5–6.1 Å; ionic: 2.5–5.4Å) were shown. GC: energy-
weighted geometric center.

Distance cutoff for clustering Hydrogen-bond Hydrophobic Aromatic Ionic

1.0Å 554 343 119 219

1.5Å 305 114 60 88

2.0Å 225 62 42 53

2.5Å 189 40 33 37

3.0Å 174 29 28 29

GC 79 N/A 9 7

Average number of contacts 4 10 1 0.4
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Table 4

Comparison of PharmPose to seven docking programs evaluated by Plewczynski et al.28. The results using
native conformer as input were recalculated for the top-10 ranked poses to be comparable to that of
Plewczynski et al.’s study. The RMSDmin was averaged over all the protein-ligand complexes.

Native conformer Omega-generated conformer

RMSDmin (Å) %comp < 2 Å RMSDmin (Å) %comp < 2 Å

Surflex 2.25 67% 1.30 86%

GOLD 1.75 71% 1.25 83%

eHiTs N/A N/A 1.65 72%

Glide 2.35 65% 1.85 70%

AutoDock 1.65 72% 2.95 66%

LigandFit 1.95 69% 2.15 64%

FlexX 3.10 56% 3.10 56%

PharmPose 1.70 74% 1.80 71%
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